1
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Gwaltney SR, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305684. [PMID: 38247186 PMCID: PMC11209821 DOI: 10.1002/smll.202305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dhanush L Amarasekara
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Harley A Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
2
|
Notari S, Gambardella G, Vincenzoni F, Desiderio C, Castagnola M, Bocedi A, Ricci G. The unusual properties of lactoferrin during its nascent phase. Sci Rep 2023; 13:14113. [PMID: 37644064 PMCID: PMC10465537 DOI: 10.1038/s41598-023-41064-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Lactoferrin, a multifunctional iron-binding protein containing 16 disulfides, is actively studied for its antibacterial and anti-carcinogenic properties. However, scarce information is nowadays available about its oxidative folding starting from the reduced and unfolded status. This study discovers unusual properties when this protein is examined in its reduced molten globule-like conformation. Using kinetic, CD and fluorescence analyses together with mass spectrometry, we found that a few cysteines display astonishing hyper-reactivity toward different thiol reagents. In details, four cysteines (i.e. 668, 64, 512 and 424) display thousands of times higher reactivity toward GSSG but normal against other natural disulfides. The formation of these four mixed-disulfides with glutathione probably represents the first step of its folding in vivo. A widespread low pKa decreases the reactivity of other 14 cysteines toward GSSG limiting their involvement in the early phase of the oxidative folding. The origin of this hyper-reactivity was due to transient lactoferrin-GSSG complex, as supported by fluorescence experiments. Lactoferrin represents another disulfide containing protein in addition to albumin, lysozyme, ribonuclease, chymotrypsinogen, and trypsinogen which shows cysteines with an extraordinary and specific hyper-reactivity toward GSSG confirming the discovery of a fascinating new feature of proteins in their nascent phase.
Collapse
Affiliation(s)
- Sara Notari
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome, Italy
| | - Giorgia Gambardella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze biotecnologiche di Base, cliniche intensivologiche e perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome, Italy
| | - Giorgio Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
3
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548033. [PMID: 37461509 PMCID: PMC10350082 DOI: 10.1101/2023.07.06.548033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, using a comprehensive thermodynamic approach, along with supporting spectroscopic experiments, we develop a model for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, we find that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, support a highly solvated, disordered protein corona anchored at a small number of enthalpically-driven attachment sites. The scaling of the stoichiometry vs. nanoparticle size is consistent disordered polymer dimensions. Moreover, we find that proteins are destabilized less severely in the presence of larger nanoparticles, and this is supported by measurements of hydrophobic exposure, which becomes less pronounced at lower curvatures. Our observations hold for flat polystyrene surfaces, which, when controlled for total surface area, have the lowest hydrophobic exposure of all systems. Our model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P. Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | | | | | - Harley A. Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
4
|
Sun Q, He X, Fu Y. The "Beacon" Structural Model of Protein Folding: Application for Trp-Cage in Water. Molecules 2023; 28:5164. [PMID: 37446826 DOI: 10.3390/molecules28135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Protein folding is a process in which a polypeptide must undergo folding process to obtain its three-dimensional structure. Thermodynamically, it is a process of enthalpy to overcome the loss of conformational entropy in folding. Folding is primarily related to hydrophobic interactions and intramolecular hydrogen bondings. During folding, hydrophobic interactions are regarded to be the driving forces, especially in the initial structural collapse of a protein. Additionally, folding is guided by the strong interactions within proteins, such as intramolecular hydrogen bondings related to the α-helices and β-sheets of proteins. Therefore, a protein is divided into the folding key (FK) regions related to intramolecular hydrogen bondings and the non-folding key (non-FK) regions. Various conformations are expected for FK and non-FK regions. Different from non-FK regions, it is necessary for FK regions to form the specific conformations in folding, which are regarded as the necessary folding pathways (or "beacons"). Additionally, sequential folding is expected for the FK regions, and the intermediate state is found during folding. They are reflected on the local basins in the free energy landscape (FEL) of folding. To demonstrate the structural model, molecular dynamics (MD) simulations are conducted on the folding pathway of the TRP-cage in water.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xian He
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Yanfang Fu
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
6
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
8
|
Parray ZA, Shahid M, Islam A. Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions. Polymers (Basel) 2022; 14:polym14081539. [PMID: 35458289 PMCID: PMC9025146 DOI: 10.3390/polym14081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Proteins are indispensable to cellular communication and metabolism. The structure on which cells and tissues are developed is deciphered from proteins. To perform functions, proteins fold into a three-dimensional structural design, which is specific and fundamentally determined by their characteristic sequence of amino acids. Few of them have structural versatility, allowing them to adapt their shape to the task at hand. The intermediate states appear momentarily, while protein folds from denatured (D) ⇔ native (N), which plays significant roles in cellular functions. Prolific effort needs to be taken in characterizing these intermediate species if detected during the folding process. Protein folds into its native structure through definite pathways, which involve a limited number of transitory intermediates. Intermediates may be essential in protein folding pathways and assembly in some cases, as well as misfolding and aggregation folding pathways. These intermediate states help to understand the machinery of proper folding in proteins. In this review article, we highlight the various intermediate states observed and characterized so far under in vitro conditions. Moreover, the role and significance of intermediates in regulating the biological function of cells are discussed clearly.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-93-1281-2007
| |
Collapse
|
9
|
Rico-Pasto M, Zaltron A, Davis SJ, Frutos S, Ritort F. Molten globule-like transition state of protein barnase measured with calorimetric force spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2112382119. [PMID: 35271392 PMCID: PMC8931224 DOI: 10.1073/pnas.2112382119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
SignificanceUnderstanding the molecular forces driving the unfolded polypeptide chain to self-assemble into a functional native structure remains an open question. However, identifying the states visited during protein folding (e.g., the transition state between the unfolded and native states) is tricky due to their transient nature. Here, we introduce calorimetric force spectroscopy in a temperature jump optical trap to determine the enthalpy, entropy, and heat capacity of the transition state of protein barnase. We find that the transition state has the properties of a dry molten globule, that is, high free energy and low configurational entropy, being structurally similar to the native state. This experimental single-molecule study characterizes the thermodynamic properties of the transition state in funneled energy landscapes.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, 08028 Barcelona, Spain
| | - Annamaria Zaltron
- Physics and Astronomy Department, University of Padova, 35131 Padova, Italy
| | - Sebastian J. Davis
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
11
|
Two energy barriers and a transient intermediate state determine the unfolding and folding dynamics of cold shock protein. Commun Chem 2021; 4:156. [PMID: 36697724 PMCID: PMC9814876 DOI: 10.1038/s42004-021-00592-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 01/28/2023] Open
Abstract
Cold shock protein (Csp) is a typical two-state folding model protein which has been widely studied by biochemistry and single molecule techniques. Recently two-state property of Csp was confirmed by atomic force microscopy (AFM) through direct pulling measurement, while several long-lifetime intermediate states were found by force-clamp AFM. We systematically studied force-dependent folding and unfolding dynamics of Csp using magnetic tweezers with intrinsic constant force capability. Here we report that Csp mostly folds and unfolds with a single step over force range from 5 pN to 50 pN, and the unfolding rates show different force sensitivities at forces below and above ~8 pN, which determines a free energy landscape with two barriers and a transient intermediate state between them along one transition pathway. Our results provide a new insight on protein folding mechanism of two-state proteins.
Collapse
|
12
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
13
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
14
|
Hniopek J, Bocklitz T, Schmitt M, Popp J. Probing Protein Secondary Structure Influence on Active Centers with Hetero Two-Dimensional Correlation (Resonance) Raman Spectroscopy: A Demonstration on Cytochrome C. APPLIED SPECTROSCOPY 2021; 75:1043-1052. [PMID: 34242104 PMCID: PMC8320570 DOI: 10.1177/00037028211028916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The functionality of active centers in proteins is governed by the secondary and higher structure of proteins which often lead to structures in the active center that are different from the structures found in protein-free models of the active center. To elucidate this structure-function relationship, it is therefore necessary to investigate both the protein structure and the local structure of the active center. In this work, we investigate the application of hetero (resonance) Raman two-dimensional correlation spectroscopy (2D-COS) to this problem. By employing a combination of near-infrared-Fourier transform-Raman- and vis-resonance Raman spectroscopy, we could show that this combination of techniques is able to directly probe the structure-function relationship of proteins. We were able to correlate the transition of the heme center in cytochrome c from low to high spin with changes in the secondary structure with the above mentioned two spectroscopic in situ techniques and without sample preparation. Thereby, we were able to reveal that the combination of a spectroscopic method to selectively observe the active center with a technique that monitors the whole system offers a promising toolkit to investigate the structure-function relationship of proteins with photoactive centers in general.
Collapse
Affiliation(s)
- Julian Hniopek
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Bocklitz
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Department of Photonic Data Science, Leibniz-Institute of Photonic Technologies, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Department of Spectroscopy/Imaging, Leibniz-Institute of Photonic Technologies, Jena, Germany
- Institute of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
15
|
He J, Zong Y, Wang R, Feng W, Chen Z, Wang T. Simultaneous Refolding of Wheat Proteins and Soy Proteins Forming Novel Antibiotic Superstructures by Carrying Eugenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7698-7708. [PMID: 34180673 DOI: 10.1021/acs.jafc.1c01210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Essential oils (EOs) are natural antibiotic chemicals for food preservation; however, their use is challenging due to low solubility and high volatility. In this study, hybrid protein particles with hydrophobic interiors and colloidal stability were designed to carry hydrophobic eugenol with enhanced storage and thermal stability. Stable self-emulsified delivery systems (SEDSs) were facilitated by simply mixing eugenol with wheat proteins (WPs) and soy proteins (SPs) at pH 12 prior to neutralization. This strategy enabled protein co-folding that permitted the entrapment of eugenol with a high entrapment capacity of ca. 500 mg/g protein. Control over the SP/WP ratios contributed to tunable microstructural conformations, which in turn modulated the stability of SEDSs with prominent bacteriostatic properties against fungi when applied to rice cakes during long-term storage. These results underline the feasibility of properly utilizing EOs by binary protein structures, where the antibacterial properties of EOs could be manipulated coherently.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yucheng Zong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Cattani G, Bocedi A, Gambardella G, Iavarone F, Boroumand M, Castagnola M, Ricci G. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. FEBS J 2021; 288:6003-6018. [PMID: 33876866 DOI: 10.1111/febs.15886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
An enigmatic and never described hyper-reactivity of most of the cysteines resident in the reduced, molten globule-like intermediate of a few proteins has been recently discovered. In particular, all ten cysteines of chymotrypsinogen showed hundred times increased reactivity against hydrophobic reagents. A single cysteine (Cys1) was also found thousand times more reactive toward GSSG, making speculate that a single glutathionylation could represent the primordial event of its oxidative folding. In the present study, we compare these kinetic properties with those present in trypsinogen taken in its reduced, molten globule-like intermediate and identify the origin of these unusual properties. Despite the divergent evolution of these two proteins, the different amount of disulfides and the very different 3D localization of three disulfides, their hyper-reactivity toward hydrophobic thiol reagents and disulfides is very similar. Mass spectrometry identifies two cysteines in trypsinogen, Cys148 and Cys197, 800 times more reactive toward GSSG than an unperturbed protein cysteine. These results point toward a stringent and accurate preservation of these peculiar kinetic properties during a divergent evolution suggesting some important role, which at the present can only be hypothesized. Similar extraordinary hyper-reactivity has been found also in albumin, ribonuclease, and lysozyme confirming that it cannot be considered a kinetic singularity of a single protein. Interestingly, the very flexible and fluctuating structures like those typical of the molten globule status prove capable of enabling sophisticated actions typical of enzymes such as binding to GSSG with relevant specificity and high affinity (KD = 0.4 mm) and accelerating the reaction of its cysteines by thousands of times.
Collapse
Affiliation(s)
- Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| |
Collapse
|
17
|
Hilburg SL, Ruan Z, Xu T, Alexander-Katz A. Behavior of Protein-Inspired Synthetic Random Heteropolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shayna L. Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhiyuan Ruan
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Tsinghua−Berkeley Shenzhen Institute, University of California Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu CX, Chen H. Hidden Intermediate State and Second Pathway Determining Folding and Unfolding Dynamics of GB1 Protein at Low Forces. PHYSICAL REVIEW LETTERS 2020; 125:198101. [PMID: 33216575 DOI: 10.1103/physrevlett.125.198101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy experiments found that GB1, a typical two-state model protein used for study of folding and unfolding dynamics, can sustain forces of more than 100 pN, but its response to low forces still remains unclear. Using ultrastable magnetic tweezers, we discovered that GB1 has an unexpected nonmonotonic force-dependent unfolding rate at 5-160 pN, from which a free energy landscape with two main barriers and a hidden intermediate state was constructed. A model combining two separate models by Dudko et al. with two pathways between the native state and this intermediate state is proposed to rebuild the unfolding dynamics over the full experimental force range. One candidate of this transient intermediate state is the theoretically proposed molten globule state with a loosely collapsed conformation, which might exist universally in the folding and unfolding processes of two-state proteins.
Collapse
Affiliation(s)
- Zilong Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Haiyan Hong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Guohua Yuan
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hui Qian
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Bing Li
- National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chen-Xu Wu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
|
20
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Stellwagen E, Stellwagen NC. Electrophoretic Mobility of DNA in Solutions of High Ionic Strength. Biophys J 2020; 118:2783-2789. [PMID: 32445623 DOI: 10.1016/j.bpj.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
The free-solution mobilities of small single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) have been measured by capillary electrophoresis in solutions containing 0.01-1.0 M sodium acetate. The mobility of dsDNA is greater than that of ssDNA at all ionic strengths because of the greater charge density of dsDNA. The mobilities of both ssDNA and dsDNA decrease with increasing ionic strength until approaching plateau values at ionic strengths greater than ∼0.6 M. Hence, ssDNA and dsDNA appear to interact in a similar manner with the ions in the background electrolyte. For dsDNA, the mobilities predicted by the Manning electrophoresis equation are reasonably close to the observed mobilities, using no adjustable parameters, if the average distance between phosphate residues (the b parameter) is taken to be 1.7 Å. For ssDNA, the predicted mobilities are close to the observed mobilities at ionic strengths ≤0.01 M if the b-value is taken to be 4.1 Å. The predicted and observed mobilities diverge strongly at higher ionic strengths unless the b-value is reduced significantly. The results suggest that ssDNA strands exist as an ensemble of relatively compact conformations at high ionic strengths, with b-values corresponding to the relatively short phosphate-phosphate distances through space.
Collapse
|
22
|
Singh AK, Balchin D, Imamoglu R, Hayer-Hartl M, Hartl FU. Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF. J Mol Biol 2020; 432:2304-2318. [PMID: 32135190 DOI: 10.1016/j.jmb.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (β/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| |
Collapse
|
23
|
Wang T, Yang Y, Feng W, Wang R, Chen Z. Co-folding of hydrophobic rice proteins and shellac in hydrophilic binary microstructures for cellular uptake of apigenin. Food Chem 2020; 309:125695. [DOI: 10.1016/j.foodchem.2019.125695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
|
24
|
Structure of an Unfolding Intermediate of an RRM Domain of ETR-3 Reveals Its Native-like Fold. Biophys J 2020; 118:352-365. [PMID: 31866002 DOI: 10.1016/j.bpj.2019.11.3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022] Open
Abstract
Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition. The protein unfolds completely at 10 M urea but retains residual secondary structural propensities with restricted motion. Here, we describe the native state, observable intermediate state, and unfolded state for ETR-3 RRM-3, which has canonical RRM fold. These observations can shed more light on unfolding events for RRM-containing proteins.
Collapse
|
25
|
Parray ZA, Ahmad F, Alajmi MF, Hussain A, Hassan MI, Islam A. Formation of molten globule state in horse heart cytochrome c under physiological conditions: Importance of soft interactions and spectroscopic approach in crowded milieu. Int J Biol Macromol 2020; 148:192-200. [PMID: 31945437 DOI: 10.1016/j.ijbiomac.2020.01.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 11/17/2022]
Abstract
To understand protein folding problem under physiological condition, usually taken as dilute aqueous buffer at pH 7.0 and 25 °C, knowledge of properties of folding intermediates is important, such as molten globule (MG). We observed that polyethylene glycol 400 Da (PEG 400) induces molten globule state conformation in cytochrome c at pH 7.0 and 25 °C. This PEG-induced MG state has: (i) native tertiary structure partially perturbed, (ii) unperturbed native secondary structure, (iii) newly exposed hydrophobic patches, and (iv) has 1.58 times more hydrodynamic volume than that of the native protein. Isothermal titration calorimetry and docking studies showed specific binding between PEG 400 and cytochrome c. The study delineates that PEG-protein interactions are more complex than the excluded-volume. The soft interactions need to be seriously studied in crowding milieu that leads to destabilization of protein and overcome stabilizing exclusion volume effect. This study not only can help in unraveling the mystery of steps involved in the proper folding of proteins to solve the massively complicated problems of protein folding but also provides novel insights towards importance of structural change in proteins inside cell where intermediate states of protein import-export easily via membranes rather than native form of proteins.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
26
|
He J, Chen Z, Gu Y, Li Y, Wang R, Gao Y, Feng W, Wang T. Hydrophilic co-assemblies of two hydrophobic biomolecules improving the bioavailability of silybin. Food Funct 2020; 11:10828-10838. [DOI: 10.1039/d0fo01882a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefitting from the versatility and biocompatibility of food sourced materials, the construction of hybrid structures via their molecular interplay generates novel platforms with unexpected properties.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yuan Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education; National Engineering Laboratory for Cereal Fermentation Technology; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology; and School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
27
|
Uversky VN, Finkelstein AV. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019; 9:E842. [PMID: 31817975 PMCID: PMC6995567 DOI: 10.3390/biom9120842] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand, intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface, and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils, and intermolecular liquid-liquid or liquid-gel phase transitions associated with the biogenesis of membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase behavior of protein molecules and their ensembles, and provides a description of the major physical principles governing intramolecular and intermolecular phase transitions in protein solutions.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow, Russia
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
- Bioltechnogy Department, Lomonosov Moscow State University, 142290 Pushchino, Moscow, Russia
| |
Collapse
|
28
|
Škrbić T, Hoang TX, Maritan A, Banavar JR, Giacometti A. Local symmetry determines the phases of linear chains: a simple model for the self-assembly of peptides. SOFT MATTER 2019; 15:5596-5613. [PMID: 31259346 DOI: 10.1039/c9sm00851a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and β-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted.
Collapse
Affiliation(s)
- Tatjana Škrbić
- Department of Physics and Institute for Theoretical Science, 1274 University of Oregon, Eugene, OR 97403-1274, USA. and Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy.
| | - Trinh Xuan Hoang
- Center for Computational Physics Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan St., Hanoi, Vietnam.
| | - Amos Maritan
- Dipartimento di Fisica e Astronomia, Università di Padova, and INFN, via Marzolo 8, I-35131 Padova, Italy.
| | - Jayanth R Banavar
- Department of Physics and Institute for Theoretical Science, 1274 University of Oregon, Eugene, OR 97403-1274, USA.
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy.
| |
Collapse
|
29
|
Baliga C, Selmke B, Worobiew I, Borbat P, Sarma SP, Trommer WE, Varadarajan R, Aghera N. CcdB at pH 4 Forms a Partially Unfolded State with a Dry Core. Biophys J 2019; 116:807-817. [PMID: 30777307 DOI: 10.1016/j.bpj.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions. CcdB remains dimeric at pH 4 as shown by multiple techniques, such as size-exclusion chromatography coupled to multiangle light scattering, analytical ultracentrifugation, and electron paramagnetic resonance. Comparative analysis using two-dimensional 15N-1H heteronuclear single-quantum coherence NMR spectra of CcdB at pH 4 and 7 suggests that the pH 4 and native state have similar but nonidentical structures. Hydrogen-exchange-mass-spectrometry studies demonstrate that the pH 4 state has substantial but anisotropic changes in local stability with core regions close to the dimer interface showing lower protection but some other regions showing higher protection relative to pH 7.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Benjamin Selmke
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Irina Worobiew
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Peter Borbat
- Department of Chemistry and Chemical Biology, ACERT National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
30
|
Mishra P, Jha SK. Slow Motion Protein Dance Visualized Using Red-Edge Excitation Shift of a Buried Fluorophore. J Phys Chem B 2019; 123:1256-1264. [PMID: 30640479 DOI: 10.1021/acs.jpcb.8b11151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been extremely challenging to detect protein structures with a dynamic core, such as dry molten globules, that remain in equilibrium with the tightly packed native (N) state and that are important for a myriad of entropy-driven protein functions. Here, we detect the higher entropy conformations of a human serum protein, using red-edge excitation shift experiments. We covalently introduced a fluorophore inside the protein core and observed that in a subset of native population, the side chains of the polar and buried residues have different spatial arrangements than the mean population and that they solvate the fluorophore on a timescale much slower than the nanosecond timescale of fluorescence. Our results provide direct evidence for the dense fluidity of protein core and show that alternate side-chain packing arrangements exist in the core that might be important for multiple binding functions of this protein.
Collapse
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| |
Collapse
|
31
|
Houwman JA, Westphal AH, Visser AJWG, Borst JW, van Mierlo CPM. Concurrent presence of on- and off-pathway folding intermediates of apoflavodoxin at physiological ionic strength. Phys Chem Chem Phys 2018; 20:7059-7072. [PMID: 29473921 DOI: 10.1039/c7cp07922b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavodoxins have a protein topology that can be traced back to the universal ancestor of the three kingdoms of life. Proteins with this type of architecture tend to temporarily misfold during unassisted folding to their native state and form intermediates. Several of these intermediate species are molten globules (MGs), which are characterized by a substantial amount of secondary structure, yet without the tertiary side-chain packing of natively folded proteins. An off-pathway MG is formed at physiological ionic strength in the case of the F44Y variant of Azotobacter vinelandii apoflavodoxin (i.e., flavodoxin without flavin mononucleotide (FMN)). Here, we show that at this condition actually two folding species of this apoprotein co-exist at equilibrium. These species were detected by using a combination of FMN fluorescence quenching upon cofactor binding to the apoprotein and of polarized time-resolved tryptophan fluorescence spectroscopy. Besides the off-pathway MG, we observe the simultaneous presence of an on-pathway folding intermediate, which is native-like. Presence of concurrent intermediates at physiological ionic strength enables future exploration of how aspects of the cellular environment, like for example involvement of chaperones, affect these species.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Metastable states of HYPK-UBA domain's seeds drive the dynamics of its own aggregation. Biochim Biophys Acta Gen Subj 2018; 1862:2846-2861. [DOI: 10.1016/j.bbagen.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022]
|
33
|
Yang F, Wang H, Logan DT, Mu X, Danielsson J, Oliveberg M. The Cost of Long Catalytic Loops in Folding and Stability of the ALS-Associated Protein SOD1. J Am Chem Soc 2018; 140:16570-16579. [PMID: 30359015 DOI: 10.1021/jacs.8b08141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A conspicuous feature of the amyotrophic lateral sclerosis (ALS)-associated protein SOD1 is that its maturation into a functional enzyme relies on local folding of two disordered loops into a catalytic subdomain. To drive the disorder-to-order transition, the protein employs a single Zn2+ ion. The question is then if the entropic penalty of maintaining such disordered loops in the immature apoSOD1 monomer is large enough to explain its unusually low stability, slow folding, and pathological aggregation in ALS. To find out, we determined the effects of systematically altering the SOD1-loop lengths by protein redesign. The results show that the loops destabilize the apoSOD1 monomer by ∼3 kcal/mol, rendering the protein marginally stable and accounting for its aggregation behavior. Yet the effect on the global folding kinetics remains much smaller with a transition-state destabilization of <1 kcal/mol. Notably, this 1/3 transition-state to folded-state stability ratio provides a clear-cut example of the enigmatic disagreement between the Leffler α value from loop-length alterations (typically 1/3) and the "standard" reaction coordinates based on solvent perturbations (typically >2/3). Reconciling the issue, we demonstrate that the disagreement disappears when accounting for the progressive loop shortening that occurs along the folding pathway. The approach assumes a consistent Flory loop entropy scaling factor of c = 1.48 for both equilibrium and kinetic data and has the added benefit of verifying the tertiary interactions of the folding nucleus as determined by phi-value analysis. Thus, SOD1 not only represents a case where evolution of key catalytic function has come with the drawback of a destabilized apo state but also stands out as a well-suited model system for exploring the physicochemical details of protein self-organization.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Huabing Wang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Derek T Logan
- Division of Biochemistry & Structural Biology, Department of Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences , Stockholm University , S-106 91 Stockholm , Sweden
| |
Collapse
|
34
|
Abstract
Protein homeostasis, or proteostasis, is required for proper cell function and thus must be
under tight maintenance in all circumstances. In crowded cell conditions, protein folding is sometimes
unfavorable, and this condition is worsened during stress situations. Cells cope with such stress
through the use of a Protein Quality Control system, which uses molecular chaperones and heat shock
proteins as its major players. This system aids with folding, avoiding misfolding and/or reversing aggregation.
A pivotal regulator of the response to heat stress is Heat Shock Factor, which is recruited to
the promoters of the chaperone genes, inducting their expression. This mini review aims to cover our
general knowledge on the structure and function of this factor.
Collapse
Affiliation(s)
- Natália Galdi Quel
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
35
|
Najor M, Leverson BD, Goossens JL, Kothawala S, Olsen KW, Mota de Freitas D. Folding of G α Subunits: Implications for Disease States. ACS OMEGA 2018; 3:12320-12329. [PMID: 30411001 PMCID: PMC6210069 DOI: 10.1021/acsomega.8b01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
G-proteins play a central role in signal transduction by fluctuating between "on" and "off" phases that are determined by a conformational change. cAMP is a secondary messenger whose formation is inhibited or stimulated by activated Giα1 or Gsα subunit. We used tryptophan fluorescence, UV/vis spectrophotometry, and circular dichroism to probe distinct structural features within active and inactive conformations from wild-type and tryptophan mutants of Giα1 and Gsα. For all proteins studied, we found that the active conformations were more stable than the inactive conformations, and upon refolding from higher temperatures, activated wild-type subunits recovered significantly more native structure. We also observed that the wild-type subunits partially regained the ability to bind nucleotide. The increased compactness observed upon activation was consistent with the calculated decrease in solvent accessible surface area for wild-type Giα1. We found that as the temperature increased, Gα subunits, which are known to be rich in α-helices, converted to proteins with increased content of β-sheets and random coil. For active conformations from wild-type and tryptophan mutants of Giα1, melting temperatures indicated that denaturation starts around hydrophobic tryptophan microenvironments and then radiates toward tyrosine residues at the surface, followed by alteration of the secondary structure. For Gsα, however, disruption of secondary structure preceded unfolding around tyrosine residues. In the active conformations, a π-cation interaction between essential arginine and tryptophan residues, which was characterized by a fluorescence-measured red shift and modeled by molecular dynamics, was also shown to be a contributor to the stability of Gα subunits. The folding properties of Gα subunits reported here are discussed in the context of diseases associated to G-proteins.
Collapse
|
36
|
Škrbić T, Hoang TX, Maritan A, Banavar JR, Giacometti A. The elixir phase of chain molecules. Proteins 2018; 87:176-184. [PMID: 30371948 DOI: 10.1002/prot.25619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022]
Abstract
A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of matter transcends the microscopic material properties. For example, materials in the liquid phase have certain common properties independent of the chemistry of the constituents: liquids take the shape of the container; they flow; and they can be poured-alcohol, oil, and water as well as a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here, we identify a hitherto unstudied "phase" of matter, the elixir phase, in a simple model of a polymeric chain whose backbone has the correct local cylindrical symmetry induced by the tangent to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side spheres along the negative normal direction, as in proteins. This phase, nestled between other phases, has multiple ground states made up of building blocks of helices and almost planar sheets akin to protein native folds. We discuss the similarities of this "phase" of a finite size system to the liquid crystal and spin glass phases. Our findings are relevant for understanding proteins; the creation of novel bioinspired nanomachines; and also may have implications for life elsewhere in the cosmos.
Collapse
Affiliation(s)
- Tatjana Škrbić
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Venezia Mestre, Italy.,Department of Physics and Institute for Theoretical Science, University of Oregon, Eugene, Oregon
| | - Trinh X Hoang
- Center for Computational Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Amos Maritan
- Dipartimento di Fisica e Astronomia, Università di Padova, and INFN, Padova, Italy
| | - Jayanth R Banavar
- Department of Physics and Institute for Theoretical Science, University of Oregon, Eugene, Oregon
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, Venezia Mestre, Italy
| |
Collapse
|
37
|
Fernández-Zapata J, Pérez-Castaño R, Aranda J, Colizzi F, Polanco MC, Orozco M, Padmanabhan S, Elías-Arnanz M. Plasticity in oligomerization, operator architecture, and DNA binding in the mode of action of a bacterial B 12-based photoreceptor. J Biol Chem 2018; 293:17888-17905. [PMID: 30262667 DOI: 10.1074/jbc.ra118.004838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Indexed: 11/06/2022] Open
Abstract
Newly discovered bacterial photoreceptors called CarH sense light by using 5'-deoxyadenosylcobalamin (AdoCbl). They repress their own expression and that of genes for carotenoid synthesis by binding in the dark to operator DNA as AdoCbl-bound tetramers, whose light-induced disassembly relieves repression. High-resolution structures of Thermus thermophilus CarHTt have provided snapshots of the dark and light states and have revealed a unique DNA-binding mode whereby only three of four DNA-binding domains contact an operator comprising three tandem direct repeats. To gain further insights into CarH photoreceptors and employing biochemical, spectroscopic, mutational, and computational analyses, here we investigated CarHBm from Bacillus megaterium We found that apoCarHBm, unlike monomeric apoCarHTt, is an oligomeric molten globule that forms DNA-binding tetramers in the dark only upon AdoCbl binding, which requires a conserved W-X 9-EH motif. Light relieved DNA binding by disrupting CarHBm tetramers to dimers, rather than to monomers as with CarHTt CarHBm operators resembled that of CarHTt, but were larger by one repeat and overlapped with the -35 or -10 promoter elements. This design persisted in a six-repeat, multipartite operator we discovered upstream of a gene encoding an Spx global redox-response regulator whose photoregulated expression links photooxidative and general redox responses in B. megaterium Interestingly, CarHBm recognized the smaller CarHTt operator, revealing an adaptability possibly related to the linker bridging the DNA- and AdoCbl-binding domains. Our findings highlight a remarkable plasticity in the mode of action of B12-based CarH photoreceptors, important for their biological functions and development as optogenetic tools.
Collapse
Affiliation(s)
- Jesús Fernández-Zapata
- From the Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100
| | - Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona
| | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona; Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona; Department of Biochemistry and Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - S Padmanabhan
- From the Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100.
| |
Collapse
|
38
|
Marinelli P, Navarro S, Baño-Polo M, Morel B, Graña-Montes R, Sabe A, Canals F, Fernandez MR, Conejero-Lara F, Ventura S. Global Protein Stabilization Does Not Suffice to Prevent Amyloid Fibril Formation. ACS Chem Biol 2018; 13:2094-2105. [PMID: 29966079 DOI: 10.1021/acschembio.8b00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations or cellular conditions that destabilize the native protein conformation promote the population of partially unfolded conformations, which in many cases assemble into insoluble amyloid fibrils, a process associated with multiple human pathologies. Therefore, stabilization of protein structures is seen as an efficient way to prevent misfolding and subsequent aggregation. This has been suggested to be the underlying reason why proteins living in harsh environments, such as the extracellular space, have evolved disulfide bonds. The effect of protein disulfides on the thermodynamics and kinetics of folding has been extensively studied, but much less is known on its effect on aggregation reactions. Here, we designed a single point mutation that introduces a disulfide bond in the all-α FF domain, a protein that, despite being devoid of preformed β-sheets, forms β-sheet-rich amyloid fibrils. The novel and unique covalent bond in the FF domain dramatically increases its thermodynamic stability and folding speed. Nevertheless, these optimized properties cannot counteract the inherent aggregation propensity of the protein, thus indicating that a high global protein stabilization does not suffice to prevent amyloid formation unless it contributes to hide from exposure the specific regions that nucleate the aggregation reaction.
Collapse
Affiliation(s)
- Patrizia Marinelli
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Ricardo Graña-Montes
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Anna Sabe
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Francesc Canals
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08135 Barcelona, Spain
| | - Maria Rosario Fernandez
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
39
|
Dijkstra M, Fokkink W, Heringa J, van Dijk E, Abeln S. The characteristics of molten globule states and folding pathways strongly depend on the sequence of a protein. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1496290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M.J.J. Dijkstra
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W.J. Fokkink
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J. Heringa
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - E. van Dijk
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S. Abeln
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Hanazono Y, Takeda K, Miki K. Co-translational folding of α-helical proteins: structural studies of intermediate-length variants of the λ repressor. FEBS Open Bio 2018; 8:1312-1321. [PMID: 30087834 PMCID: PMC6070647 DOI: 10.1002/2211-5463.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Nascent polypeptide chains fold cotranslationally, but the atomic‐level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate‐length variants of the λ repressor N‐terminal domain. Although the ranges of helical regions of the half‐length variant were almost identical to those of the full‐length protein, the relative orientations of these helices in the intermediate‐length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. Database Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Japan.,Present address: Graduate School of Information Sciences Tohoku University Aoba-ku, Sendai 980-8579 Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Japan
| |
Collapse
|
41
|
Pedrote MM, de Oliveira GAP, Felix AL, Mota MF, Marques MDA, Soares IN, Iqbal A, Norberto DR, Gomes AMO, Gratton E, Cino EA, Silva JL. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem 2018; 293:11374-11387. [PMID: 29853637 PMCID: PMC6065177 DOI: 10.1074/jbc.ra118.003285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.
Collapse
Affiliation(s)
- Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| | - Adriani L Felix
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Michelle F Mota
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Douglas R Norberto
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, California 92697-2717
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| |
Collapse
|
42
|
Abstract
Protein folding begins co-translationally within the restricted space of the peptide exit tunnel of the ribosome. We have already shown that the N-terminal α-helical domain of the universally conserved N5-glutamine methyltransferase HemK is compacted within the exit tunnel and rearranges into the native fold upon emerging from the ribosome. However, the exact folding pathway of the domain remained unclear. Here we analyzed the rapid kinetics of translation and folding monitored by fluorescence resonance energy transfer and photoinduced electron transfer using global fitting to a model for synthesis of the 112-amino acid HemK fragment. Our results suggest that the co-translational folding trajectory of HemK starts within the tunnel and passes through four kinetically distinct folding intermediates that may represent sequential docking of helices to a growing compact core. The kinetics of the process is defined entirely by translation. The results show how analysis of ensemble kinetic data can be used to dissect complex trajectories of rapid conformational rearrangements in multicomponent systems.
Collapse
Affiliation(s)
- Evan Mercier
- Department of Physical Biochemistry , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , D-37077 Goettingen , Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry , Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , D-37077 Goettingen , Germany
| |
Collapse
|
43
|
Yue Z, Shen J. pH-Dependent cooperativity and existence of a dry molten globule in the folding of a miniprotein BBL. Phys Chem Chem Phys 2018; 20:3523-3530. [PMID: 29336449 DOI: 10.1039/c7cp08296g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to describe the pH profile of the folding cooperativity of a miniprotein BBL, which has drawn intense debate in the past. Our data reconciled the two opposing hypotheses (downhill vs. two-state) and uncovered a sparsely populated unfolding intermediate. As pH is lowered from 7 to 5, the folding barrier vanishes. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via an intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
44
|
Habjanič J, Zerbe O, Freisinger E. A histidine-rich Pseudomonas metallothionein with a disordered tail displays higher binding capacity for cadmium than zinc. Metallomics 2018; 10:1415-1429. [DOI: 10.1039/c8mt00193f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The NMR solution structure of a Pseudomonas metallothionein reveals a different binding capacity for ZnII and CdII ions that results in two novel metal-cluster topologies. Replacement of a non-coordinating residue by histidine decreases the kinetic lability of the cluster. All three structures reported show an identical protein fold.
Collapse
Affiliation(s)
- Jelena Habjanič
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Oliver Zerbe
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Eva Freisinger
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| |
Collapse
|
45
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
46
|
Singh MI, Jain V. Identification and Characterization of an Inside-Out Folding Intermediate of T4 Phage Sliding Clamp. Biophys J 2017; 113:1738-1749. [PMID: 29045868 DOI: 10.1016/j.bpj.2017.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022] Open
Abstract
Protein folding process involves formation of transiently occurring intermediates that are difficult to isolate and characterize. It is both necessary and interesting to characterize the structural conformations adopted by these intermediates, also called molten globules (MG), to understand protein folding. Here, we investigated the equilibrium (un)folding intermediate state of T4 phage gene product 45 (gp45, also known as DNA polymerase processivity factor or sliding clamp) obtained during chemical denaturation. We show that gp45 undergoes substantial conformational rearrangement during unfolding and forms an expanded dry-MG. By monitoring the fluorescence of tryptophans that were strategically introduced at various sites, we demonstrate that the urea-treated molecule has its surface residues flip inside the core, and closely placed residues move farther. We were also able to isolate and purify the MG form of gp45 in native condition (i.e., nondenaturing buffer, at physiological pH and temperature); characteristics of this purified molecule substantially match with urea-treated wild-type gp45. To the best of our knowledge, this is one of the few reports that demonstrate the isolation and purification of a protein folding intermediate in native condition. We believe that our work not only allows us to dissect the process of protein folding, but will also help in the designing of folding inhibitors against sliding clamps to treat a wide variety of diseases from bacterial infection to cancer, due to the vast presence of clamps in all the domains of life.
Collapse
Affiliation(s)
- Manika Indrajit Singh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
| |
Collapse
|
47
|
Mishra P, Jha SK. An Alternatively Packed Dry Molten Globule-like Intermediate in the Native State Ensemble of a Multidomain Protein. J Phys Chem B 2017; 121:9336-9347. [DOI: 10.1021/acs.jpcb.7b07032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
48
|
The N-Terminal Domain of Ribosomal Protein L9 Folds via a Diffuse and Delocalized Transition State. Biophys J 2017; 112:1797-1806. [PMID: 28494951 DOI: 10.1016/j.bpj.2017.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
The N-terminal domain of L9 (NTL9) is a 56-residue mixed α-β protein that lacks disulfides, does not bind cofactors, and folds reversibly. NTL9 has been widely used as a model system for experimental and computational studies of protein folding and for investigations of the unfolded state. The role of side-chain interactions in the folding of NTL9 is probed by mutational analysis. ϕ-values, which represent the ratio of the change in the log of the folding rate upon mutation to the change in the log of the equilibrium constant for folding, are reported for 25 point mutations and 15 double mutants. All ϕ-values are small, with an average over all sites probed of only 0.19 and a largest value of 0.4. The effect of modulating unfolded-state interactions is studied by measuring ϕ-values in second- site mutants and under solvent conditions that perturb unfolded-state energetics in a defined way. Neither of these alterations significantly affects the distribution of ϕ-values. The results, combined with those of earlier studies that probe the role of hydrogen-bond formation in folding and the burial of surface area, reveal that the transition state for folding contains extensive backbone structure and buries a significant fraction of hydrophobic surface area, but lacks well developed side-chain-side-chain interactions. The folding transition state for NTL9 does not contain a specific "nucleus" consisting of a few key residues; rather, it involves extensive backbone hydrogen bonding and partially formed structure delocalized over almost the entire domain. The potential generality of these observations is discussed.
Collapse
|
49
|
Exploring the Denatured State Ensemble by Single-Molecule Chemo-Mechanical Unfolding: The Effect of Force, Temperature, and Urea. J Mol Biol 2017; 430:450-464. [PMID: 28782558 DOI: 10.1016/j.jmb.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions.
Collapse
|
50
|
Vavra KC, Xia Y, Rock RS. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection. Biophys J 2017; 110:2517-2527. [PMID: 27276269 DOI: 10.1016/j.bpj.2016.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability.
Collapse
Affiliation(s)
- Kevin C Vavra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|