1
|
Carranza M, Rea A, Pacheco D, Montiel C, Park J, Youn H. Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein. J Microbiol 2024; 62:871-882. [PMID: 39240506 DOI: 10.1007/s12275-024-00169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.
Collapse
Affiliation(s)
- Marcus Carranza
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Amanda Rea
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Daisy Pacheco
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Christian Montiel
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Jin Park
- Department of Computer Science, California State University Fresno, Fresno, CA, 93740, USA
| | - Hwan Youn
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA.
| |
Collapse
|
2
|
Belvin BR, Musayev FN, Escalante CR, Lewis JP. Full-length structure and heme binding in the transcriptional regulator HcpR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611725. [PMID: 39282349 PMCID: PMC11398531 DOI: 10.1101/2024.09.06.611725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
HcpR is a CRP-family transcriptional regulator found in many Gram-negative anaerobic bacteria. In the perio-pathogen Porphyromonas gingivalis, HcpR is crucial for the response to reactive nitrogen species such as nitric oxide (NO). Binding of NO to the heme group of HcpR leads to transcription of the redox enzyme Hcp. However, the molecular mechanisms of heme binding to HcpR remain unknown. In this study we present the 2.3 Å structure of the P. gingivalis HcpR. Interdomain interactions present in the structure help to form a hydrophobic pocket in the N-terminal sensing domain. A comparison analysis with other CRP-family members reveals that the molecular mechanisms of HcpR-mediated regulation may be distinct from other family members. Using docking studies, we identify a putative heme binding site in the sensing domain. In vitro complementation and mutagenesis studies verify Met68 as an important residue in activation of HcpR. Finally, heme binding studies with purified forms of recombinant HcpR support Met68 and His149 residues as important for proper heme coordination in HcpR.
Collapse
|
3
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
4
|
Hou MH, Chen CJ, Yang CS, Wang YC, Chen Y. Structural and functional characterization of cyclic pyrimidine-regulated anti-phage system. Nat Commun 2024; 15:5634. [PMID: 38965224 PMCID: PMC11224242 DOI: 10.1038/s41467-024-49861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
3',5'-cyclic uridine monophosphate (cUMP) and 3',5'-cyclic cytidine monophosphate (cCMP) have been established as bacterial second messengers in the phage defense system, named pyrimidine cyclase system for anti-phage resistance (Pycsar). This system consists of a pyrimidine cyclase and a cyclic pyrimidine receptor protein. However, the molecular mechanism underlying cyclic pyrimidine synthesis and recognition remains unclear. Herein, we determine the crystal structures of a uridylate cyclase and a cytidylate cyclase, revealing the conserved residues for cUMP and cCMP production, respectively. In addition, a distinct zinc-finger motif of the uridylate cyclase is identified to confer substantial resistance against phage infections. Furthermore, structural characterization of cUMP receptor protein PycTIR provides clear picture of specific cUMP recognition and identifies a conserved N-terminal extension that mediates PycTIR oligomerization and activation. Overall, our results contribute to the understanding of cyclic pyrimidine-mediated bacterial defense.
Collapse
Affiliation(s)
- Mei-Hui Hou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40447, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Shin Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Chuan Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
5
|
Zhang Z, Huo J, Velo J, Zhou H, Flaherty A, Saier MH. Comprehensive Characterization of fucAO Operon Activation in Escherichia coli. Int J Mol Sci 2024; 25:3946. [PMID: 38612757 PMCID: PMC11011485 DOI: 10.3390/ijms25073946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| | | | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| |
Collapse
|
6
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
7
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis. J Mol Biol 2024; 436:168419. [PMID: 38141873 PMCID: PMC11462632 DOI: 10.1016/j.jmb.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
8
|
Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y, Liu B. Structural basis for transcription activation by the nitrate-responsive regulator NarL. Nucleic Acids Res 2024; 52:1471-1482. [PMID: 38197271 PMCID: PMC10853779 DOI: 10.1093/nar/gkad1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lina He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei JiangXia Laboratory, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
9
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
10
|
Gresh N, El Hage K, Lagardère L, Brégier F, Godard J, Piquemal JP, Perrée-Fauvet M, Sol V. Enforcing Local DNA Kinks by Sequence-Selective Trisintercalating Oligopeptides of a Tricationic Porphyrin: A Polarizable Molecular Dynamics Study. Chemphyschem 2024; 25:e202300776. [PMID: 38088522 DOI: 10.1002/cphc.202300776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Indexed: 02/03/2024]
Abstract
Bisacridinyl-bisarginyl porphyrin (BABAP) is a trisintercalating derivative of a tricationic porphyrin, formerly designed and synthesized in order to selectively target and photosensitize the ten-base pair palindromic sequence d(CGGGCGCCCG)2 . We resorted to the previously derived (Far et al., 2004) lowest energy-minimized (EM) structure of the BABAP complex with this sequence as a starting point. We performed polarizable molecular dynamics (MD) on this complex. It showed, over a 150 ns duration, the persistent binding of the Arg side-chain on each BABAP arm to the two G bases upstream from the central porphyrin intercalation site. We subsequently performed progressive shortenings of the connector chain linking the Arg-Gly backbone to the acridine, from n=6 methylenes to 4, followed by removal of the Gly backbone and further connector shortenings, from n=4 to n=1. These resulted into progressive deformations ('kinks') of the DNA backbone. In its most accented kinked structure, the DNA backbone was found to have a close overlap with that of DNA bound to Cre recombinase, with, at the level of one acridine intercalation site, negative roll and positive tilt values consistent with those experimentally found for this DNA at its own kinked dinucleotide sequence. Thus, in addition to their photosensitizing properties, some BABAP derivatives could induce sequence-selective, controlled DNA deformations, which are targets for cleavage by endonucleases or for repair enzymes.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | - Krystel El Hage
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | | | - Jérémy Godard
- LABCiS UR22722, Univ. Limoges, F-87000, Limoges, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | | | - Vincent Sol
- LABCiS UR22722, Univ. Limoges, F-87000, Limoges, France
| |
Collapse
|
11
|
Han SJ, Jiang YL, You LL, Shen LQ, Wu X, Yang F, Cui N, Kong WW, Sun H, Zhou K, Meng HC, Chen ZP, Chen Y, Zhang Y, Zhou CZ. DNA looping mediates cooperative transcription activation. Nat Struct Mol Biol 2024; 31:293-299. [PMID: 38177666 DOI: 10.1038/s41594-023-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.
Collapse
Affiliation(s)
- Shu-Jing Han
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yong-Liang Jiang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| | - Lin-Lin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Qiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Feng Yang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ning Cui
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Wen-Wen Kong
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui Sun
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ke Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui-Chao Meng
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Zhi-Peng Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yuxing Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Cong-Zhao Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
12
|
Karimova G, Gauliard E, Davi M, Ouellette SP, Ladant D. Protein-Protein Interaction: Bacterial Two Hybrid. Methods Mol Biol 2024; 2715:207-224. [PMID: 37930530 DOI: 10.1007/978-1-0716-3445-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The bacterial two-hybrid (BACTH, for "Bacterial Adenylate Cyclase-based Two-Hybrid") system is a simple and fast genetic approach to detect and characterize protein-protein interactions in vivo. This system is based on the interaction-mediated reconstitution of a cAMP signaling cascade in Escherichia coli. As BACTH uses a diffusible cAMP messenger molecule, the physical association between the two interacting chimeric proteins can be spatially separated from the transcription activation readout, and therefore, it is possible to analyze protein-protein interactions that occur either in the cytosol or at the inner membrane level as well as those that involve DNA-binding proteins. Moreover, proteins from bacterial origin can be studied in an environment similar (or identical) to their native one. The BACTH system may thus permit a simultaneous functional analysis of the proteins of interest-provided the hybrid proteins retain their activity-and their association state. This chapter describes the principle of the BACTH genetic system and the general procedures to study protein-protein interactions in vivo in E. coli.
Collapse
Affiliation(s)
- Gouzel Karimova
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS, UMR 3528, Paris, France
| | - Emilie Gauliard
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS, UMR 3528, Paris, France
- Université Paris Cité, Cellule Pasteur, Paris, France
| | - Marilyne Davi
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS, UMR 3528, Paris, France
| | - Scot P Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
13
|
Tewary A, Prajapati RK, Mukhopadhyay J. Mechanism of δ Mediated Transcription Activation in Bacillus subtilis: Interaction with α CTD of RNA Polymerase Stabilizes δ and Successively Facilitates the Open Complex Formation. J Mol Biol 2023; 435:168366. [PMID: 37972688 DOI: 10.1016/j.jmb.2023.168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The α CTD (C-terminal domain of the α subunit) of RNA polymerase (RNAP) is a target for transcriptional regulators. In the transcription activation at Class I, Class II, and Class III promoters of bacteria, the transcriptional regulator, binds to DNA at different sites and interacts with the α CTD to stabilize the RNAP at the promoter or it binds to the α CTD to form a prerecruitment complex that searches for its cognate binding site. This 'simple recruitment mechanism' of the transcriptional machinery at the promoter is responsible for the activation of transcription. Strikingly, in B. subtilis the binding of RNAP at the promoter stabilizes the transcriptional regulator, δ at the -41 site of the promoter DNA through an interaction with its α CTD and successively facilitates the open complex formation. Two residues R293 and K294 of α CTD (equivalent to K297 and K298 of E. coli) are involved in the interactions with δ and essential for the activation of transcription. R293 is responsible for the stabilization of δ, while K294 is responsible for facilitating the open complex formation. Based on our data we propose a new model of transcription activation by δ of B. subtilis that is similar to (its binding location and interaction with α CTD), but distinct from (the recruitment of transcription factor by RNAP at the DNA, and enhancement of the open complex formation) the model Class II promoters in bacteria.
Collapse
Affiliation(s)
- Aniruddha Tewary
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| | | | - Jayanta Mukhopadhyay
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| |
Collapse
|
14
|
He H, Yang M, Li S, Zhang G, Ding Z, Zhang L, Shi G, Li Y. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol 2023; 8:565-577. [PMID: 37691767 PMCID: PMC10482752 DOI: 10.1016/j.synbio.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Mingfei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Gaoyang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| |
Collapse
|
15
|
Wehrens M, Krah LHJ, Towbin BD, Hermsen R, Tans SJ. The interplay between metabolic stochasticity and cAMP-CRP regulation in single E. coli cells. Cell Rep 2023; 42:113284. [PMID: 37864793 DOI: 10.1016/j.celrep.2023.113284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
The inherent stochasticity of metabolism raises a critical question for understanding homeostasis: are cellular processes regulated in response to internal fluctuations? Here, we show that, in E. coli cells under constant external conditions, catabolic enzyme expression continuously responds to metabolic fluctuations. The underlying regulatory feedback is enabled by the cyclic AMP (cAMP) and cAMP receptor protein (CRP) system, which controls catabolic enzyme expression based on metabolite concentrations. Using single-cell microscopy, genetic constructs in which this feedback is disabled, and mathematical modeling, we show how fluctuations circulate through the metabolic and genetic network at sub-cell-cycle timescales. Modeling identifies four noise propagation modes, including one specific to CRP regulation. Together, these modes correctly predict noise circulation at perturbed cAMP levels. The cAMP-CRP system may thus have evolved to control internal metabolic fluctuations in addition to external growth conditions. We conjecture that second messengers may more broadly function to achieve cellular homeostasis.
Collapse
Affiliation(s)
- Martijn Wehrens
- AMOLF, 1098 XG Amsterdam, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584 CT Utrecht, the Netherlands
| | - Laurens H J Krah
- Theoretical Biology Group, Biology Department, Utrecht University, 3584 CH Utrecht, the Netherlands; Centre for Complex Systems Studies, Utrecht University, 3584 CE Utrecht, the Netherlands
| | - Benjamin D Towbin
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Rutger Hermsen
- Theoretical Biology Group, Biology Department, Utrecht University, 3584 CH Utrecht, the Netherlands; Centre for Complex Systems Studies, Utrecht University, 3584 CE Utrecht, the Netherlands
| | - Sander J Tans
- AMOLF, 1098 XG Amsterdam, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
16
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Zhao M, Gao B, Wen A, Feng Y, Lu YQ. Structural basis of λCII-dependent transcription activation. Structure 2023; 31:968-974.e3. [PMID: 37269829 DOI: 10.1016/j.str.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The CII protein of bacteriophage λ activates transcription from the phage promoters PRE, PI, and PAQ by binding to two direct repeats that straddle the promoter -35 element. Although genetic, biochemical, and structural studies have elucidated many aspects of λCII-mediated transcription activation, no precise structure of the transcription machinery in the process is available. Here, we report a 3.1-Å cryo-electron microscopy (cryo-EM) structure of an intact λCII-dependent transcription activation complex (TAC-λCII), which comprises λCII, E. coli RNAP-σ70 holoenzyme, and the phage promoter PRE. The structure reveals the interactions between λCII and the direct repeats responsible for promoter specificity and the interactions between λCII and RNAP α subunit C-terminal domain responsible for transcription activation. We also determined a 3.4-Å cryo-EM structure of an RNAP-promoter open complex (RPo-PRE) from the same dataset. Structural comparison between TAC-λCII and RPo-PRE provides new insights into λCII-dependent transcription activation.
Collapse
Affiliation(s)
- Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China.
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
18
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|
19
|
Chen Y, Lin YCD, Luo Y, Cai X, Qiu P, Cui S, Wang Z, Huang HY, Huang HD. Quantitative model for genome-wide cyclic AMP receptor protein binding site identification and characteristic analysis. Brief Bioinform 2023; 24:7145906. [PMID: 37114659 DOI: 10.1093/bib/bbad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Cyclic AMP receptor proteins (CRPs) are important transcription regulators in many species. The prediction of CRP-binding sites was mainly based on position-weighted matrixes (PWMs). Traditional prediction methods only considered known binding motifs, and their ability to discover inflexible binding patterns was limited. Thus, a novel CRP-binding site prediction model called CRPBSFinder was developed in this research, which combined the hidden Markov model, knowledge-based PWMs and structure-based binding affinity matrixes. We trained this model using validated CRP-binding data from Escherichia coli and evaluated it with computational and experimental methods. The result shows that the model not only can provide higher prediction performance than a classic method but also quantitatively indicates the binding affinity of transcription factor binding sites by prediction scores. The prediction result included not only the most knowns regulated genes but also 1089 novel CRP-regulated genes. The major regulatory roles of CRPs were divided into four classes: carbohydrate metabolism, organic acid metabolism, nitrogen compound metabolism and cellular transport. Several novel functions were also discovered, including heterocycle metabolic and response to stimulus. Based on the functional similarity of homologous CRPs, we applied the model to 35 other species. The prediction tool and the prediction results are online and are available at: https://awi.cuhk.edu.cn/∼CRPBSFinder.
Collapse
Affiliation(s)
- Yigang Chen
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yijun Luo
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xiaoxuan Cai
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Peng Qiu
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Shidong Cui
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Zhe Wang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsi-Yuan Huang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsien-Da Huang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| |
Collapse
|
20
|
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol 2023; 61:277-287. [PMID: 36892777 DOI: 10.1007/s12275-023-00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.
Collapse
|
21
|
Alhammadi MM, Godfrey RE, Ingram JO, Singh G, Bathurst CL, Busby SJW, Browning DF. Novel organisation and regulation of the pic promoter from enteroaggregative and uropathogenic Escherichia coli. Virulence 2022; 13:1393-1406. [PMID: 35971774 PMCID: PMC9387333 DOI: 10.1080/21505594.2022.2111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The serine protease autotransporters of the Enterobacteriaceae (SPATEs) are a large family of virulence factors commonly found in enteric bacteria. These secreted virulence factors have diverse functions during bacterial infection, including adhesion, aggregation and cell toxicity. One such SPATE, the Pic mucinase (protein involved in colonisation) cleaves mucin, allowing enteric bacterial cells to utilise mucin as a carbon source and to penetrate the gut mucus lining, thereby increasing mucosal colonisation. The pic gene is widely distributed within the Enterobacteriaceae, being found in human pathogens, such as enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC) and Shigella flexneri 2a. As the pic promoter regions from EAEC strain 042 and UPEC strain CFT073 differ, we have investigated the regulation of each promoter. Here, using in vivo and in vitro techniques, we show that both promoters are activated by the global transcription factor, CRP (cyclic AMP receptor protein), but the architectures of the EAEC and the UPEC pic promoter differ. Expression from both pic promoters is repressed by the nucleoid-associated factor, Fis, and maximal promoter activity occurs when cells are grown in minimal medium. As CRP activates transcription in conditions of nutrient depletion, whilst Fis levels are maximal in nutrient-rich environments, the regulation of the EAEC and UPEC pic promoters is consistent with Pic’s nutritional role in scavenging mucin as a suitable carbon source during colonisation and infection.
Collapse
Affiliation(s)
- Munirah M Alhammadi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,Biology Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joseph O Ingram
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Gurdamanjit Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Camilla L Bathurst
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,College of Health & Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
22
|
Amin MR, Korchinski L, Yoneda JK, Thakkar R, Sanson CLA, Fitzgerald SF, Kelln RA, Cameron ADS. A mutation in the putative CRP binding site of the dctA promoter of Salmonella enterica serovar Typhimurium enables growth with low orotate concentrations. Can J Microbiol 2022; 68:615-621. [PMID: 35921682 DOI: 10.1139/cjm-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica and Escherichia coli use the inner membrane transporter DctA to import the pyrimidine biosynthetic pathway intermediate orotate from the environment. To study the regulation of dctA expression, we used a S. enterica serovar Typhimurium pyrimidine auxotroph to select a mutant that could grow in an otherwise non-permissive culture medium containing glucose and a low concentration of orotate. Whole genome sequencing revealed a point mutation upstream of dctA in the putative cyclic AMP receptor protein (CRP) binding site. The C->T transition converted the least-favourable base to the most-favourable base for CRP-DNA affinity. A dctA::lux transcriptional fusion confirmed that the mutant dctA promoter gained responsiveness to CRP even in the presence of glucose. Moreover, dctA expression was higher in the mutant than the wild type in the presence of alternative carbon sources that activate CRP.
Collapse
Affiliation(s)
- Mohammad R Amin
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Lisa Korchinski
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Joshua K Yoneda
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Rishi Thakkar
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| | - Carla L A Sanson
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada.,Government of Saskatchewan Ministry of Labour Relations and Workplace Safety, 359189, Occupational Health and Safety Branch, Regina, Saskatchewan, Canada;
| | - Stephen F Fitzgerald
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,Moredun Research Institute, 6485, Penicuik, United Kingdom of Great Britain and Northern Ireland;
| | - Rod A Kelln
- University of Regina, 6846, Department of Chemistry and Biochemistry, Regina, Saskatchewan, Canada;
| | - Andrew D S Cameron
- University of Regina, 6846, Department of Biology, Regina, Saskatchewan, Canada.,University of Regina, 6846, Institute for Microbial Systems and Society, Regina, Saskatchewan, Canada;
| |
Collapse
|
23
|
Yang X, Wang Y, Liu G, Deng Z, Lin S, Zheng J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res 2022; 50:8363-8376. [PMID: 35871291 PMCID: PMC9371925 DOI: 10.1093/nar/gkac627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces coelicolor (Sc) is a model organism of actinobacteria to study morphological differentiation and production of bioactive metabolites. Sc zinc uptake regulator (Zur) affects both processes by controlling zinc homeostasis. It activates transcription by binding to palindromic Zur-box sequences upstream of −35 elements. Here we deciphered the molecular mechanism by which ScZur interacts with promoter DNA and Sc RNA polymerase (RNAP) by cryo-EM structures and biochemical assays. The ScZur-DNA structures reveal a sequential and cooperative binding of three ScZur dimers surrounding a Zur-box spaced 8 nt upstream from a −35 element. The ScRNAPσHrdB-Zur-DNA structures define protein-protein and protein-DNA interactions involved in the principal housekeeping σHrdB-dependent transcription initiation from a noncanonical promoter with a −10 element lacking the critical adenine residue at position −11 and a TTGCCC −35 element deviating from the canonical TTGACA motif. ScZur interacts with the C-terminal domain of ScRNAP α subunit (αCTD) in a complex structure trapped in an active conformation. Key ScZur-αCTD interfacial residues accounting for ScZur-dependent transcription activation were confirmed by mutational studies. Together, our structural and biochemical results provide a comprehensive model for transcription activation of Zur family regulators.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
24
|
Liu L, Liu W, He Y, Liu Y, Zhang Y. The cyclic AMP receptor protein (CRP) controls expression of the ferric uptake regulator (Fur) in Yersinia pestis. Can J Microbiol 2022; 68:501-506. [PMID: 35801716 DOI: 10.1139/cjm-2021-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yersinia pestis, the causative agent of plague, is one of the most dangerous pathogens in the world. Both the cyclic AMP receptor protein (CRP) and ferric uptake regulator (Fur) are global regulators that control the expression of a great deal of genes involved in a variety of cellular functions in Y. pestis. In this work, two CRP box-like deoxyribonucleic acid (DNA) sequences were detected in the upstream DNA region of fur, suggesting that the transcription of fur might be directly regulated by CRP in Y. pestis. Thus, transcriptional regulation of fur by CRP was investigated by primer extension, quantitative real-time PCR, LacZ fusion, and electrophoretic mobility shift assays. The results demonstrated that CRP was able to bind the regulatory DNA region of fur to activate its transcription. The data presented here not only suggested that the CRP and Fur regulons were bridged together via the direct regulation of fur by CRP, but also provided us a deeper understanding of the transcriptional regulation of fur in Y. pestis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wanbing Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan 430070, Hubei, China
| | - Yingyu He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | | |
Collapse
|
25
|
Saremi M, Amirmazlaghani M. Reconstruction of Gene Regulatory Networks Using Multiple Datasets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1827-1839. [PMID: 33539303 DOI: 10.1109/tcbb.2021.3057241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MOTIVATION Laboratory gene regulatory data for a species are sporadic. Despite the abundance of gene regulatory network algorithms that employ single data sets, few algorithms can combine the vast but disperse sources of data and extract the potential information. With a motivation to compensate for this shortage, we developed an algorithm called GENEREF that can accumulate information from multiple types of data sets in an iterative manner, with each iteration boosting the performance of the prediction results. RESULTS The algorithm is examined extensively on data extracted from the quintuple DREAM4 networks and DREAM5's Escherichia coli and Saccharomyces cerevisiae networks and sub-networks. Many single-dataset and multi-dataset algorithms were compared to test the performance of the algorithm. Results show that GENEREF surpasses non-ensemble state-of-the-art multi-perturbation algorithms on the selected networks and is competitive to present multiple-dataset algorithms. Specifically, it outperforms dynGENIE3 and is on par with iRafNet. Also, we argued that a scoring method solely based on the AUPR criterion would be more trustworthy than the traditional score. AVAILABILITY The Python implementation along with the data sets and results can be downloaded from github.com/msaremi/GENEREF.
Collapse
|
26
|
Zhou S, Alper HS, Zhou J, Deng Y. Intracellular biosensor-based dynamic regulation to manipulate gene expression at the spatiotemporal level. Crit Rev Biotechnol 2022; 43:646-663. [PMID: 35450502 DOI: 10.1080/07388551.2022.2040415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of intracellular, biosensor-based dynamic regulation strategies to regulate and improve the production of useful compounds have progressed significantly over previous decades. By employing such an approach, it is possible to simultaneously realize high productivity and optimum growth states. However, industrial fermentation conditions contain a mixture of high- and low-performance non-genetic variants, as well as young and aged cells at all growth phases. Such significant individual variations would hinder the precise controlling of metabolic flux at the single-cell level to achieve high productivity at the macroscopic population level. Intracellular biosensors, as the regulatory centers of metabolic networks, can real-time sense intra- and extracellular conditions and, thus, could be synthetically adapted to balance the biomass formation and overproduction of compounds by individual cells. Herein, we highlight advances in the designing and engineering approaches to intracellular biosensors. Then, the spatiotemporal properties of biosensors associated with the distribution of inducers are compared. Also discussed is the use of such biosensors to dynamically control the cellular metabolic flux. Such biosensors could achieve single-cell regulation or collective regulation goals, depending on whether or not the inducer distribution is only intracellular.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
27
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
28
|
Hao M, Ye F, Jovanovic M, Kotta‐Loizou I, Xu Q, Qin X, Buck M, Zhang X, Wang M. Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103669. [PMID: 34761556 PMCID: PMC8811837 DOI: 10.1002/advs.202103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
Collapse
Affiliation(s)
- Min Hao
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Fuzhou Ye
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Milija Jovanovic
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Qingqing Xu
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Xiaohua Qin
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Martin Buck
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Xiaodong Zhang
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Minggui Wang
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| |
Collapse
|
29
|
Poon GMK. The Non-continuum Nature of Eukaryotic Transcriptional Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1371:11-32. [PMID: 33616894 PMCID: PMC8380751 DOI: 10.1007/5584_2021_618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.
Collapse
Affiliation(s)
- Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Kinetics of DNA looping by Anabaena sensory rhodopsin transducer (ASRT) by using DNA cyclization assay. Sci Rep 2021; 11:23721. [PMID: 34887464 PMCID: PMC8660804 DOI: 10.1038/s41598-021-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
DNA cyclization assay together with single-molecule FRET was employed to monitor protein-mediated bending of a short dsDNA (~ 100 bp). This method provides a simple and easy way to monitor the structural change of DNA in real-time without necessitating prior knowledge of the molecular structures for the optimal dye-labeling. This assay was applied to study how Anabaena sensory rhodopsin transducer (ASRT) facilitates loop formation of DNA as a possible mechanism for gene regulation. The ASRT-induced DNA looping was maximized at 50 mM of Na+, while Mg2+ also played an essential role in the loop formation.
Collapse
|
31
|
Dudek CA, Jahn D. PRODORIC: state-of-the-art database of prokaryotic gene regulation. Nucleic Acids Res 2021; 50:D295-D302. [PMID: 34850133 PMCID: PMC8728284 DOI: 10.1093/nar/gkab1110] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
PRODORIC is worldwide one of the largest collections of prokaryotic transcription factor binding sites from multiple bacterial sources with corresponding interpretation and visualization tools. With the introduction of PRODORIC2 in 2017, the transition to a modern web interface and maintainable backend was started. With this latest PRODORIC release the database backend is now fully API-based and provides programmatical access to the complete PRODORIC data. The visualization tools Genome Browser and ProdoNet from the original PRODORIC have been reintroduced and were integrated into the PRODORIC website. Missing input and output options from the original Virtual Footprint were added again for position weight matrix pattern-based searches. The whole PRODORIC dataset was reannotated. Every transcription factor binding site was re-evaluated to increase the overall database quality. During this process, additional parameters, like bound effectors, regulation type and different types of experimental evidence have been added for every transcription factor. Additionally, 109 new transcription factors and 6 new organisms have been added. PRODORIC is publicly available at https://www.prodoric.de.
Collapse
Affiliation(s)
- Christian-Alexander Dudek
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| | - Dieter Jahn
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, Braunschweig D-38106, Germany
| |
Collapse
|
32
|
Chakrabortty T, Roy Chowdhury S, Ghosh B, Sen U. Crystal Structure of VpsR Revealed Novel Dimeric Architecture and c-di-GMP Binding Site: Mechanistic Implications in Oligomerization, ATPase Activity and DNA Binding. J Mol Biol 2021; 434:167354. [PMID: 34774564 DOI: 10.1016/j.jmb.2021.167354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023]
Abstract
VpsR, the master regulator of biofilm formation in Vibrio cholerae, is an atypical NtrC1 type bEBP lacking residues essential for σ54-RNAP binding and REC domain phosphorylation. Moreover, transcription from PvpsL, a promoter of biofilm biosynthesis, has been documented in presence of σ70-RNAP/VpsR/c-di-GMP complex. It was proposed that c-di-GMP and VpsR together form an active transcription complex with σ70-RNAP. However, the impact of c-di-GMP imparted on VpsR that leads to transcription activation with σ70-RNAP remained elusive, largely due to the lack of the structure of VpsR and knowledge about c-di-GMP:VpsR interactions. In this direction we have solved the crystal structure of VpsRRA, containing REC and AAA+ domains, in apo, AMPPNP/GMPPNP and c-di-GMP bound states. Structures of VpsRRA unveiled distinctive REC domain orientation that leads to a novel dimeric association and noncanonical ATP/GTP binding. Moreover, we have demonstrated that at physiological pH VpsR remains as monomer having no ATPase activity but c-di-GMP imparted cooperativity to convert it to dimer with potent activity. Crystal structure of c-di-GMP:VpsRRA complex reveals that c-di-GMP binds near the C-terminal end of AAA+ domain. Trp quenching studies on VpsRR, VpsRA, VpsRRA, VpsRAD with c-di-GMP additionally demonstrated that c-di-GMP could potentially bind VpsRD. We propose that c-di-GMP mediated tethering of VpsRD with VpsRA could likely favor generating the specific protein-DNA architecture for transcription activation.
Collapse
Affiliation(s)
- Tulika Chakrabortty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India. https://twitter.com/@TulikaC02382598
| | - Sanghati Roy Chowdhury
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India
| | - Biplab Ghosh
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.
| |
Collapse
|
33
|
Discovering the DNA-Binding Consensus of the Thermus thermophilus HB8 Transcriptional Regulator TTHA1359. Int J Mol Sci 2021; 22:ijms221810042. [PMID: 34576207 PMCID: PMC8465061 DOI: 10.3390/ijms221810042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription regulatory proteins, also known as transcription factors, function as molecular switches modulating the first step in gene expression, transcription initiation. Cyclic-AMP receptor proteins (CRPs) and fumarate and nitrate reduction regulators (FNRs) compose the CRP/FNR superfamily of transcription factors, regulating gene expression in response to a spectrum of stimuli. In the present work, a reverse-genetic methodology was applied to the study of TTHA1359, one of four CRP/FNR superfamily transcription factors in the model organism Thermus thermophilus HB8. Restriction Endonuclease Protection, Selection, and Amplification (REPSA) followed by next-generation sequencing techniques and bioinformatic motif discovery allowed identification of a DNA-binding consensus for TTHA1359, 5'-AWTGTRA(N)6TYACAWT-3', which TTHA1359 binds to with high affinity. By bioinformatically mapping the consensus to the T. thermophilus HB8 genome, several potential regulatory TTHA1359-binding sites were identified and validated in vitro. The findings contribute to the knowledge of TTHA1359 regulatory activity within T. thermophilus HB8 and demonstrate the effectiveness of a reverse-genetic methodology in the study of putative transcription factors.
Collapse
|
34
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Seok JY, Han YH, Yang JS, Yang J, Lim HG, Kim SG, Seo SW, Jung GY. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Cell Rep 2021; 36:109589. [PMID: 34433019 DOI: 10.1016/j.celrep.2021.109589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.
Collapse
Affiliation(s)
- Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae-Seong Yang
- Centre de Recerca en Agrigenòmica, Consortium CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Seong Gyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
36
|
Mauger M, Ferreri C, Chatgilialoglu C, Seemann M. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J Inorg Biochem 2021; 224:111564. [PMID: 34418715 DOI: 10.1016/j.jinorgbio.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Bacteria have evolved several outstanding strategies to resist to compounds or factors that compromise their survival. The first line of defense of the cell against environmental stresses is the membrane with fatty acids as fundamental building blocks of phospholipids. In this review, we focus on a periplasmic heme enzyme that catalyzes the cis-trans isomerization of unsaturated fatty acids to trigger a decrease in the fluidity of the membrane in order to rapidly counteract the danger. We particularly detailed the occurrence of such cis-trans isomerase in Nature, the different stresses that are at the origin of the double bond isomerization, the first steps in the elucidation of the mechanism of this peculiar metalloenzyme and some aspects of its regulation.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche - ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
37
|
Functional insights into Mycobacterium tuberculosis DevR-dependent transcriptional machinery utilizing Escherichia coli. Biochem J 2021; 478:3079-3098. [PMID: 34350952 DOI: 10.1042/bcj20210268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
DevR/DosR response regulator is believed to participate in virulence, dormancy adaptation and antibiotic tolerance mechanisms of Mycobacterium tuberculosis by regulating the expression of the dormancy regulon. We have previously shown that the interaction of DevR with RNA polymerase is essential for the expression of DevR-regulated genes. Here, we developed a M. tuberculosis-specific in vivo transcription system to enrich our understanding of DevR-RNA polymerase interaction. This in vivo assay involves co-transforming E. coli with two plasmids that express α, β, β' and σA subunits of M. tuberculosis RNA polymerase and a third plasmid that harbors a DevR expression cassette and a GFP reporter gene under the DevR-regulated fdxA promoter. We show that DevR-dependent transcription is sponsored exclusively by M. tuberculosis RNA polymerase and regulated by α and σA subunits of M. tuberculosis RNA polymerase. Using this E. coli triple plasmid system to express mutant variants of M. tuberculosis RNA polymerase, we identified E280 residue in C-terminal domain of α and K513 and R515 residues of σA to participate in DevR-dependent transcription. In silico modeling of a ternary complex of DevR, σA domain 4 and fdxA promoter suggest an interaction of Q505, R515 and K513 residues of σA with E178 and D172 residues of DevR and E471 of σA, respectively. These findings provide us with new insights into the interactions between DevR and RNA polymerase of M. tuberculosis which can be targeted for intercepting DevR function. Finally, we demonstrate the utility of this system for screening of anti-DevR compounds.
Collapse
|
38
|
Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biol 2021; 17:e10064. [PMID: 33852189 PMCID: PMC8045939 DOI: 10.15252/msb.202010064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Microorganisms adjust metabolic activity to cope with diverse environments. While many studies have provided insights into how individual pathways are regulated, the mechanisms that give rise to coordinated metabolic responses are poorly understood. Here, we identify the regulatory mechanisms that coordinate catabolism and anabolism in Escherichia coli. Integrating protein, metabolite, and flux changes in genetically implemented catabolic or anabolic limitations, we show that combined global and local mechanisms coordinate the response to metabolic limitations. To allocate proteomic resources between catabolism and anabolism, E. coli uses a simple global gene regulatory program. Surprisingly, this program is largely implemented by a single transcription factor, Crp, which directly activates the expression of catabolic enzymes and indirectly reduces the expression of anabolic enzymes by passively sequestering cellular resources needed for their synthesis. However, metabolic fluxes are not controlled by this regulatory program alone; instead, fluxes are adjusted mostly through passive changes in the local metabolite concentrations. These mechanisms constitute a simple but effective global regulatory program that coarsely partitions resources between different parts of metabolism while ensuring robust coordination of individual metabolic reactions.
Collapse
Affiliation(s)
- Karl Kochanowski
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Life Science Zurich PhD Program on Systems BiologyZurichSwitzerland
| | - Hiroyuki Okano
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
| | - Vadim Patsalo
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - James Williamson
- Department of Integrative Structural and Computational Biology, and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCAUSA
| | - Uwe Sauer
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Terence Hwa
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
- Institute for Theoretical ScienceETH ZurichZurichSwitzerland
| |
Collapse
|
39
|
Ko EM, Oh JI. Induction of the cydAB Operon Encoding the bd Quinol Oxidase Under Respiration-Inhibitory Conditions by the Major cAMP Receptor Protein MSMEG_6189 in Mycobacterium smegmatis. Front Microbiol 2020; 11:608624. [PMID: 33343552 PMCID: PMC7739888 DOI: 10.3389/fmicb.2020.608624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
The respiratory electron transport chain (ETC) of Mycobacterium smegmatis is terminated with two terminal oxidases, the aa 3 cytochrome c oxidase and the cytochrome bd quinol oxidase. The bd quinol oxidase with a higher binding affinity for O2 than the aa 3 oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant crp1 (MSMEG_6189) and crp2 (MSMEG_0539) mutant strains of M. smegmatis, we demonstrated that Crp1 plays a predominant role in induction of the cydAB operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the cydA gene, both of which are necessary for induction of cydAB expression under ETC-inhibitory conditions. The intracellular level of cAMP in M. smegmatis was found to be increased under ETC-inhibitory conditions. The crp2 gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in M. smegmatis. Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in M. smegmatis exposed to ETC-inhibitory conditions.
Collapse
Affiliation(s)
- Eon-Min Ko
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
40
|
Lara-Gonzalez S, Dantas Machado AC, Rao S, Napoli AA, Birktoft J, Di Felice R, Rohs R, Lawson CL. The RNA Polymerase α Subunit Recognizes the DNA Shape of the Upstream Promoter Element. Biochemistry 2020; 59:4523-4532. [PMID: 33205945 DOI: 10.1021/acs.biochem.0c00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate here that the α subunit C-terminal domain of Escherichia coli RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A6-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A6-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively. The negative electrostatic potential of free A6-tract DNA is substantially enhanced compared to that of generic DNA. Shortening the A-tract by 1 bp is shown to "knock out" binding of the second αCTD through widening of the minor groove. Furthermore, in computationally derived structures with arginine 265 mutated to alanine in either αCTD, either with or without the "knockout" DNA mutation, contact with the DNA is perturbed, highlighting the importance of arginine 265 in achieving αCTD-DNA binding. These results demonstrate that the importance of the DNA shape in sequence-dependent recognition of DNA by RNA polymerase is comparable to that of certain transcription factors.
Collapse
Affiliation(s)
- Samuel Lara-Gonzalez
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Ana Carolina Dantas Machado
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Satyanarayan Rao
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Andrew A Napoli
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jens Birktoft
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rosa Di Felice
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,CNR-NANO Modena, Via Campi 213/A, 41125 Modena, Italy
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.,Department of Computer Science, University of Southern California, Los Angeles, California 90089, United States
| | - Catherine L Lawson
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
41
|
Wang F, Shi J, He D, Tong B, Zhang C, Wen A, Zhang Y, Feng Y, Lin W. Structural basis for transcription inhibition by E. coli SspA. Nucleic Acids Res 2020; 48:9931-9942. [PMID: 32785630 PMCID: PMC7515715 DOI: 10.1093/nar/gkaa672] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Stringent starvation protein A (SspA) is an RNA polymerase (RNAP)-associated protein involved in nucleotide metabolism, acid tolerance and virulence of bacteria. Despite extensive biochemical and genetic analyses, the precise regulatory role of SspA in transcription is still unknown, in part, because of a lack of structural information for bacterial RNAP in complex with SspA. Here, we report a 3.68 Å cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA. Unexpectedly, the structure reveals that SspA binds to the E. coli σ70-RNAP holoenzyme as a homodimer, interacting with σ70 region 4 and the zinc binding domain of EcoRNAP β′ subunit simultaneously. Results from fluorescent polarization assays indicate the specific interactions between SspA and σ70 region 4 confer its σ selectivity, thereby avoiding its interactions with σs or other alternative σ factors. In addition, results from in vitro transcription assays verify that SspA inhibits transcription probably through suppressing promoter escape. Together, the results here provide a foundation for understanding the unique physiological function of SspA in transcription regulation in bacteria.
Collapse
Affiliation(s)
- Fulin Wang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Jing Shi
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei He
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chao Zhang
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
42
|
Prabhakant A, Panigrahi A, Krishnan M. Allosteric Response of DNA Recognition Helices of Catabolite Activator Protein to cAMP and DNA Binding. J Chem Inf Model 2020; 60:6366-6376. [PMID: 33108170 DOI: 10.1021/acs.jcim.0c00617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric catabolite activator protein (CAP) regulates the transcription of several bacterial genes based on the cellular concentration of cyclic adenosine monophosphate (cAMP). The binding of cAMP to CAP triggers allosteric communication between the cAMP binding domains (CBD) and DNA binding domains (DBD) of CAP, which entails repositioning of DNA recognition helices (F-helices) in the DBD to dock favorably to the target DNA. Despite considerable progress, much remains to be understood about the mechanistic details of DNA recognition by CAP and about the map of allosteric pathways involved in CAP-mediated gene transcription. The present study uses molecular dynamics and umbrella sampling simulations to investigate the mechanism of cAMP- and DNA-induced changes in the conformation and energetics of F-helices observed during the allosteric regulation of CAP by cAMP and the subsequent binding to the DNA promoter region. Using novel collective variables, the free energy profiles associated with the orientation and dynamics of F-helices in the unliganded, cAMP-bound, and cAMP-DNA-bound states of CAP are calculated and compared. The binding-induced alterations in the resultant free energy profiles reveal important flexibility constraints imposed on DBD upon cAMP and DNA binding. A comprehensive analysis of residue-wise interaction maps reveals potential allosteric pathways between CBD and DBD that facilitate the allosteric transduction of regulatory signals in CAP. The revelation that the predicted allosteric pathways crisscross the intersubunit interface offers important clues on the microscopic origin of the intersubunit cooperativity and dimer stability of CAP.
Collapse
Affiliation(s)
- Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhinandan Panigrahi
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
43
|
Graf von Armansperg B, Koller F, Gericke N, Hellwig M, Jagtap PKA, Heermann R, Hennig J, Henle T, Lassak J. Transcriptional regulation of the N ε -fructoselysine metabolism in Escherichia coli by global and substrate-specific cues. Mol Microbiol 2020; 115:175-190. [PMID: 32979851 DOI: 10.1111/mmi.14608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.
Collapse
Affiliation(s)
| | - Franziska Koller
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Gericke
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Ralf Heermann
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
44
|
Hsieh ML, Waters CM, Hinton DM. VpsR Directly Activates Transcription of Multiple Biofilm Genes in Vibrio cholerae. J Bacteriol 2020; 202:e00234-20. [PMID: 32661076 PMCID: PMC7925080 DOI: 10.1128/jb.00234-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Vibrio cholerae biofilm biogenesis, which is important for survival, dissemination, and persistence, requires multiple genes in the Vibrio polysaccharides (vps) operons I and II as well as the cluster of ribomatrix (rbm) genes. Transcriptional control of these genes is a complex process that requires several activators/repressors and the ubiquitous signaling molecule, cyclic di-GMP (c-di-GMP). Previously, we demonstrated that VpsR directly activates RNA polymerase containing σ70 (σ70-RNAP) at the vpsL promoter (P vpsL ), which precedes the vps-II operon, in a c-di-GMP-dependent manner by stimulating formation of the transcriptionally active, open complex. Using in vitro transcription, electrophoretic mobility shift assays, and DNase I footprinting, we show here that VpsR also directly activates σ70-RNAP transcription from other promoters within the biofilm formation cluster, including P vpsU , at the beginning of the vps-I operon, P rbmA , at the start of the rbm cluster, and P rbmF , which lies upstream of the divergent rbmF and rbmE genes. In this capacity, we find that VpsR is able to behave both as a class II activator, which functions immediately adjacent/overlapping the core promoter sequence (P vpsL and P vpsU ), and as a class I activator, which functions farther upstream (P rbmA and P rbmF ). Because these promoters vary in VpsR-DNA binding affinity in the absence and presence of c-di-GMP, we speculate that VpsR's mechanism of activation is dependent on both the concentration of VpsR and the level of c-di-GMP to increase transcription, resulting in finely tuned regulation.IMPORTANCEVibrio cholerae, the bacterial pathogen that is responsible for the disease cholera, uses biofilms to aid in survival, dissemination, and persistence. VpsR, which directly senses the second messenger c-di-GMP, is a major regulator of this process. Together with c-di-GMP, VpsR directly activates transcription by RNA polymerase containing σ70 from the vpsL biofilm biogenesis promoter. Using biochemical methods, we demonstrate for the first time that VpsR/c-di-GMP directly activates σ70-RNA polymerase at the first genes of the vps and ribomatrix operons. In this regard, it functions as either a class I or class II activator. Our results broaden the mechanism of c-di-GMP-dependent transcription activation and the specific role of VpsR in biofilm formation.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Shi W, Jiang Y, Deng Y, Dong Z, Liu B. Visualization of two architectures in class-II CAP-dependent transcription activation. PLoS Biol 2020; 18:e3000706. [PMID: 32310937 PMCID: PMC7192510 DOI: 10.1371/journal.pbio.3000706] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Transcription activation by cyclic AMP (cAMP) receptor protein (CAP) is the classic paradigm of transcription regulation in bacteria. CAP was suggested to activate transcription on class-II promoters via a recruitment and isomerization mechanism. However, whether and how it modifies RNA polymerase (RNAP) to initiate transcription remains unclear. Here, we report cryo–electron microscopy (cryo-EM) structures of an intact Escherichia coli class-II CAP-dependent transcription activation complex (CAP-TAC) with and without de novo RNA transcript. The structures reveal two distinct architectures of TAC and raise the possibility that CAP binding may induce substantial conformational changes in all the subunits of RNAP and transiently widen the main cleft of RNAP to facilitate DNA promoter entering and formation of the initiation open complex. These structural changes vanish during further RNA transcript synthesis. The observations in this study may reveal a possible on-pathway intermediate and suggest a possibility that CAP activates transcription by inducing intermediate state, in addition to the previously proposed stabilization mechanism. Cryo-EM structures of transcription activation complexes comprising cyclic AMP receptor protein (CAP) bound to a class-II promoter reveal two distinct architectures and suggest a possibility that CAP activates transcription by inducing an intermediate state, an important supplement to the previously proposed stabilization mechanism.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Yanan Jiang
- Section of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Yibin Deng
- Section of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- Section of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (BL); (ZD)
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (BL); (ZD)
| |
Collapse
|
46
|
UV oxidation of cyclic AMP receptor protein, a global bacterial gene regulator, decreases DNA binding and cleaves DNA at specific sites. Sci Rep 2020; 10:3106. [PMID: 32080294 PMCID: PMC7033146 DOI: 10.1038/s41598-020-59855-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
UV light is a widely-employed, and environmentally-sensitive bactericide but its mechanism of action is not fully defined. Proteins are major chromophores and targets for damage due to their abundance, but the role of proteins in inducing damage to bound DNA, and the effects on DNA-protein interactions is less well characterized. In E. coli (and other Gram-negative bacteria) the cyclic AMP receptor protein (CRP/CAP) regulates more than 500 genes. In this study we show that exposure of isolated dimeric CRP-cAMP to UV modifies specific Met, Trp, Tyr, and Pro side-chains, induces inter-protein Tyr63-Tyr41 cross-links, and decreases DNA binding via oxidation of Met114/Pro110 residues in close proximity at the CRP dimer interface. UV exposure also modifies DNA-bound cAMP-CRP, with this resulting in DNA cleavage at specific G/C residues within the sequence bound to CRP, but not at other G/C sites. Oxidation also increases CRP dissociation from DNA. The modifications at the CRP dimer interface, and the site-specific DNA strand cleavage are proposed to occur via oxidation of two species Met residues (Met114 and Met189, respectively) to reactive persulfoxides that damage neighbouring amino acids and DNA bases. These data suggest that modification to CRP, and bound DNA, contributes to UV sensitivity.
Collapse
|
47
|
Glycine Cleavage System and cAMP Receptor Protein Co-Regulate CRISPR/ cas3 Expression to Resist Bacteriophage. Viruses 2020; 12:v12010090. [PMID: 31941083 PMCID: PMC7019758 DOI: 10.3390/v12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
The CRISPR/Cas system protects bacteria against bacteriophage and plasmids through a sophisticated mechanism where cas operon plays a crucial role consisting of cse1 and cas3. However, comprehensive studies on the regulation of cas3 operon of the Type I-E CRISPR/Cas system are scarce. Herein, we investigated the regulation of cas3 in Escherichia coli. The mutation in gcvP or crp reduced the CRISPR/Cas system interference ability and increased bacterial susceptibility to phage, when the casA operon of the CRISPR/Cas system was activated. The silence of the glycine cleavage system (GCS) encoded by gcvTHP operon reduced cas3 expression. Adding N5, N10-methylene tetrahydrofolate (N5, N10-mTHF), which is the product of GCS-catalyzed glycine, was able to activate cas3 expression. In addition, a cAMP receptor protein (CRP) encoded by crp activated cas3 expression via binding to the cas3 promoter in response to cAMP concentration. Since N5, N10-mTHF provides one-carbon unit for purine, we assumed GCS regulates cas3 through associating with CRP. It was evident that the mutation of gcvP failed to further reduce the cas3 expression with the crp deletion. These results illustrated a novel regulatory pathway which GCS and CRP co-regulate cas3 of the CRISPR/Cas system and contribute to the defence against invasive genetic elements, where CRP is indispensable for GCS regulation of cas3 expression.
Collapse
|
48
|
Shi J, Wen A, Zhao M, You L, Zhang Y, Feng Y. Structural basis of σ appropriation. Nucleic Acids Res 2019; 47:9423-9432. [PMID: 31392983 PMCID: PMC6755090 DOI: 10.1093/nar/gkz682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophage T4 middle promoters are activated through a process called σ appropriation, which requires the concerted effort of two T4-encoded transcription factors: AsiA and MotA. Despite extensive biochemical and genetic analyses, puzzle remains, in part, because of a lack of precise structural information for σ appropriation complex. Here, we report a single-particle cryo-electron microscopy (cryo-EM) structure of an intact σ appropriation complex, comprising AsiA, MotA, Escherichia coli RNA polymerase (RNAP), σ70 and a T4 middle promoter. As expected, AsiA binds to and remodels σ region 4 to prevent its contact with host promoters. Unexpectedly, AsiA undergoes a large conformational change, takes over the job of σ region 4 and provides an anchor point for the upstream double-stranded DNA. Because σ region 4 is conserved among bacteria, other transcription factors may use the same strategy to alter the landscape of transcription immediately. Together, the structure provides a foundation for understanding σ appropriation and transcription activation.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
49
|
Xiao Y, Liu H, He M, Nie L, Nie H, Chen W, Huang Q. A crosstalk between c-di-GMP and cAMP in regulating transcription of GcsA, a diguanylate cyclase involved in swimming motility in Pseudomonas putida. Environ Microbiol 2019; 22:142-157. [PMID: 31631503 DOI: 10.1111/1462-2920.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
50
|
Lim HC, Bernhardt TG. A PopZ-linked apical recruitment assay for studying protein-protein interactions in the bacterial cell envelope. Mol Microbiol 2019; 112:1757-1768. [PMID: 31550057 DOI: 10.1111/mmi.14391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 02/03/2023]
Abstract
Most bacteria are surrounded by a complex cell envelope. As with many biological processes, studies of envelope assembly have benefited from cell-based assays for detecting protein-protein interactions. These assays use simple readouts and lack a protein purification requirement, making them ideal for early stage investigations. The most widely used two-hybrid interaction assay for proteins involved in envelope biogenesis is based on the reconstitution of adenylate cyclase activity from a split enzyme. Because adenylate cyclase is only functional in the cytoplasm, both protein fusions used in the assay must have a terminus located in this compartment. However, many envelope assembly factors are wholly extracytoplasmic. Detecting interactions involving such proteins using two-hybrid systems has therefore been problematic. To address this issue, we developed a cytological assay in Escherichia coli based on PopZ from Caulobacter crescentus. Here, we demonstrate the utility of this PopZ-Linked Apical Recruitment (POLAR) method for detecting interactions between proteins located in different cellular compartments. Additionally, we report that recruitment of an active peptidoglycan synthase to the cell pole is detrimental for E. coli and that interactions between proteins in the inner and outer membranes of the Gram-negative envelope may provide a mechanism for recruiting protein complexes to subpolar sites.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|