1
|
Monzon AM, Arrías PN, Elofsson A, Mier P, Andrade-Navarro MA, Bevilacqua M, Clementel D, Bateman A, Hirsh L, Fornasari MS, Parisi G, Piovesan D, Kajava AV, Tosatto SCE. A STRP-ed definition of Structured Tandem Repeats in Proteins. J Struct Biol 2023; 215:108023. [PMID: 37652396 DOI: 10.1016/j.jsb.2023.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Tandem Repeat Proteins (TRPs) are a class of proteins with repetitive amino acid sequences that have been studied extensively for over two decades. Different features at the level of sequence, structure, function and evolution have been attributed to them by various authors. And yet many of its salient features appear only when looking at specific subclasses of protein tandem repeats. Here, we attempt to rationalize the existing knowledge on Tandem Repeat Proteins (TRPs) by pointing out several dichotomies. The emerging picture is more nuanced than generally assumed and allows us to draw some boundaries of what is not a "proper" TRP. We conclude with an operational definition of a specific subset, which we have denominated STRPs (Structural Tandem Repeat Proteins), which separates a subclass of tandem repeats with distinctive features from several other less well-defined types of repeats. We believe that this definition will help researchers in the field to better characterize the biological meaning of this large yet largely understudied group of proteins.
Collapse
Affiliation(s)
- Alexander Miguel Monzon
- Dept. of Information Engineering, University of Padova, via Giovanni Gradenigo 6/B, 35131 Padova, Italy
| | - Paula Nazarena Arrías
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Arne Elofsson
- Dept. of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, 171 21 Solna, Sweden
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martina Bevilacqua
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Damiano Clementel
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Layla Hirsh
- Dept. of Engineering, Faculty of Science and Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801 San Miguel, Lima 32, Lima, Peru
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padova, via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
2
|
Gupta A, Lu C, Wang F, Chou T, Shan S. An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis. Protein Sci 2023; 32:e4728. [PMID: 37433015 PMCID: PMC10367600 DOI: 10.1002/pro.4728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Numerous age-linked diseases are rooted in protein misfolding; this has motivated the development of small molecules and therapeutic antibodies that target the aggregation of disease-linked proteins. Here we explore another approach: molecular chaperones with engineerable protein scaffolds such as the ankyrin repeat domain (ARD). We tested the ability of cpSRP43, a small, robust, ATP- and cofactor-independent plant chaperone built from an ARD, to antagonize disease-linked protein aggregation. cpSRP43 delays the aggregation of multiple proteins including the amyloid beta peptide (Aβ) associated with Alzheimer's disease and α-synuclein associated with Parkinson's disease. Kinetic modeling and biochemical analyses show that cpSRP43 targets early oligomers during Aβ aggregation, preventing their transition to a self-propagating nucleus on the fibril surface. Accordingly, cpSRP43 rescued neuronal cells from the toxicity of extracellular Aβ42 aggregates. The substrate-binding domain of cpSRP43, composed primarily of the ARD, is necessary and sufficient to prevent Aβ42 aggregation and protect cells against Aβ42 toxicity. This work provides an example in which an ARD chaperone non-native to mammalian cells harbors anti-amyloidal activity, which may be exploited for bioengineering.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Chuqi Lu
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Feng Wang
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Tsui‐Fen Chou
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shu‐ou Shan
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
3
|
Zhao H, Wang Y, He Y, Zhang P, Zeng C, Du T, Shen Q, Zhao S. ANKRD29, as a new prognostic and immunological biomarker of non-small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway. Biol Direct 2023; 18:28. [PMID: 37277814 PMCID: PMC10243072 DOI: 10.1186/s13062-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND The predominant cancer-related deaths worldwide are caused by lung cancer, particularly non-small cell lung cancer (NSCLC), despite the fact that numerous therapeutic initiatives have been devised to improve the outcomes. Ankyrin repeat domain (ANKRD) is one of the widespread protein structural motifs in eukaryotes but the functions of ANKRD proteins in NSCLC progression remains unclear. METHODS We performed integrative bioinformatical analysis to determine the dysregulated expression of ANKRDs in multiple tumors and the association between ANKRD29 expression and the NSCLC tumor environment. Quantitative real-time PCR (qRT-PCR), western blot, immunohistochemistry (IHC), and tissue microarray (TMA) assays were used to investigate the expression of ANKRD29 in NSCLC cell lines. The role of ANKRD29 in NSCLC cell proliferation and migration in vitro was deteceted by 5-bromodeoxyuridine (BrdU) incorporation, colony formation, flow cytometry, would-healing, trans-well, and western blot experiment. RNA-seq technology was applied to deciper the molecular mechanism regulated by ANKRD29 in NSCLC. RESULTS We constructed a valuable risk-score system for predicting the overall survival outcomes of NSCLC patients based on the expression of five hub ANKRD genes. And we found that the hub gene ANKRD29 was remarkedly decreased in NSCLC tissues and cell lines due to the promoter hypermethylation, and revealed that high ANKRD29 expression obviously correlated with patients' better clinical outcome. Overexpression of ANKRD29 significantly inhibited cell proliferation and migration, promoted the cancerous cells' sensitivity to carboplatin and enhanced the killing ability of T cells in NSCLC cells. Interestingly, ANKRD29 can be served as a biomarker to predict the response to immunotherapy in NSCLC. Mechanically, RNA-seq results showed that ANKRD29 could regulate MAPK signaling pathway. Moreover, we screened two potential agonists for ANKRD29. CONCLUSIONS ANKRD29 functions as a new tumor suppressor in NSCLC tumorigenesis and could be developed as a biomarker for prognostic prediction, immunotherapy response, and drug susceptibility evaluation of NSCLC in the future.
Collapse
Affiliation(s)
- Hanqing Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanbo Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, China
| | - Yaomei He
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment in Yunnan Province, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, China
| | - Cheng Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Tongxuan Du
- Institute of Biomedical Engineering, Kunming Medical University, 650500, Kunming, Yunnan, China
| | - Qiushuo Shen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
- Institute of Biomedical Engineering, Kunming Medical University, 650500, Kunming, Yunnan, China.
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
4
|
Kaynak BT, Dahmani ZL, Doruker P, Banerjee A, Yang SH, Gordon R, Itzhaki LS, Bahar I. Cooperative mechanics of PR65 scaffold underlies the allosteric regulation of the phosphatase PP2A. Structure 2023; 31:607-618.e3. [PMID: 36948205 PMCID: PMC10164121 DOI: 10.1016/j.str.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
PR65, a horseshoe-shaped scaffold composed of 15 HEAT (observed in Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats, forms, together with catalytic and regulatory subunits, the heterotrimeric protein phosphatase PP2A. We examined the role of PR65 in enabling PP2A enzymatic activity with computations at various levels of complexity, including hybrid approaches that combine full-atomic and elastic network models. Our study points to the high flexibility of this scaffold allowing for end-to-end distance fluctuations of 40-50 Å between compact and extended conformations. Notably, the intrinsic dynamics of PR65 facilitates complexation with the catalytic subunit and is retained in the PP2A complex enabling PR65 to engage the two domains of the catalytic subunit and provide the mechanical framework for enzymatic activity, with support from the regulatory subunit. In particular, the intra-repeat coils at the C-terminal arm play an important role in allosterically mediating the collective dynamics of PP2A, pointing to target sites for modulating PR65 function.
Collapse
Affiliation(s)
- Burak T Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zakaria L Dahmani
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
5
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
6
|
Abstract
Repeat proteins are made with tandem copies of similar amino acid stretches that fold into elongated architectures. These proteins constitute excellent model systems to investigate how evolution relates to structure, folding, and function. Here, we propose a scheme to map evolutionary information at the sequence level to a coarse-grained model for repeat-protein folding and use it to investigate the folding of thousands of repeat proteins. We model the energetics by a combination of an inverse Potts-model scheme with an explicit mechanistic model of duplications and deletions of repeats to calculate the evolutionary parameters of the system at the single-residue level. These parameters are used to inform an Ising-like model that allows for the generation of folding curves, apparent domain emergence, and occupation of intermediate states that are highly compatible with experimental data in specific case studies. We analyzed the folding of thousands of natural Ankyrin repeat proteins and found that a multiplicity of folding mechanisms are possible. Fully cooperative all-or-none transitions are obtained for arrays with enough sequence-similar elements and strong interactions between them, while noncooperative element-by-element intermittent folding arose if the elements are dissimilar and the interactions between them are energetically weak. Additionally, we characterized nucleation-propagation and multidomain folding mechanisms. We show that the global stability and cooperativity of the repeating arrays can be predicted from simple sequence scores.
Collapse
|
7
|
Li XY, Qin KR, Liu YH, Pang M, Huo YK, Yu BF, Wang HL. A Microarray Study on the Expression of ANKRD49 in Lung Squamous Cell Carcinoma and Its Clinicopathologic Significance. Appl Immunohistochem Mol Morphol 2022; 30:418-424. [PMID: 35639405 DOI: 10.1097/pai.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is associated with poor clinical outcomes and identifying novel biomarkers that are involved in the progression of LUSC is important for prognosis and targeted treatment. Herein, ankyrin repeat domain 49 (ANKRD49) protein in LUSC versus paired noncancerous lung tissues was tested and its clinical significance was evaluated through χ 2 test, log-rank test, and Cox proportional hazards model. The results showed the ANKRD49 protein in LUSC was elevated and correlated with the tumor-node-metastasis stage, lymph node metastasis, distal metastasis, and differentiation. Patients with higher ANKRD49 had lower overall survival rate and higher ANKRD49 expression in lung tissues may be used as an independent prognostic marker for LUSC patients.
Collapse
Affiliation(s)
- Xin-Yang Li
- School of Basic Medicine, Basic Medical Sciences Center
| | - Ke-Ru Qin
- School of Basic Medicine, Basic Medical Sciences Center
| | - Yue-Hua Liu
- School of Basic Medicine, Basic Medical Sciences Center
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, the First Hospital, Shanxi Province Key Laboratory of Respiratory Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun-Kui Huo
- Department of Cardiothoracic Surgery, the First Hospital
| | - Bao-Feng Yu
- School of Basic Medicine, Basic Medical Sciences Center
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center
| |
Collapse
|
8
|
Liu Z, Thirumalai D. Cooperativity and Folding Kinetics in a Multidomain Protein with Interwoven Chain Topology. ACS CENTRAL SCIENCE 2022; 8:763-774. [PMID: 35756371 PMCID: PMC9228575 DOI: 10.1021/acscentsci.2c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Although a large percentage of eukaryotic proteomes consist of proteins with multiple domains, not much is known about their assembly mechanism, especially those with intricate native state architectures. Some have a complex topology in which the structural elements along the sequence are interwoven in such a manner that the domains cannot be separated by cutting at any location along the sequence. Such proteins are multiply connected multidomain proteins (MMPs) with the three-domain (NMP, LID, and CORE) phosphotransferase enzyme adenylate kinase (ADK) being an example. We devised a coarse-grained model to simulate ADK folding initiated by changing either the temperature or guanidinium chloride (GdmCl) concentration. The simulations reproduce the experimentally measured melting temperatures (associated with two equilibrium transitions), FRET efficiency as a function of GdmCl concentration, and the folding times quantitatively. Although the NMP domain orders independently, cooperative interactions between the LID and the CORE domains are required for complete assembly of the enzyme. Kinetic simulations show that, on the collapse time scale, multiple interconnected metastable states are populated, attesting to the folding heterogeneity. The network of kinetically connected states reveals that the CORE domain folds only after the NMP and LID domains, reflecting the interwoven nature of the chain topology.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department
of Physics, Beijing Normal University, Beijing 100875, China
| | - D. Thirumalai
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United
States
| |
Collapse
|
9
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022. [PMID: 35258937 DOI: 10.1101/2021.03.27.437344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Pamela J E Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
10
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022; 16:3895-3905. [PMID: 35258937 PMCID: PMC8944806 DOI: 10.1021/acsnano.1c09162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rohan S. Eapen
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Albert Perez-Riba
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Pamela J. E. Rowling
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene
Center Munich, Ludwig-Maximilians-Universität
München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
11
|
Abstract
Abstract
Ankyrin (ANK) repeat proteins are coded by tandem occurrences of patterns with around 33 amino acids. They often mediate protein–protein interactions in a diversity of biological systems. These proteins have an elongated non-globular shape and often display complex folding mechanisms. This work investigates the energy landscape of representative proteins of this class made up of 3, 4 and 6 ANK repeats using the energy-landscape visualisation method (ELViM). By combining biased and unbiased coarse-grained molecular dynamics AWSEM simulations that sample conformations along the folding trajectories with the ELViM structure-based phase space, one finds a three-dimensional representation of the globally funnelled energy surface. In this representation, it is possible to delineate distinct folding pathways. We show that ELViMs can project, in a natural way, the intricacies of the highly dimensional energy landscapes encoded by the highly symmetric ankyrin repeat proteins into useful low-dimensional representations. These projections can discriminate between multiplicities of specific parallel folding mechanisms that otherwise can be hidden in oversimplified depictions.
Collapse
|
12
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
13
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
14
|
Neira JL, Vega S, Martínez-Rodríguez S, Velázquez-Campoy A. The isolated GTPase-activating-protein-related domain of neurofibromin-1 has a low conformational stability in solution. Arch Biochem Biophys 2021; 700:108767. [PMID: 33476564 DOI: 10.1016/j.abb.2021.108767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Sonia Vega
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, 18100, Armilla, Granada, Spain; Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071, Granada, Spain.
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50009, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| |
Collapse
|
15
|
Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO. A Disorder-to-Order Transition Activates an ATP-Independent Membrane Protein Chaperone. J Mol Biol 2020; 432:166708. [PMID: 33188783 PMCID: PMC7780713 DOI: 10.1016/j.jmb.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
The 43 kDa subunit of the chloroplast signal recognition particle, cpSRP43, is an ATP-independent chaperone essential for the biogenesis of the light harvesting chlorophyll-binding proteins (LHCP), the most abundant membrane protein family on earth. cpSRP43 is activated by a stromal factor, cpSRP54, to more effectively capture and solubilize LHCPs. The molecular mechanism underlying this chaperone activation is unclear. Here, a combination of hydrogen-deuterium exchange, electron paramagnetic resonance, and NMR spectroscopy experiments reveal that a disorder-to-order transition of the ankyrin repeat motifs in the substrate binding domain of cpSRP43 drives its activation. An analogous coil-to-helix transition in the bridging helix, which connects the ankyrin repeat motifs to the cpSRP54 binding site in the second chromodomain, mediates long-range allosteric communication of cpSRP43 with its activating binding partner. Our results provide a molecular model to explain how the conformational dynamics of cpSRP43 enables regulation of its chaperone activity and suggest a general mechanism by which ATP-independent chaperones with cooperatively folding domains can be regulated.
Collapse
Affiliation(s)
- Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Camille Z McAvoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Vinh Lam
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Fu-Cheng Liang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily Miaou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Patrick Griffin
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
16
|
Giudici AM, Hernández-Cifre JG, Cámara-Artigas A, Hornos F, Martínez-Rodríguez S, Carlos Alvarez-Pérez J, Díaz-Cano I, Esther Fárez-Vidal M, Neira JL. The isolated armadillo-repeat domain of Plakophilin 1 is a monomer in solution with a low conformational stability. J Struct Biol 2020; 211:107569. [PMID: 32650131 DOI: 10.1016/j.jsb.2020.107569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
Plakophilin 1 (PKP1) is a member of the armadillo repeat family of proteins. It serves as a scaffold component of desmosomes, which are key structural components for cell-cell adhesion. We have embarked on the biophysical and conformational characterization of the ARM domain of PKP1 (ARM-PKP1) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, analytical ultracentrifugation (AUC), dynamic light scattering (DLS) and differential scanning calorimetry (DSC)). ARM-PKP1 was a monomer in solution at physiological pH, with a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by fluorescence and CD. The presence or absence of disulphide bridges did not affect its low stability. The protein unfolded through an intermediate which has lost native-like secondary structure. ARM-PKP1 acquired a native-like structure in a narrow pH range (between pH 6.0 and 8.0), indicating that its adherent properties might only work in a very narrow pH range.
Collapse
Affiliation(s)
| | - José G Hernández-Cifre
- Departamento de Química Física, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| | - Felipe Hornos
- IDIBE, Universidad Miguel Hernández, 03202 Elche Alicante, Spain
| | - Sergio Martínez-Rodríguez
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Juan Carlos Alvarez-Pérez
- Dpto. Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Inés Díaz-Cano
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - María Esther Fárez-Vidal
- Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Investigación Biomédica IBS. Granada. Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain.
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
17
|
Galpern EA, Freiberger MI, Ferreiro DU. Large Ankyrin repeat proteins are formed with similar and energetically favorable units. PLoS One 2020; 15:e0233865. [PMID: 32579546 PMCID: PMC7314423 DOI: 10.1371/journal.pone.0233865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ankyrin containing proteins are one of the most abundant repeat protein families present in all extant organisms. They are made with tandem copies of similar amino acid stretches that fold into elongated architectures. Here, we built and curated a dataset of 200 thousand proteins that contain 1.2 million Ankyrin regions and characterize the abundance, structure and energetics of the repetitive regions in natural proteins. We found that there is a continuous roughly exponential variety of array lengths with an exceptional frequency at 24 repeats. We described that individual repeats are seldom interrupted with long insertions and accept few deletions, in line with the known tertiary structures. We found that longer arrays are made up of repeats that are more similar to each other than shorter arrays, and display more favourable folding energy, hinting at their evolutionary origin. The array distributions show that there is a physical upper limit to the size of an array of repeats of about 120 copies, consistent with the limit found in nature. The identity patterns within the arrays suggest that they may have originated by sequential copies of more than one Ankyrin unit.
Collapse
Affiliation(s)
- Ezequiel A. Galpern
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María I. Freiberger
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Díaz-García C, Hornos F, Giudici AM, Cámara-Artigas A, Luque-Ortega JR, Arbe A, Rizzuti B, Alfonso C, Forwood JK, Iovanna JL, Gómez J, Prieto M, Coutinho A, Neira JL. Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochim Biophys Acta Gen Subj 2020; 1864:129609. [PMID: 32234409 DOI: 10.1016/j.bbagen.2020.129609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Eukaryotic cells have a continuous transit of macromolecules between the cytoplasm and the nucleus. Several carrier proteins are involved in this transport. One of them is importin α, which must form a complex with importin β to accomplish its function, by domain-swapping its 60-residue-long N terminus. There are several human isoforms of importin α; among them, importin α3 has a particularly high flexibility. METHODS We studied the conformational stability of intact importin α3 (Impα3) and its truncated form, where the 64-residue-long, N-terminal importin-β-binding domain (IBB) has been removed (ΔImpα3), in a wide pH range, with several spectroscopic, biophysical, biochemical methods and with molecular dynamics (MD). RESULTS Both species acquired native-like structure between pH 7 and 10.0, where Impα3 was a dimer (with an apparent self-association constant of ~10 μM) and ΔImpα3 had a higher tendency to self-associate than the intact species. The acquisition of secondary, tertiary and quaternary structure, and the burial of hydrophobic patches, occurred concomitantly. Both proteins unfolded irreversibly at physiological pH, by using either temperature or chemical denaturants, through several partially folded intermediates. The MD simulations support the presence of these intermediates. CONCLUSIONS The thermal stability of Impα3 at physiological pH was very low, but was higher than that of ΔImpα3. Both proteins were stable in a narrow pH range, and they unfolded at physiological pH populating several intermediate species. GENERAL SIGNIFICANCE The low conformational stability explains the flexibility of Impα3, which is needed to carry out its recognition of complex cargo sequences.
Collapse
Affiliation(s)
- Clara Díaz-García
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Felipe Hornos
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | | | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| | - Juan Román Luque-Ortega
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Materials Physics Center (MPC), 20018 San Sebastián, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| | - Javier Gómez
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - Manuel Prieto
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Ana Coutinho
- iBB- Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
19
|
Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, Fernández-Velasco DA, Torres-Larios A, Rosenbaum T, Islas LD. The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophys J 2019; 118:836-845. [PMID: 31757360 DOI: 10.1016/j.bpj.2019.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.
Collapse
Affiliation(s)
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Mexico City, Mexico
| | | | | | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Facultad de Medicina, Departamento de Fisiología, Mexico City, Mexico.
| |
Collapse
|
20
|
Perez-Riba A, Komives E, Main ERG, Itzhaki LS. Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold. Sci Rep 2019; 9:15439. [PMID: 31659184 PMCID: PMC6817815 DOI: 10.1038/s41598-019-49905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022] Open
Abstract
The simple topology and modular architecture of tandem-repeat proteins such as tetratricopeptide repeats (TPRs) and ankyrin repeats makes them straightforward to dissect and redesign. Repeat-protein stability can be manipulated in a predictable way using site-specific mutations. Here we explore a different type of modification - loop insertion - that will enable a simple route to functionalisation of this versatile scaffold. We previously showed that a single loop insertion has a dramatically different effect on stability depending on its location in the repeat array. Here we dissect this effect by a combination of multiple and alternated loop insertions to understand the origins of the context-dependent loss in stability. We find that the scaffold is remarkably robust in that its overall structure is maintained. However, adjacent repeats are now only weakly coupled, and consequently the increase in solvent protection, and thus stability, with increasing repeat number that defines the tandem-repeat protein class is lost. Our results also provide us with a rulebook with which we can apply these principles to the design of artificial repeat proteins with precisely tuned folding landscapes and functional capabilities, thereby paving the way for their exploitation as a versatile and truly modular platform in synthetic biology.
Collapse
Affiliation(s)
- Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
21
|
Marchi J, Galpern EA, Espada R, Ferreiro DU, Walczak AM, Mora T. Size and structure of the sequence space of repeat proteins. PLoS Comput Biol 2019; 15:e1007282. [PMID: 31415557 PMCID: PMC6733475 DOI: 10.1371/journal.pcbi.1007282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/09/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
The coding space of protein sequences is shaped by evolutionary constraints set by requirements of function and stability. We show that the coding space of a given protein family—the total number of sequences in that family—can be estimated using models of maximum entropy trained on multiple sequence alignments of naturally occuring amino acid sequences. We analyzed and calculated the size of three abundant repeat proteins families, whose members are large proteins made of many repetitions of conserved portions of ∼30 amino acids. While amino acid conservation at each position of the alignment explains most of the reduction of diversity relative to completely random sequences, we found that correlations between amino acid usage at different positions significantly impact that diversity. We quantified the impact of different types of correlations, functional and evolutionary, on sequence diversity. Analysis of the detailed structure of the coding space of the families revealed a rugged landscape, with many local energy minima of varying sizes with a hierarchical structure, reminiscent of fustrated energy landscapes of spin glass in physics. This clustered structure indicates a multiplicity of subtypes within each family, and suggests new strategies for protein design. Natural protein molecules are only a small subset of the possible strings of amino acids. This naturally calls the question of how many protein sequences theoretically exist that are functional, and how many have already been explored by nature. To help answer this question, we developed a statistical method to calculate the total potential number of protein sequences of a given family, focusing on three families of repeat proteins, which play important roles in a variety of cellular processes. The number of sequences that we compute is limited by functional interactions between the residues of the protein, as well as its evolutionary history. Applying techniques from the physics of disordered systems, we show that the space of sequences has a rugged structure, which could hinder their evolution. Individual proteins can be organised into distinct clusters corresponding to basins of attraction of the landscape, suggesting the existence of subfamilies within each family.
Collapse
Affiliation(s)
- Jacopo Marchi
- Laboratoire de physique de l’École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ezequiel A. Galpern
- Protein Physiology Lab, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Rocio Espada
- Laboratoire Gulliver, Ecole supérieure de physique et chimie industrielles (PSL University) and CNRS, 75005, Paris, France
| | - Diego U. Ferreiro
- Protein Physiology Lab, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
- * E-mail: (AMW); (TM)
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
- * E-mail: (AMW); (TM)
| |
Collapse
|
22
|
Kang Y, Xie H, Zhao C. Ankrd45 Is a Novel Ankyrin Repeat Protein Required for Cell Proliferation. Genes (Basel) 2019; 10:genes10060462. [PMID: 31208154 PMCID: PMC6628321 DOI: 10.3390/genes10060462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ankyrin repeats, the most common protein-protein interaction motifs in nature, are widely present in proteins of both eukaryotic and prokaryotic cells. Ankyrin repeat-containing proteins play diverse biological functions. Here, we identified the gene ankrd45, which encodes a novel, two ankyrin repeat-containing protein. Zebrafish ankrd45 displayed a tissue specific expression pattern during early development, with high expression in ciliated tissues, including otic vesicles, Kupffer's vesicles, pronephric ducts, and floor plates. Surprisingly, zebrafish ankrd45 mutants were viable and developed grossly normal cilia. In contrast, mutant larvae developed enlarged livers when induced with liver specific expression of KrasG12V, one of the common mutations of KRAS that leads to cancer in humans. Further, histological analysis suggested that multiple cysts developed in the mutant liver due to cell apoptosis. Similarly, knockdown of ANKRD45 expression with either siRNA or CRISPR/Cas9 methods induced apoptosis in cultured cells, similar to those in zebrafish ankrd45 mutant livers after induction. Using different cell lines, we show that the distribution of ANKRD45 protein was highly dynamic during mitosis. ANKRD45 is preferably localized to the midbody ring during cytokinesis. Together, our results suggest that Ankrd45 is a novel ankyrin repeat protein with a conserved role during cell proliferation in both zebrafish embryos and mammalian cells.
Collapse
Affiliation(s)
- Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
23
|
Perez-Riba A, Lowe AR, Main ERG, Itzhaki LS. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins. Biophys J 2019; 114:2552-2562. [PMID: 29874606 PMCID: PMC6129472 DOI: 10.1016/j.bpj.2018.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Consensus-designed tetratricopeptide repeat proteins are highly stable, modular proteins that are strikingly amenable to rational engineering. They therefore have tremendous potential as building blocks for biomaterials and biomedicine. Here, we explore the possibility of extending the loops between repeats to enable further diversification, and we investigate how this modification affects stability and folding cooperativity. We find that extending a single loop by up to 25 residues does not disrupt the overall protein structure, but, strikingly, the effect on stability is highly context-dependent: in a two-repeat array, destabilization is relatively small and can be accounted for purely in entropic terms, whereas extending a loop in the middle of a large array is much more costly because of weakening of the interaction between the repeats. Our findings provide important and, to our knowledge, new insights that increase our understanding of the structure, folding, and function of natural repeat proteins and the design of artificial repeat proteins in biotechnology.
Collapse
Affiliation(s)
- Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Alan R Lowe
- London Centre for Nanotechnology, London, United Kingdom; Structural & Molecular Biology, University College London, London, United Kingdom; Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
24
|
Lowe AR, Perez-Riba A, Itzhaki LS, Main ERG. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins. Biophys J 2019; 114:516-521. [PMID: 29414697 DOI: 10.1016/j.bpj.2017.11.3779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/25/2022] Open
Abstract
For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams.
Collapse
Affiliation(s)
- Alan R Lowe
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom.
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
25
|
Benedito M, Giordano S. Thermodynamics of small systems with conformational transitions: The case of two-state freely jointed chains with extensible units. J Chem Phys 2018; 149:054901. [DOI: 10.1063/1.5026386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manon Benedito
- Institute of Electronics, Microelectronics and Nanotechnology, UMR 8520, University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, LIA LICS/LEMAC, F-59000 Lille, France
| | - Stefano Giordano
- Institute of Electronics, Microelectronics and Nanotechnology, UMR 8520, University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, LIA LICS/LEMAC, F-59000 Lille, France
| |
Collapse
|
26
|
McAvoy CZ, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T, Moradian A, Sweredoski MJ, Hess S, Shan SO. Two distinct sites of client protein interaction with the chaperone cpSRP43. J Biol Chem 2018; 293:8861-8873. [PMID: 29669809 DOI: 10.1074/jbc.ra118.002215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are prone to aggregation and misfolding in aqueous environments and therefore require binding by molecular chaperones during their biogenesis. Chloroplast signal recognition particle 43 (cpSRP43) is an ATP-independent chaperone required for the biogenesis of the most abundant class of membrane proteins, the light-harvesting chlorophyll a/b-binding proteins (LHCPs). Previous work has shown that cpSRP43 specifically recognizes an L18 loop sequence conserved among LHCP paralogs. However, how cpSRP43 protects the transmembrane domains (TMDs) of LHCP from aggregation was unclear. In this work, alkylation-protection and site-specific cross-linking experiments found that cpSRP43 makes extensive contacts with all the TMDs in LHCP. Site-directed mutagenesis identified a class of cpSRP43 mutants that bind tightly to the L18 sequence but are defective in chaperoning full-length LHCP. These mutations mapped to hydrophobic surfaces on or near the bridging helix and the β-hairpins lining the ankyrin repeat motifs of cpSRP43, suggesting that these regions are potential sites for interaction with the client TMDs. Our results suggest a working model for client protein interactions in this membrane protein chaperone.
Collapse
Affiliation(s)
| | - Alex Siegel
- From the Division of Chemistry and Chemical Engineering
| | | | - Emily Miaou
- From the Division of Chemistry and Chemical Engineering
| | - Mansen Yu
- From the Division of Chemistry and Chemical Engineering
| | - Thang Nguyen
- From the Division of Chemistry and Chemical Engineering
| | - Annie Moradian
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Michael J Sweredoski
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sonja Hess
- The Proteome Exploration Laboratory, and.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering,
| |
Collapse
|
27
|
Baweja L, Roche J. Pushing the Limits of Structure-Based Models: Prediction of Nonglobular Protein Folding and Fibrils Formation with Go-Model Simulations. J Phys Chem B 2018; 122:2525-2535. [DOI: 10.1021/acs.jpcb.7b12129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lokesh Baweja
- Department of Biochemistry, Molecular Biology and Biophysics, Iowa State University, Ames, Iowa 50011, United States
| | - Julien Roche
- Department of Biochemistry, Molecular Biology and Biophysics, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Drobnak I, Ljubetič A, Gradišar H, Pisanski T, Jerala R. Designed Protein Origami. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 940:7-27. [PMID: 27677507 DOI: 10.1007/978-3-319-39196-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Proteins are highly perfected natural molecular machines, owing their properties to the complex tertiary structures with precise spatial positioning of different functional groups that have been honed through millennia of evolutionary selection. The prospects of designing new molecular machines and structural scaffolds beyond the limits of natural proteins make design of new protein folds a very attractive prospect. However, de novo design of new protein folds based on optimization of multiple cooperative interactions is very demanding. As a new alternative approach to design new protein folds unseen in nature, folds can be designed as a mathematical graph, by the self-assembly of interacting polypeptide modules within the single chain. Orthogonal coiled-coil dimers seem like an ideal building module due to their shape, adjustable length, and above all their designability. Similar to the approach of DNA nanotechnology, where complex tertiary structures are designed from complementary nucleotide segments, a polypeptide chain composed of a precisely specified sequence of coiled-coil forming segments can be designed to self-assemble into polyhedral scaffolds. This modular approach encompasses long-range interactions that define complex tertiary structures. We envision that by expansion of the toolkit of building blocks and design strategies of the folding pathways protein origami technology will be able to construct diverse molecular machines.
Collapse
Affiliation(s)
- Igor Drobnak
- Laboratory of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Laboratory of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Helena Gradišar
- Laboratory of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Tomaž Pisanski
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.,University of Primorska, Koper, Slovenia
| | - Roman Jerala
- Laboratory of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia. .,EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Blackburn PR, Tischer A, Zimmermann MT, Kemppainen JL, Sastry S, Knight Johnson AE, Cousin MA, Boczek NJ, Oliver G, Misra VK, Gavrilova RH, Lomberk G, Auton M, Urrutia R, Klee EW. A Novel Kleefstra Syndrome-associated Variant That Affects the Conserved TPL X Motif within the Ankyrin Repeat of EHMT1 Leads to Abnormal Protein Folding. J Biol Chem 2017; 292:3866-3876. [PMID: 28057753 PMCID: PMC5339767 DOI: 10.1074/jbc.m116.770545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1. To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS.
Collapse
Affiliation(s)
- Patrick R Blackburn
- From the Center for Individualized Medicine and.,the Department of Health Science Research, Mayo Clinic, Jacksonville, Florida 32224
| | - Alexander Tischer
- the Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology
| | - Michael T Zimmermann
- the Department of Health Science Research, Division of Biomedical Statistics and Informatics
| | | | - Sujatha Sastry
- the Department of Pediatrics, Division of Genetics and Metabolic Disorders, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Amy E Knight Johnson
- the Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - Margot A Cousin
- the Center for Individualized Medicine.,the Department of Health Science Research
| | - Nicole J Boczek
- the Center for Individualized Medicine.,the Department of Health Science Research
| | | | - Vinod K Misra
- the Department of Pediatrics, Division of Genetics and Metabolic Disorders, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | | | - Gwen Lomberk
- the Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Matthew Auton
- the Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology
| | - Raul Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905,
| | - Eric W Klee
- the Department of Clinical Genomics, .,the Center for Individualized Medicine.,the Department of Health Science Research
| |
Collapse
|
30
|
Abstract
Many human proteins contain intrinsically disordered regions, and disorder in these proteins can be fundamental to their function-for example, facilitating transient but specific binding, promoting allostery, or allowing efficient posttranslational modification. SasG, a multidomain protein implicated in host colonization and biofilm formation in Staphylococcus aureus, provides another example of how disorder can play an important role. Approximately one-half of the domains in the extracellular repetitive region of SasG are intrinsically unfolded in isolation, but these E domains fold in the context of their neighboring folded G5 domains. We have previously shown that the intrinsic disorder of the E domains mediates long-range cooperativity between nonneighboring G5 domains, allowing SasG to form a long, rod-like, mechanically strong structure. Here, we show that the disorder of the E domains coupled with the remarkable stability of the interdomain interface result in cooperative folding kinetics across long distances. Formation of a small structural nucleus at one end of the molecule results in rapid structure formation over a distance of 10 nm, which is likely to be important for the maintenance of the structural integrity of SasG. Moreover, if this normal folding nucleus is disrupted by mutation, the interdomain interface is sufficiently stable to drive the folding of adjacent E and G5 domains along a parallel folding pathway, thus maintaining cooperative folding.
Collapse
|
31
|
Porebski BT, Keleher S, Hollins JJ, Nickson AA, Marijanovic EM, Borg NA, Costa MGS, Pearce MA, Dai W, Zhu L, Irving JA, Hoke DE, Kass I, Whisstock JC, Bottomley SP, Webb GI, McGowan S, Buckle AM. Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 2016; 6:33958. [PMID: 27667094 PMCID: PMC5036219 DOI: 10.1038/srep33958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022] Open
Abstract
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Shani Keleher
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey J Hollins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Emilia M Marijanovic
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, 21949900 Rio de Janeiro, Brazil
| | - Mary A Pearce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Weiwen Dai
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David E Hoke
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephen P Bottomley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Yoo J, Cho MH, Lee SW, Bhoo SH. Phytochrome-interacting ankyrin repeat protein 2 modulates phytochrome A-mediated PIF3 phosphorylation in light signal transduction. J Biochem 2016; 160:243-249. [PMID: 27143545 DOI: 10.1093/jb/mvw031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/24/2016] [Indexed: 11/14/2022] Open
Abstract
Light signals recognized by phytochromes are transduced through interactions between down-stream signaling components. Phytochrome-interacting ankyrin repeat protein 2 (PIA2) was found to interact with phytochrome interacting factor 3 (PIF3), a well-known repressor of plant photomorphogenesis in response to phytochrome-mediated light signalling. Both PIA2 and PIF3 are known to be positive regulators of anthocyanin accumulation in Arabidopsis seedlings under far-red conditions. Thus, we investigated the functional relationship between PIA2 and PIF3 in light signalling. We found that PIA2 suppressed PIF3 phosphorylation by phyA. To elucidate how PIA2 modulates phyA-mediated PIF3 phosphorylation, we generated non-phosphorylation mutants and N-terminal α-helix breaking mutants of PIA2. PIF3 phosphorylation by phyA was not suppressed by α-helix breaking PIA2 mutants. The α-helix breaking mutations also resulted in remarkably decreased interactions between PIA2 and PIF3. However, the non-phosphorylation mutants exhibited no effect on phyA-mediated PIF3 phosphorylation. In addition, decreased anthocyanin accumulation in pia2 knockout plant seedlings was not rescued by overexpression of the α-helix breaking mutant in transgenic plants under far-red conditions. These results suggest that PIA2 modulates phyA-mediated PIF3 phosphorylation by physical interaction with PIF3 and that the secondary structure of the PIA2 N-terminus is important in this modulation.
Collapse
Affiliation(s)
| | | | - Sang-Won Lee
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | | |
Collapse
|
34
|
Hutton RD, Wilkinson J, Faccin M, Sivertsson EM, Pelizzola A, Lowe AR, Bruscolini P, Itzhaki LS. Mapping the Topography of a Protein Energy Landscape. J Am Chem Soc 2015; 137:14610-25. [PMID: 26561984 DOI: 10.1021/jacs.5b07370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein energy landscapes are highly complex, yet the vast majority of states within them tend to be invisible to experimentalists. Here, using site-directed mutagenesis and exploiting the simplicity of tandem-repeat protein structures, we delineate a network of these states and the routes between them. We show that our target, gankyrin, a 226-residue 7-ankyrin-repeat protein, can access two alternative (un)folding pathways. We resolve intermediates as well as transition states, constituting a comprehensive series of snapshots that map early and late stages of the two pathways and show both to be polarized such that the repeat array progressively unravels from one end of the molecule or the other. Strikingly, we find that the protein folds via one pathway but unfolds via a different one. The origins of this behavior can be rationalized using the numerical results of a simple statistical mechanics model that allows us to visualize the equilibrium behavior as well as single-molecule folding/unfolding trajectories, thereby filling in the gaps that are not accessible to direct experimental observation. Our study highlights the complexity of repeat-protein folding arising from their symmetrical structures; at the same time, however, this structural simplicity enables us to dissect the complexity and thereby map the precise topography of the energy landscape in full breadth and remarkable detail. That we can recapitulate the key features of the folding mechanism by computational analysis of the native structure alone will help toward the ultimate goal of designed amino-acid sequences with made-to-measure folding mechanisms-the Holy Grail of protein folding.
Collapse
Affiliation(s)
- Richard D Hutton
- Hutchison/MRC Research Centre , Hills Road, Cambridge CB2 0XZ, U.K
| | - James Wilkinson
- Hutchison/MRC Research Centre , Hills Road, Cambridge CB2 0XZ, U.K
| | - Mauro Faccin
- ICTEAM, Université Catholique de Lovain , Euler Building 4, Avenue Lemaître, B-1348 Louvain-la-Neuve, Belgium
| | - Elin M Sivertsson
- Department of Pharmacology, University of Cambridge , Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Alessandro Pelizzola
- Dipartimento di Scienza Applicata e Tecnologia, CNISM, and Center for Computational Studies, Politecnico di Torino , Corso Duca degli Abruzzi 24, I-10129 Torino, Italy.,INFN, Sezione di Torino , via Pietro Giuria 1, I-10125 Torino, Italy.,Human Genetics Foundation (HuGeF) , Via Nizza 52, I-10126 Torino, Italy
| | - Alan R Lowe
- Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London and Birkbeck College , London WC1E 7HX, U.K
| | - Pierpaolo Bruscolini
- Departamento de Física Teórica and Instituto de Biocomputacíon y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza , c/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge , Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
35
|
Wimmer MR, Woods CN, Adamczak KJ, Glasgow EM, Novak WRP, Grilley DP, Weaver TM. Sequential unfolding of the hemolysin two-partner secretion domain from Proteus mirabilis. Protein Sci 2015; 24:1841-55. [PMID: 26350294 DOI: 10.1002/pro.2791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/07/2023]
Abstract
Protein secretion is a major contributor to Gram-negative bacterial virulence. Type Vb or two-partner secretion (TPS) pathways utilize a membrane bound β-barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C-proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N-proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site-specific mutants of HpmA265. By correlating the effect of individual site-specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C-terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C-terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N-proximal polar core subdomain.
Collapse
Affiliation(s)
- Megan R Wimmer
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| | - Christopher N Woods
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| | - Kyle J Adamczak
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| | - Evan M Glasgow
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| | - Walter R P Novak
- Department of Chemistry, Wabash College, Crawfordsville, Indiana, 47933
| | - Daniel P Grilley
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| | - Todd M Weaver
- Department of Chemistry and Biochemistry, University Wisconsin - La Crosse, La Crosse, Wisconsin, 54601
| |
Collapse
|
36
|
Abstract
This year, 2014, marks the 100th anniversary of the first publication reporting the denaturation of proteins by high hydrostatic pressure (Bridgman 1914). Since that time a large and recently increasing number of studies of pressure effects on protein stability have been published, yet the mechanism for the action of pressure on proteins remains subject to considerable debate. This review will present an overview from this author's perspective of where this debate stands today.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,
| |
Collapse
|
37
|
Kim DH, Park MJ, Gwon GH, Silkov A, Xu ZY, Yang EC, Song S, Song K, Kim Y, Yoon HS, Honig B, Cho W, Cho Y, Hwang I. An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev Cell 2014; 30:598-609. [PMID: 25203210 DOI: 10.1016/j.devcel.2014.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/22/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In organellogenesis of the chloroplast from endosymbiotic cyanobacteria, the establishment of protein-targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain and that two lipids, monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG), of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling, and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein-interacting ARD into a lipid binding domain.
Collapse
Affiliation(s)
- Dae Heon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mi-Jeong Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Gwang Hyeon Gwon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Antonina Silkov
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 11032, USA
| | - Zheng-Yi Xu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun Chan Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Seohyeon Song
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kyungyoung Song
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Younghyun Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 11032, USA
| | - Wonhwa Cho
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Yunje Cho
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
38
|
Abstract
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.
Collapse
|
39
|
Rollins GC, Dill KA. General mechanism of two-state protein folding kinetics. J Am Chem Soc 2014; 136:11420-7. [PMID: 25056406 DOI: 10.1021/ja5049434] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe here a general model of the kinetic mechanism of protein folding. In the Foldon Funnel Model, proteins fold in units of secondary structures, which form sequentially along the folding pathway, stabilized by tertiary interactions. The model predicts that the free energy landscape has a volcano shape, rather than a simple funnel, that folding is two-state (single-exponential) when secondary structures are intrinsically unstable, and that each structure along the folding path is a transition state for the previous structure. It shows how sequential pathways are consistent with multiple stochastic routes on funnel landscapes, and it gives good agreement with the 9 order of magnitude dependence of folding rates on protein size for a set of 93 proteins, at the same time it is consistent with the near independence of folding equilibrium constant on size. This model gives estimates of folding rates of proteomes, leading to a median folding time in Escherichia coli of about 5 s.
Collapse
Affiliation(s)
- Geoffrey C Rollins
- Department of Biochemistry and Biophysics, University of California , San Francisco, California 94143, United States
| | | |
Collapse
|
40
|
Mary RD, Saravanan MK, Selvaraj S. Conservation of inter-residue interactions and prediction of folding rates of domain repeats. J Biomol Struct Dyn 2014; 33:534-51. [PMID: 24702623 DOI: 10.1080/07391102.2014.894944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Domains are the main structural and functional units of larger proteins. They tend to be contiguous in primary structure and can fold and function independently. It has been observed that 10-20% of all encoded proteins contain duplicated domains and the average pairwise sequence identity between them is usually low. In the present study, we have analyzed the structural similarity between domain repeats of proteins with known structures available in the Protein Data Bank using structure-based inter-residue interaction measures such as the number of long-range contacts, surrounding hydrophobicity, and pairwise interaction energy. We used RADAR program for detecting the repeats in a protein sequence which were further validated using Pfam domain assignments. The sequence identity between the repeats in domains ranges from 20 to 40% and their secondary structural elements are well conserved. The number of long-range contacts, surrounding hydrophobicity calculations and pairwise interaction energy of the domain repeats clearly reveal the conservation of 3-D structure environment in the repeats of domains. The proportions of mainchain-mainchain hydrogen bonds and hydrophobic interactions are also highly conserved between the repeats. The present study has suggested that the computation of these structure-based parameters will give better clues about the tertiary environment of the repeats in domains. The folding rates of individual domains in the repeats predicted using the long-range order parameter indicate that the predicted folding rates correlate well with most of the experimentally observed folding rates for the analyzed independently folded domains.
Collapse
Affiliation(s)
- Rajathei David Mary
- a Department of Bioinformatics , School of Life Sciences, Bharathidasan University , Tiruchirappalli , Tamilnadu 620 024 , India
| | | | | |
Collapse
|
41
|
Jung H, Lyons RE, Li Y, Thanh NM, Dinh H, Hurwood DA, Salin KR, Mather PB. A candidate gene association study for growth performance in an improved giant freshwater prawn (Macrobrachium rosenbergii ) culture line. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:161-180. [PMID: 24122143 DOI: 10.1007/s10126-013-9555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001-0.031). Individually, they explained 2.6-4.8 % of the genetic variance (R²=0.026-0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.
Collapse
|
42
|
Tsytlonok M, Craig PO, Sivertsson E, Serquera D, Perrett S, Best RB, Wolynes PG, Itzhaki LS. Complex energy landscape of a giant repeat protein. Structure 2013; 21:1954-65. [PMID: 24120762 DOI: 10.1016/j.str.2013.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023]
Abstract
Here, we reveal a remarkable complexity in the unfolding of giant HEAT-repeat protein PR65/A, a molecular adaptor for the heterotrimeric PP2A phosphatases. The repeat array ruptures at multiple sites, leading to intermediate states with noncontiguous folded subdomains. There is a dominant sequence of unfolding, which reflects a nonuniform stability distribution across the repeat array and can be rationalized by theoretical models accounting for heterogeneous contact density in the folded structure. Unfolding of certain intermediates is, however, competitive, leading to parallel unfolding pathways. The low-stability, central repeats sample unfolded conformations under physiological conditions, suggesting how folding directs function: certain regions present rigid motifs for molecular recognition, whereas others have the flexibility with which to broaden the search area, as in the fly-casting mechanism. Partial unfolding of PR65/A also impacts catalysis by altering the proximity of bound catalytic subunit and substrate. Thus, the repeat array orchestrates the assembly and activity of PP2A.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Single-molecule FRET reveals the native-state dynamics of the IκBα ankyrin repeat domain. J Mol Biol 2013; 425:2578-90. [PMID: 23619335 DOI: 10.1016/j.jmb.2013.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022]
Abstract
Previous single-molecule fluorescence resonance energy transfer (smFRET) studies in which the second and sixth ankyrin repeats (ARs) of IκBα were labeled with FRET pairs showed slow fluctuations as if the IκBα AR domain was unfolding in its native state. To systematically probe where these slow dynamic fluctuations occur, we now present data from smFRET studies wherein FRET labels were placed at ARs 1 and 4 (mutant named AR 1-4), at ARs 2 and 5 (AR 2-5), and at ARs 3 and 6 (AR 3-6). The results presented here reveal that AR 6 most readily detaches/unfolds from the AR domain, undergoing substantial fluctuations at room temperature. AR 6 has fewer stabilizing consensus residues than the other IκBα ARs, probably contributing to the ease with which AR 6 "loses grip". AR 5 shows almost no fluctuations at room temperature, but a significant fraction of molecules shows fluctuations at 37 °C. Introduction of stabilizing mutations that are known to fold AR 6 dampen the fluctuations of AR 5, indicating that the AR 5 fluctuations are likely due to weakened inter-repeat stabilization from AR 6. AR 1 also fluctuates somewhat at room temperature, suggesting that fluctuations are a general behavior of ARs at ends of AR domains. Remarkably, AR 1 still fluctuates in the bound state, but mainly between 0.6 and 0.9 FRET efficiency, whereas in the free IκBα, the fluctuations extend to <0.5 FRET efficiency. Overall, our results provide a more complete picture of the energy landscape of the native state dynamics of an AR domain.
Collapse
|
44
|
Stinton LM, Myers RP, Coffin CS, Fritzler MJ. Clinical associations and potential novel antigenic targets of autoantibodies directed against rods and rings in chronic hepatitis C infection. BMC Gastroenterol 2013; 13:50. [PMID: 23506439 PMCID: PMC3606316 DOI: 10.1186/1471-230x-13-50] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/12/2013] [Indexed: 01/11/2023] Open
Abstract
Background Chronic hepatitis C virus (HCV) infection is frequently associated with extrahepatic autoimmune disorders while interferon (IFN) and ribavirin treatment may exacerbate these conditions. Autoantibodies from HCV patients identify a novel indirect immunofluorescence (IIF) pattern on HEp-2 cells characterized by cytoplasmic rods and rings (RR). Our objectives were to determine the prevalence and clinical associations of RR autoantibodies in HCV patients, and identify related novel autoantibody targets. Methods Sera from 315 patients with HCV (301 treatment naive, 14 treated with interferon and/or ribavirin) were analyzed for the presence of RR antibodies by IIF on commercially available HEp-2 cell substrates. Antibodies to inosine monophosphate dehydrogenase 2 (IMPDH2) and cytidine triphosphate synthase 1 (CTPS1) were detected by addressable laser bead assay and other potential targets were identified by immunoscreening a protein microarray. Clinical and demographic data including HCV genotype, mode of infection, prior antiviral therapy, and histological findings were compared between RR antibody positive (RR+) and negative (RR-) patients. Results The median age of the HCV cohort was 51 years, 61% were male, and 76% were infected with HCV genotype 1 (G1). Four percent (n=14) had been treated with IFN-based therapy (IFN monotherapy, n=3; IFN/ribavirin, n=11); all had a sustained virologic response. In total, 15 patients (5% of the cohort) were RR+. RR+ and RR- patients had similar demographic and clinical characteristics including age, sex, mode of HCV infection, prevalence of the G1 HCV genotype, and moderate to severe fibrosis. Nevertheless, RR+ patients were significantly more likely than RR- cases to have been treated with IFN-based therapy (33% vs. 3%; adjusted odds ratio 20.5 [95% confidence interval 5.1-83.2]; P<0.0005). Only 1/10 RR positive sera had detectable antibodies to IMPHD2 and none had antibodies to CTPS1. Potentially important autoantibody targets identified on protein arrays included Myc-associated zinc finger protein (MAZI) and ankyrin repeat motif. Conclusion The majority of HCV patients with RR autoantibodies previously received IFN/ribavirin antiviral therapy. Further studies are necessary to determine the genesis of intracellular RR and elucidate the clinically relevant autoantigens as well as the clinical and prognostic significance of their cognate autoantibodies.
Collapse
Affiliation(s)
- Laura M Stinton
- Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
45
|
Discrete kinetic models from funneled energy landscape simulations. PLoS One 2012; 7:e50635. [PMID: 23251375 PMCID: PMC3520928 DOI: 10.1371/journal.pone.0050635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/23/2012] [Indexed: 01/01/2023] Open
Abstract
A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an “inside-out”, nucleation-propagation like character.
Collapse
|
46
|
Modulation of folding kinetics of repeat proteins: interplay between intra- and interdomain interactions. Biophys J 2012; 103:1555-65. [PMID: 23062348 DOI: 10.1016/j.bpj.2012.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/06/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Repeat proteins have unique elongated structures that, unlike globular proteins, are quite modular. Despite their simple one-dimensional structure, repeat proteins exhibit intricate folding behavior with a complexity similar to that of globular proteins. Therefore, repeat proteins allow one to quantify fundamental aspects of the biophysics of protein folding. One important feature of repeat proteins is the interfaces between the repeating units. In particular, the distribution of stabilities within and between the repeats was previously suggested to affect their folding characteristics. In this study, we explore how the interface affects folding kinetics and cooperativity by investigating two families of repeat proteins, namely, the Ankyrin and tetratricopeptide repeat proteins, which differ in the number of interfacial contacts that are formed between their units as well as in their folding behavior. By using simple topology-based models, we show that modulating the energetic strength of the interface relative to that of the repeat itself can drastically change the protein stability, folding rate, and cooperativity. By further dissecting the interfacial contacts into several subsets, we isolated the effects of each of these groups on folding kinetics. Our study highlights the importance of interface connectivity in determining the folding behavior.
Collapse
|
47
|
Inada H, Procko E, Sotomayor M, Gaudet R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012; 51:6195-206. [PMID: 22702953 PMCID: PMC3413242 DOI: 10.1021/bi300279b] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The TRPV4 calcium-permeable cation channel plays important
physiological
roles in osmosensation, mechanosensation, cell barrier formation,
and bone homeostasis. Recent studies reported that mutations in TRPV4,
including some in its ankyrin repeat domain (ARD), are associated
with human inherited diseases, including neuropathies and skeletal
dysplasias, probably because of the increased constitutive activity
of the channel. TRPV4 activity is regulated by the binding of calmodulin
and small molecules such as ATP to the ARD at its cytoplasmic N-terminus.
We determined structures of ATP-free and -bound forms of human TRPV4-ARD
and compared them with available TRPV-ARD structures. The third inter-repeat
loop region (Finger 3 loop) is flexible and may act as a switch to
regulate channel activity. Comparisons of TRPV-ARD structures also
suggest an evolutionary link between ARD structure and ATP binding
ability. Thermal stability analyses and molecular dynamics simulations
suggest that ATP increases stability in TRPV-ARDs that can bind ATP.
Biochemical analyses of a large panel of TRPV4-ARD mutations associated
with human inherited diseases showed that some impaired thermal stability
while others weakened ATP binding ability, suggesting molecular mechanisms
for the diseases.
Collapse
Affiliation(s)
- Hitoshi Inada
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
48
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|
49
|
Norberto DR, Vieira JM, de Souza AR, Bispo JAC, Bonafe CFS. Pressure- and Urea-Induced Denaturation of Bovine Serum Albumin: Considerations about Protein Heterogeneity. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojbiphy.2012.21002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 2011; 20:161-71. [PMID: 22178248 DOI: 10.1016/j.str.2011.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 10/14/2022]
Abstract
The high frequency of internal structural symmetry in common protein folds is presumed to reflect their evolutionary origins from the repetition and fusion of ancient peptide modules, but little is known about the primary sequence and physical determinants of this process. Unexpectedly, a sequence and structural analysis of symmetric subdomain modules within an abundant and ancient globular fold, the β-trefoil, reveals that modular evolution is not simply a relic of the ancient past, but is an ongoing and recurring mechanism for regenerating symmetry, having occurred independently in numerous existing β-trefoil proteins. We performed a computational reconstruction of a β-trefoil subdomain module and repeated it to form a newly three-fold symmetric globular protein, ThreeFoil. In addition to its near perfect structural identity between symmetric modules, ThreeFoil is highly soluble, performs multivalent carbohydrate binding, and has remarkably high thermal stability. These findings have far-reaching implications for understanding the evolution and design of proteins via subdomain modules.
Collapse
Affiliation(s)
- Aron Broom
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | | | | | | | |
Collapse
|