1
|
Ko S, Toda A, Tanaka H, Yu J, Kurisu G. Crystal structure of the stalk region of axonemal inner-arm dynein-d reveals unique features in the coiled-coil and microtubule-binding domain. FEBS Lett 2023; 597:2149-2160. [PMID: 37400274 DOI: 10.1002/1873-3468.14690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.
Collapse
Affiliation(s)
- Seolmin Ko
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Akiyuki Toda
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Jian Yu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
2
|
Woodhams LG, Shen Y, Bayly PV. Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in multi-filament models. J R Soc Interface 2022; 19:20220264. [PMID: 35857924 PMCID: PMC9257587 DOI: 10.1098/rsif.2022.0264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 09/05/2023] Open
Abstract
The structure of the axoneme in motile cilia and flagella is emerging with increasing detail from high-resolution imaging, but the mechanism by which the axoneme creates oscillatory, propulsive motion remains mysterious. It has recently been proposed that this motion may be caused by a dynamic 'flutter' instability that can occur under steady dynein loading, and not by switching or modulation of dynein motor activity (as commonly assumed). In the current work, we have built an improved multi-filament mathematical model of the axoneme and implemented it as a system of discrete equations using the finite-element method. The eigenvalues and eigenvectors of this model predict the emergence of oscillatory, wave-like solutions in the absence of dynein regulation and specify the associated frequencies and waveforms of beating. Time-domain simulations with this model illustrate the behaviour predicted by the system's eigenvalues. This model and analysis allow us to efficiently explore the potential effects of difficult to measure biophysical parameters, such as elasticity of radial spokes and inter-doublet links, on the ciliary waveform. These results support the idea that dynamic instability without dynamic dynein regulation is a plausible and robust mechanism for generating ciliary beating.
Collapse
Affiliation(s)
- Louis G. Woodhams
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| | - Yenan Shen
- Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Philip V. Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| |
Collapse
|
3
|
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble. Int J Mol Sci 2020; 21:ijms21082843. [PMID: 32325779 PMCID: PMC7215579 DOI: 10.3390/ijms21082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.
Collapse
|
4
|
Hou R, Wang N, Bao W, Wang Z. Polymer-Based Accurate Positioning: An Exact Worm-like-Chain Study. ACS OMEGA 2018; 3:14318-14326. [PMID: 31458122 PMCID: PMC6644801 DOI: 10.1021/acsomega.8b01448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/18/2018] [Indexed: 06/10/2023]
Abstract
Precise positioning of molecular objects from one location to another is important for nanomanipulation and is also involved in molecular motors. Here, we study single-polymer-based positioning on the basis of the exact solution to the realistic three-dimensional worm-like-chain (WLC) model. The results suggest the possibility of a surprisingly accurate flyfishing-like positioning in which tilting one end of a flexible short polymer enables positioning of the other diffusing end to a distant location within an error of ∼1 nm. This offers a new mechanism for designing molecular positioning devices. The flyfishing effect (and reverse process) likely plays a role in biological molecular motors and may be used to improve speed of artificial counterparts. To facilitate these applications, a new force-extension formula is obtained from the exact WLC solution. This formula has an improved accuracy over the widely used Marko-Siggia formula for stretched polymers and is valid for compressed polymers too. The new formula is useful in analysis of single-molecule stretching experiments and in estimating intramolecular forces of molecular motors, especially those involving both stretched and compressed polymer components.
Collapse
Affiliation(s)
- Ruizheng Hou
- Department
of Applied Physics, School of Science, and Institute of Quantum Optics
and Quantum Information, Xi’an Jiaotong
University, Xi’an, Shaan Xi 710049, China
| | - Nan Wang
- Department of Mathematics and NUS Graduate
School for Integrative Sciences
and Engineering, National University of
Singapore, 119076, Singapore
| | - Weizhu Bao
- Department of Mathematics and NUS Graduate
School for Integrative Sciences
and Engineering, National University of
Singapore, 119076, Singapore
| | - Zhisong Wang
- Department of Mathematics and NUS Graduate
School for Integrative Sciences
and Engineering, National University of
Singapore, 119076, Singapore
- Department
of Physics, National University of Singapore, 117542, Singapore
| |
Collapse
|
5
|
Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proc Natl Acad Sci U S A 2017; 114:E4564-E4573. [PMID: 28533393 DOI: 10.1073/pnas.1620149114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The force-generating mechanism of dynein differs from the force-generating mechanisms of other cytoskeletal motors. To examine the structural dynamics of dynein's stepping mechanism in real time, we used polarized total internal reflection fluorescence microscopy with nanometer accuracy localization to track the orientation and position of single motors. By measuring the polarized emission of individual quantum nanorods coupled to the dynein ring, we determined the angular position of the ring and found that it rotates relative to the microtubule (MT) while walking. Surprisingly, the observed rotations were small, averaging only 8.3°, and were only weakly correlated with steps. Measurements at two independent labeling positions on opposite sides of the ring showed similar small rotations. Our results are inconsistent with a classic power-stroke mechanism, and instead support a flexible stalk model in which interhead strain rotates the rings through bending and hinging of the stalk. Mechanical compliances of the stalk and hinge determined based on a 3.3-μs molecular dynamics simulation account for the degree of ring rotation observed experimentally. Together, these observations demonstrate that the stepping mechanism of dynein is fundamentally different from the stepping mechanisms of other well-studied MT motors, because it is characterized by constant small-scale fluctuations of a large but flexible structure fully consistent with the variable stepping pattern observed as dynein moves along the MT.
Collapse
|
6
|
Furuta A, Amino M, Yoshio M, Oiwa K, Kojima H, Furuta K. Creating biomolecular motors based on dynein and actin-binding proteins. NATURE NANOTECHNOLOGY 2017; 12:233-237. [PMID: 27842063 DOI: 10.1038/nnano.2016.238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/03/2016] [Indexed: 05/26/2023]
Abstract
Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors-combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins-robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.
Collapse
Affiliation(s)
- Akane Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Misako Amino
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Maki Yoshio
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Hiroaki Kojima
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
7
|
Abstract
The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.
Collapse
Affiliation(s)
- Rute Pereira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-012 Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute of Health Research an Innovation (I3S), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| |
Collapse
|
8
|
Namdeo S, Onck PR. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins. Phys Rev E 2016; 94:042406. [PMID: 27841490 DOI: 10.1103/physreve.94.042406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/07/2022]
Abstract
Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.
Collapse
Affiliation(s)
- S Namdeo
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - P R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Šarlah A, Vilfan A. The winch model can explain both coordinated and uncoordinated stepping of cytoplasmic dynein. Biophys J 2015; 107:662-671. [PMID: 25099805 DOI: 10.1016/j.bpj.2014.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 12/23/2022] Open
Abstract
Cytoplasmic dynein moves processively along microtubules, but the mechanism of how its heads use the energy from ATP hydrolysis, coupled to a linker swing, to achieve directed motion, is still unclear. In this article, we present a theoretical model based on the winch mechanism in which the principal direction of the linker stroke is toward the microtubule-binding domain. When mechanically coupling two identical heads (each with postulated elastic properties and a minimal ATPase cycle), the model reproduces stepping with 8-nm steps (even though the motor itself is much larger), interhead coordination, and processivity, as reported for mammalian dyneins. Furthermore, when we loosen the elastic connection between the heads, the model still shows processive directional stepping, but it becomes uncoordinated and the stepping pattern shows a greater variability, which reproduces the properties of yeast dyneins. Their slower chemical kinetics allows processive motility and a high stall force without the need for coordination.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vilfan
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; J. Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Pereira R, Oliveira J, Ferraz L, Barros A, Santos R, Sousa M. Mutation analysis in patients with total sperm immotility. J Assist Reprod Genet 2015; 32:893-902. [PMID: 25877373 DOI: 10.1007/s10815-015-0474-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/01/2015] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Perform the genetic characterization of five patients with total sperm immotility using Sanger sequencing and Whole Exome Sequencing (WES), in order to increase the knowledge on the genetics of sperm immotility and, ultimately, allow the identification of potential genetic markers for infertility. METHODS Prospective study at a University Medical school. We analysed five men with total sperm immotility, four with dysplasia of the fibrous sheath (DFS), associated with disruption of several axonemal structures, and one patient with situs inversus totalis, which showed absence of dynein arms (DA) and nexin bridges. We screened 7 genes by Sanger sequencing, involved in sperm motility and associated to ultrastructural defects found in these patients (CCDC39, CCDC40, DNAH5, DNAI1, RSPH1, AKAP3 and AKAP4). Additionally, we performed WES analysis in the patient with situs inversus. RESULTS We identified nine new DNA sequence variants by WES. Two of these variants were considered particularly relevant: a homozygous missense change in CCDC103 gene (c.104G > C, p.R35P) probably related with absence of dynein arms; the other in the INSL6 gene (c.262_263delCC) is thought to be also involved in sperm immotility. CONCLUSIONS Our work suggests that WES is an effective strategy, especially as compared with conventional sequencing, to study highly heterogenic genetic diseases, such as sperm immotility. For future work we expect to expand the analysis of WES to the other four patients and complement findings with expression analysis or functional studies to determine the impact of the novel variants.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
Allosteric communication in the dynein motor domain. Cell 2015; 159:857-68. [PMID: 25417161 DOI: 10.1016/j.cell.2014.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/30/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Collapse
|
12
|
Ishikawa T. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography. Biophysics (Nagoya-shi) 2013; 9:141-8. [PMID: 27493552 PMCID: PMC4629670 DOI: 10.2142/biophysics.9.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/01/2022] Open
Abstract
Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, CH5232, Switzerland
| |
Collapse
|
13
|
Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 2013; 14:713-26. [PMID: 24064538 DOI: 10.1038/nrm3667] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.
Collapse
Affiliation(s)
- Anthony J Roberts
- 1] Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. [2] Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Teamwork in microtubule motors. Trends Cell Biol 2013; 23:575-82. [PMID: 23877011 DOI: 10.1016/j.tcb.2013.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/10/2023]
Abstract
Diverse cellular processes are driven by the collective force from multiple motor proteins. Disease-causing mutations cause aberrant function of motors, but the impact is observed at a cellular level and beyond, therefore necessitating an understanding of cell mechanics at the level of motor molecules. One way to do this is by measuring the force generated by ensembles of motors in vivo at single-motor resolution. This has been possible for microtubule motor teams that transport intracellular organelles, revealing unexpected differences between collective and single-molecule function. Here we review how the biophysical properties of single motors, and differences therein, may translate into collective motor function during organelle transport and perhaps in other processes outside transport.
Collapse
|
15
|
Jodoin JN, Shboul M, Sitaram P, Zein-Sabatto H, Reversade B, Lee E, Lee LA. Human Asunder promotes dynein recruitment and centrosomal tethering to the nucleus at mitotic entry. Mol Biol Cell 2012; 23:4713-24. [PMID: 23097494 PMCID: PMC3521680 DOI: 10.1091/mbc.e12-07-0558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recruitment of dynein motors to the nuclear surface is an essential step for nucleus-centrosome coupling in prophase. In cultured human cells, this dynein pool is anchored to nuclear pore complexes through RanBP2-Bicaudal D2 (BICD2) and Nup133- centromere protein F (CENP-F) networks. We previously reported that the asunder (asun) gene is required in Drosophila spermatocytes for perinuclear dynein localization and nucleus-centrosome coupling at G2/M of male meiosis. We show here that male germline expression of mammalian Asunder (ASUN) protein rescues asun flies, demonstrating evolutionary conservation of function. In cultured human cells, we find that ASUN down-regulation causes reduction of perinuclear dynein in prophase of mitosis. Additional defects after loss of ASUN include nucleus-centrosome uncoupling, abnormal spindles, and multinucleation. Coimmunoprecipitation and overlapping localization patterns of ASUN and lissencephaly 1 (LIS1), a dynein adaptor, suggest that ASUN interacts with dynein in the cytoplasm via LIS1. Our data indicate that ASUN controls dynein localization via a mechanism distinct from that of either BICD2 or CENP-F. We present a model in which ASUN promotes perinuclear enrichment of dynein at G2/M that facilitates BICD2- and CENP-F-mediated anchoring of dynein to nuclear pore complexes.
Collapse
Affiliation(s)
- Jeanne N Jodoin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mizuno N, Taschner M, Engel BD, Lorentzen E. Structural studies of ciliary components. J Mol Biol 2012; 422:163-80. [PMID: 22683354 PMCID: PMC3426769 DOI: 10.1016/j.jmb.2012.05.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022]
Abstract
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.
Collapse
Key Words
- 2d, two‐dimensional
- 3d, three‐dimensional
- dic, differential interference contrast
- drc, dynein regulatory complex
- em, electron microscopy
- et, electron tomography
- ida, inner dynein arm
- ift, intraflagellar transport
- mt, microtubule
- mtbd, microtubule binding domain
- oda, outer dynein arm
- rs, radial spoke
- rsp, radial spoke protein
- cilium
- intraflagellar transport
- electron tomography
- ift complex
- flagellum
Collapse
Affiliation(s)
- Naoko Mizuno
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
17
|
Ishikawa T. Structural biology of cytoplasmic and axonemal dyneins. J Struct Biol 2012; 179:229-34. [DOI: 10.1016/j.jsb.2012.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022]
|
18
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|
19
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
20
|
|
21
|
X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 2011; 18:638-42. [PMID: 21602819 DOI: 10.1038/nsmb.2074] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/29/2022]
Abstract
Dyneins are large microtubule-based motors that power a wide variety of cellular processes. Here we report a 4.5-Å X-ray crystallographic analysis of the entire functional motor domain of cytoplasmic dynein with ADP from Dictyostelium discoideum, which has revealed the detailed architecture of the functional units required for motor activity, including the ATP-hydrolyzing ring, the long coiled-coil microtubule-binding stalk and the force-generating rod-like linker. We discovered a Y-shaped protrusion composed of two long coiled coils-the stalk and the newly identified 'strut'. This structure supports our model in which the strut coiled coil actively contributes to communication between the primary ATPase site in the ring and the microtubule-binding site at the tip of the stalk coiled coil. Our work also provides insight into how the two motor domains are arranged and how they interact with each other in a functional dimer form of cytoplasmic dynein.
Collapse
|
22
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
23
|
Bending of the "9+2" axoneme analyzed by the finite element method. J Theor Biol 2010; 264:1089-101. [PMID: 20380841 DOI: 10.1016/j.jtbi.2010.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022]
Abstract
Many data demonstrate that the regulation of the bending polarity of the "9+2" axoneme is supported by the curvature itself, making the internal constraints central in this process, adjusting either the physical characteristics of the machinery or the activity of the enzymes involved in different pathways. Among them, the very integrated Geometric Clutch model founds this regulation on the convenient adjustments of the probability of interaction between the dynein arms and the beta-tubulin monomers of the outer doublet pairs on which they walk. Taking into consideration (i) the deviated bending of the outer doublets pairs (Cibert, C., Heck, J.-V., 2004. Cell Motil. Cytoskeleton 59, 153-168), (ii) the internal tensions of the radial spokes and the tangential links (nexin links, dynein arms), (iii) a theoretical 5 microm long proximal segment of the axoneme and (iv) the short proximal segment of the axoneme, we have reevaluated the adjustments of these intervals using a finite element approach. The movements we have calculated within the axonemal cylinder are consistent with the basic hypothesis that found the Geometric Clutch model, except that the axonemal side where the dynein arms are active increases the intervals between the two neighbor outer doublet pairs. This result allows us to propose a mechanism of bending reversion of the axoneme, involving the concerted ignition of the molecular engines along the two opposite sides of the axoneme delineated by the bending plane.
Collapse
|
24
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 2009; 136:485-95. [PMID: 19203583 PMCID: PMC2706395 DOI: 10.1016/j.cell.2008.11.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/12/2008] [Accepted: 11/26/2008] [Indexed: 12/22/2022]
Abstract
Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged and truncated Dictyostelium cytoplasmic dynein constructs, we show that the heart of the motor is a hexameric ring of AAA+ modules, with the stalk emerging opposite the primary ATPase site (AAA1). The C-terminal region is not an integral part of the ring but spans between AAA6 and near the stalk base. The N-terminal region includes a lever-like linker whose N terminus swings by ∼17 nm during the ATPase cycle between AAA2 and the stalk base. Together with evidence of stalk tilting, which may communicate changes in microtubule binding affinity, these findings suggest a model for dynein's structure and mechanism.
Collapse
Affiliation(s)
- Anthony J Roberts
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Dynein is a microtubule motor that powers motility of cilia and flagella. There is evidence that the relative sliding of the doublet microtubules is due to a conformational change in the motor domain that moves a microtubule bound to the end of an extension known as the stalk. A predominant model for the movement involves a rotation of the head domain, with its stalk, toward the microtubule plus end. However, stalks bound to microtubules have been difficult to observe. Here, we present the clearest views so far of stalks in action, by observing sea urchin, outer arm dynein molecules bound to microtubules, with a new method, "cryo-positive stain" electron microscopy. The dynein molecules in the complex were shown to be active in in vitro motility assays. Analysis of the electron micrographs shows that the stalk angles relative to microtubules do not change significantly between the ADP.vanadate and no-nucleotide states, but the heads, together with their stalks, shift with respect to their A-tubule attachments. Our results disagree with models in which the stalk acts as a lever arm to amplify structural changes. The observed movement of the head and stalk relative to the tail indicates a new plausible mechanism, in which dynein uses its stalk as a grappling hook, catching a tubulin subunit 8 nm ahead and pulling on it by retracting a part of the tail (linker).
Collapse
|
27
|
Abstract
Novel single-molecule techniques allow the observation of single-molecular motors in real time under physiological conditions. This enables one to gain previously inaccessible information about the mechanics of molecular motors, especially their mechano-chemical coupling. As an example, we discuss the DNA import motor of the bacteriophage phi29 and protein import into chloroplasts. In contrast to these highly developed biological molecular motors, artificial molecular motors are still at an early stage of development. Nevertheless, they already give a wealth of information. Our review focuses on how the investigation of artificial and biological molecular motors can mutually enrich each other.
Collapse
Affiliation(s)
- Moritz Mickler
- Physics Department, IMETUM, CeNS and CIPSM, Technische Universität München, 85748 Garching, Germany
| | | | | |
Collapse
|
28
|
Zhang J, Wang L, Zhuang L, Huo L, Musa S, Li S, Xiang X. Arp11 affects dynein-dynactin interaction and is essential for dynein function in Aspergillus nidulans. Traffic 2008; 9:1073-87. [PMID: 18410488 DOI: 10.1111/j.1600-0854.2008.00748.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dynactin complex contains proteins including p150 that interacts with cytoplasmic dynein and an actin-related protein Arp1 that forms a minifilament. Proteins including Arp11 and p62 locate at the pointed end of the Arp1 filament, but their biochemical functions are unclear (Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004;20:759-779). In Aspergillus nidulans, loss of Arp11 or p62 causes the same nuclear distribution (nud) defect displayed by dynein mutants, indicating that these pointed-end proteins are essential for dynein function. We constructed a strain with S-tagged p150 of dynactin that allows us to pull down components of the dynactin and dynein complexes. Surprisingly, while the ratio of pulled-down Arp1 to S-p150 in Arp11-depleted cells is clearly lower than that in wild-type cells, the ratio of pulled-down dynein to S-p150 is significantly higher. We further show that the enhanced dynein-dynactin interaction in Arp11-depleted cells is also present in the soluble fraction and therefore is not dependent upon the affinity of these proteins to the membrane. We suggest that loss of the pointed-end proteins alters the Arp1 filament in a way that affects the conformation of p150 required for its proper interaction with the dynein motor.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cilia and flagella are equipped with multiple species of dyneins that have diverse motor properties. To assess the properties of various axonemal dyneins of Chlamydomonas, in vitro microtubule translocation by isolated dyneins was examined with and without flow of the medium. With one inner-arm dynein species, dynein c, most microtubules became aligned parallel to the flow and translocated downstream after the onset of flow. When the flow was stopped, the gliding direction was gradually randomized. In contrast, with inner-arm dyneins d and g, microtubules tended to translocate at a shallow right angle to the flow. When the flow was stopped, each microtubule turned to the right, making a curved track. The clockwise translocation was not accompanied by lateral displacement, indicating that these dyneins generate torque that bends the microtubule. The torque generated by these dyneins in the axoneme may modulate the relative orientation between adjacent doublet microtubules and lead to more efficient functioning of total dyneins.
Collapse
|
30
|
Kinetic model for dynein oscillatory activity. Biophys Chem 2008; 134:20-4. [PMID: 18222592 DOI: 10.1016/j.bpc.2007.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/24/2007] [Accepted: 12/26/2007] [Indexed: 11/22/2022]
Abstract
A kinetic model for dynein, a molecular motor, is considered. This model explains the oscillatory behaviour, observed by Chikako Shingyoji et al. [Ch. Shingyoji, H. Higuchi, M. Yoshimura, E. Katayama, T. Yanagida, Dynein arms are oscillatory force generators, Nature 393 (1998) 711-714.] and by Susumu Aoyama and Ritsu Kamiya [S. Aoyama, R. Kamiya, Cyclical interactions between two outer doublet microtubules in split flagellar axonemes, Biophys. J. 89 (2005) 3261-3268.] in surprisingly simple axonemal fragments. The model shows that sustained oscillations can be generated due to the obligate cooperative interaction of the two dynein heads in the axonemal fragments. No other feedback control interactions are involved in the model to explain oscillations, similar to those observed experimentally, for realistic dynein rate constants. The modified model shows how the ATP hydrolytic exhaustion influences the amplitude and frequency of dynein oscillatory activity.
Collapse
|
31
|
Ishikawa T, Sakakibara H, Oiwa K. The architecture of outer dynein arms in situ. J Mol Biol 2007; 368:1249-58. [PMID: 17391698 DOI: 10.1016/j.jmb.2007.02.072] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Outer dynein arms, the force generators for axonemal motion, form arrays on microtubule doublets in situ, although they are bouquet-like complexes with separated heads of multiple heavy chains when isolated in vitro. To understand how the three heavy chains are folded in the array, we reconstructed the detailed 3D structure of outer dynein arms of Chlamydomonas flagella in situ by electron cryo-tomography and single-particle averaging. The outer dynein arm binds to the A-microtubule through three interfaces on two adjacent protofilaments, two of which probably represent the docking complex. The three AAA rings of heavy chains, seen as stacked plates, are connected in a striking manner on microtubule doublets. The tail of the alpha-heavy chain, identified by analyzing the oda11 mutant, which lacks alpha-heavy chain, extends from the AAA ring tilted toward the tip of the axoneme and towards the inside of the axoneme at 50 degrees , suggesting a three-dimensional power stroke. The neighboring outer dynein arms are connected through two filamentous structures: one at the exterior of the axoneme and the other through the alpha-tail. Although the beta-tail seems to merge with the alpha-tail at the internal side of the axoneme, the gamma-tail is likely to extend at the exterior of the axoneme and join the AAA ring. This suggests that the fold and function of gamma-heavy chain are different from those of alpha and beta-chains.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Biology, ETH Zürich (Swiss Federal Institute of Technology, Zurich), HPK F7 ETH Hönggerberg, CH8093 Zürich, Switzerland.
| | | | | |
Collapse
|
32
|
Zhuang L, Zhang J, Xiang X. Point mutations in the stem region and the fourth AAA domain of cytoplasmic dynein heavy chain partially suppress the phenotype of NUDF/LIS1 loss in Aspergillus nidulans. Genetics 2007; 175:1185-96. [PMID: 17237507 PMCID: PMC1840067 DOI: 10.1534/genetics.106.069013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
33
|
Abstract
The cellular cytoskeleton is well studied in terms of its biological and physical properties, making it an attractive subject for systems approaches. Here, we describe the experimental and theoretical strategies used to study the collective behaviour of microtubules and motors. We illustrate how this led to the beginning of an understanding of dynamic cellular patterns that have precise functions.
Collapse
Affiliation(s)
- Eric Karsenti
- European Molecular Systems Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
34
|
Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 2006; 313:944-8. [PMID: 16917055 DOI: 10.1126/science.1128618] [Citation(s) in RCA: 632] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Eukaryotic flagella and cilia are built on a 9 + 2 array of microtubules plus >250 accessory proteins, forming a biological machine called the axoneme. Here we describe the three-dimensional structure of rapidly frozen axonemes from Chlamydomonas and sea urchin sperm, using cryoelectron tomography and image processing to focus on the motor enzyme dynein. Our images suggest a model for the way dynein generates force to slide microtubules. They also reveal two dynein linkers that may provide "hard-wiring" to coordinate motor enzyme action, both circumferentially and along the axoneme. Periodic densities were also observed inside doublet microtubules; these may contribute to doublet stability.
Collapse
Affiliation(s)
- Daniela Nicastro
- Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, CB 347, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Meng X, Samsó M, Koonce MP. A flexible linkage between the dynein motor and its cargo. J Mol Biol 2006; 357:701-6. [PMID: 16466743 DOI: 10.1016/j.jmb.2006.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
We have used an antibody-Fab tag to mark the position of the cytoplasmic dynein amino-terminal tail domain, as it emerges from the main mass of the motor. Electron microscopy and single-particle image analysis reveal that the tag does not assume a rigidly fixed position, but instead can be found at various locations around the planar ring that comprises the motor's backbone. The work suggests that the tail is attached to the motor at a point near the ring center, and that the sequence immediately adjacent to this connection is flexible. Such flexibility argues against a simple-lever arm model for dynein force production.
Collapse
Affiliation(s)
- Xing Meng
- Division of Molecular Medicine, Wadsworth Center, Albany, NY 12201, USA
| | | | | |
Collapse
|
36
|
Nan X, Sims PA, Chen P, Xie XS. Observation of Individual Microtubule Motor Steps in Living Cells with Endocytosed Quantum Dots. J Phys Chem B 2005; 109:24220-4. [PMID: 16375416 DOI: 10.1021/jp056360w] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the observation of individual steps taken by motor proteins in living cells by following movements of endocytic vesicles that contain quantum dots (QDs) with a fast camera. The brightness and photostability of quantum dots allow us to record motor displacement traces with 300 micros time resolution and 1.5 nm spatial precision. We observed individual 8 nm steps in active transport toward both the microtubule plus- and minus-ends, the directions of kinesin and dynein movements, respectively. In addition, we clearly resolved abrupt 16 nm steps in the plus-end direction and often consecutive 16 nm and occasional 24 nm steps in minus-end directed movements. This work demonstrates the ability of the QD assay to probe the operation of motor proteins at the molecular level in living cells under physiological conditions.
Collapse
Affiliation(s)
- Xiaolin Nan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Recent experiment showed that cytoplasmic dynein 1, a molecular motor responsible for cargo transport in cells, functions as a gear in response to external load. In the presence of vanishing or small external load, dynein walks with 24- or 32-nm steps, whereas at high external load, its step size is reduced to 8 nm. A simple model is proposed to account for this property of dynein. The model assumes that the chemical energy of ATP hydrolysis is used through a loose coupling between the chemical reaction and the translocation of dynein along microtubule. This loose chemomechanical coupling is represented by the loosely coupled motions of dynein along two different reaction coordinates. The first reaction coordinate is tightly coupled to the chemical reaction and describes the protein conformational changes that control the chemical processes, including ATP binding and hydrolysis, and ADP-Pi release. The second coordinate describes the translocation of dynein along microtubule, which is directly subject to the influence of the external load. The model is used to explain the experimental data on the external force dependence of the dynein step size as well as the ATP concentration dependence of the stall force. A number of predictions, such as the external force dependence of speed of translocation, ATP hydrolysis rate, and dynein step sizes, are made based on this theoretical model. This model provides a simple understanding on how a variable chemomechanical coupling ratio can be achieved and used to optimize the biological function of dynein.
Collapse
Affiliation(s)
- Yi Qin Gao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
38
|
Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 2005; 105:1377-400. [PMID: 15826015 DOI: 10.1021/cr030071r] [Citation(s) in RCA: 683] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazushi Kinbara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
39
|
Abstract
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.
Collapse
Affiliation(s)
- Roop Mallik
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA
| | | |
Collapse
|