1
|
Raab N, Zeh N, Kretz R, Weiß L, Stadermann A, Lindner B, Fischer S, Stoll D, Otte K. Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells. Metab Eng 2024; 83:110-122. [PMID: 38561148 DOI: 10.1016/j.ymben.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Especially for the production of artificial, difficult to express molecules a further development of the CHO production cell line is required to keep pace with the continuously increasing demands. However, the identification of novel targets for cell line engineering to improve CHO cells is a time and cost intensive process. Since plasma cells are evolutionary optimized for a high antibody expression in mammals, we performed a comprehensive multi-omics comparison between CHO and plasma cells to exploit optimized cellular production traits. Comparing the transcriptome, proteome, miRNome, surfaceome and secretome of both cell lines identified key differences including 392 potential overexpression targets for CHO cell engineering categorized in 15 functional classes like transcription factors, protein processing or secretory pathway. In addition, 3 protein classes including 209 potential knock-down/out targets for CHO engineering were determined likely to affect aggregation or proteolysis. For production phenotype engineering, several of these novel targets were successfully applied to transient and transposase mediated overexpression or knock-down strategies to efficiently improve productivity of CHO cells. Thus, substantial improvement of CHO productivity was achieved by taking nature as a blueprint for cell line engineering.
Collapse
Affiliation(s)
- Nadja Raab
- Biberach University of Applied Sciences, Germany.
| | - Nikolas Zeh
- Biberach University of Applied Sciences, Germany; Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Robin Kretz
- Hochschule Albstadt Sigmaringen, Germany; NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Linus Weiß
- Biberach University of Applied Sciences, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Benjamin Lindner
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dieter Stoll
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Kerstin Otte
- Biberach University of Applied Sciences, Germany
| |
Collapse
|
2
|
Roel‐Touris J, Carcelén L, Marcos E. The structural landscape of the immunoglobulin fold by large-scale de novo design. Protein Sci 2024; 33:e4936. [PMID: 38501461 PMCID: PMC10949314 DOI: 10.1002/pro.4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
De novo designing immunoglobulin-like frameworks that allow for functional loop diversification shows great potential for crafting antibody-like scaffolds with fully customizable structures and functions. In this work, we combined de novo parametric design with deep-learning methods for protein structure prediction and design to explore the structural landscape of 7-stranded immunoglobulin domains. After screening folding of nearly 4 million designs, we have assembled a structurally diverse library of ~50,000 immunoglobulin domains with high-confidence AlphaFold2 predictions and structures diverging from naturally occurring ones. The designed dataset enabled us to identify structural requirements for the correct folding of immunoglobulin domains, shed light on β-sheet-β-sheet rotational preferences and how these are linked to functional properties. Our approach eliminates the need for preset loop conformations and opens the route to large-scale de novo design of immunoglobulin-like frameworks.
Collapse
Affiliation(s)
- Jorge Roel‐Touris
- Protein Design and Modeling Lab, Department of Structural and Molecular BiologyMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Lourdes Carcelén
- Protein Design and Modeling Lab, Department of Structural and Molecular BiologyMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Enrique Marcos
- Protein Design and Modeling Lab, Department of Structural and Molecular BiologyMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
3
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble functional analogues of integral membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540044. [PMID: 38496615 PMCID: PMC10942269 DOI: 10.1101/2023.05.09.540044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
|
4
|
Nervig CS, Gustat JR, Owen SC. Split-Protein Therapeutic Platforms: Identifying Binder Pairs. Methods Mol Biol 2024; 2720:75-84. [PMID: 37775658 DOI: 10.1007/978-1-0716-3469-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Therapeutic proteins, including enzymes, interferons, interleukins, and growth factors, are emerging as important modalities to treat many diseases that elude management by small molecule drugs. One challenge of protein treatment is the propensity for off-target or systemic activity. A promising approach to overcome such toxicity is to create conditionally active constructs by splitting the therapeutic protein into two, or more, inactive fragments and by fusing these fragments to binders (e.g., antibodies) that target distinct epitopes on a cell surface. When these antibodies bind to their respective targets, the protein fragments are brought into proximity and then reconstitute into the active form of the therapeutic protein. In this chapter, we describe approaches to determine antibody pairs that enable the reconstitution of the active protein. General computational and empirical methods are provided to facilitate the identification of pairs starting only from protein sequence data.
Collapse
Affiliation(s)
- Christine S Nervig
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - James R Gustat
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Shawn C Owen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Roper BWR, Tiede C, Abdul-Zani I, Cuthbert GA, Jade D, Al-Aufi A, Critchley WR, Saikia Q, Homer-Vanniasinkam S, Sawamura T, McPherson MJ, Harrison MA, Tomlinson DC, Ponnambalam S. "Affimer" synthetic protein scaffolds block oxidized LDL binding to the LOX-1 scavenger receptor and inhibit ERK1/2 activation. J Biol Chem 2023; 299:105325. [PMID: 37805141 PMCID: PMC10641530 DOI: 10.1016/j.jbc.2023.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.
Collapse
Affiliation(s)
- Barnaby W R Roper
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | - Christian Tiede
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | - Izma Abdul-Zani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | - Gary A Cuthbert
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK; Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Ahmed Al-Aufi
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK; Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | | | - Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Ehsasatvatan M, Kohnehrouz BB. The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. J Biol Eng 2023; 17:63. [PMID: 37798746 PMCID: PMC10557345 DOI: 10.1186/s13036-023-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The high cost of fermentation, purification, cold storage and transportation, short shelf life, and sterile delivery methods of biopharmaceuticals, is a matter for producers and consumers as well. Since the FDA has now approved plant cells for large-scale, cost-effective biopharmaceutical production, the isolation and lyophilization of transplastomic chloroplasts can cover concerns about limitations. DARPins are engineered small single-domain proteins that have been selected to bind to HER2 with high affinity and specificity. HER2 is an oncogene involved in abnormal cell growth in some cancers and the target molecule for cancer immunotherapy. RESULTS In this study, we reported the prolonged stability and functionality of DARPin G3 in lyophilized transplastomic tobacco leaves and chloroplasts. Western blot analysis of lyophilized leaves and chloroplasts stored at room temperature for up to nine months showed that the DARPin G3 protein was stable and preserved proper folding. Lyophilization of leaves and isolated chloroplasts increased DARPin G3 protein concentrations by 16 and 32-fold, respectively. The HER2-binding assay demonstrated that the chloroplast-made DARPin G3 can maintain its stability and binding activity without any affinity drop in lyophilized leaf materials throughout this study for more than nine months at room temperature. CONCLUSION Lyophilization of chloroplasts expressing DARPin G3 would further reduce costs and simplify downstream processing, purification, and storage. Compressed packages of lyophilized chloroplasts were much more effective than lyophilized transplastomic leaves considering occupied space and downstream extraction and purification of DARPin G3 after nine months. These methods facilitate any relevant formulation practices for these compounds to meet any demand-oriented needs.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
7
|
Kaynak BT, Dahmani ZL, Doruker P, Banerjee A, Yang SH, Gordon R, Itzhaki LS, Bahar I. Cooperative mechanics of PR65 scaffold underlies the allosteric regulation of the phosphatase PP2A. Structure 2023; 31:607-618.e3. [PMID: 36948205 PMCID: PMC10164121 DOI: 10.1016/j.str.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
PR65, a horseshoe-shaped scaffold composed of 15 HEAT (observed in Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) repeats, forms, together with catalytic and regulatory subunits, the heterotrimeric protein phosphatase PP2A. We examined the role of PR65 in enabling PP2A enzymatic activity with computations at various levels of complexity, including hybrid approaches that combine full-atomic and elastic network models. Our study points to the high flexibility of this scaffold allowing for end-to-end distance fluctuations of 40-50 Å between compact and extended conformations. Notably, the intrinsic dynamics of PR65 facilitates complexation with the catalytic subunit and is retained in the PP2A complex enabling PR65 to engage the two domains of the catalytic subunit and provide the mechanical framework for enzymatic activity, with support from the regulatory subunit. In particular, the intra-repeat coils at the C-terminal arm play an important role in allosterically mediating the collective dynamics of PP2A, pointing to target sites for modulating PR65 function.
Collapse
Affiliation(s)
- Burak T Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zakaria L Dahmani
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shang-Hua Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci Rep 2023; 13:1339. [PMID: 36693880 PMCID: PMC9873692 DOI: 10.1038/s41598-023-27710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Scaffold-based protein libraries are designed to be both diverse and rich in functional/folded proteins. However, introducing an extended diversity while preserving stability of the initial scaffold remains a challenge. Here we developed an original approach to select the ensemble of folded proteins from an initial library. The thermostable CheY protein from Thermotoga maritima was chosen as scaffold. Four loops of CheY were diversified to create a new binding surface. The subset of the library giving rise to folded proteins was first selected using a natural protein partner of the template scaffold. Then, a gene shuffling approach based on a single restriction enzyme was used to recombine DNA sequences encoding these filtrated variants. Taken together, the filtration strategy and the shuffling of the filtrated sequences were shown to enrich the library in folded and stable sequences while maintaining a large diversity in the final library (Lib-Cheytins 2.1). Binders of the Oplophorus luciferase Kaz domain were then selected by phage display from the final library, showing affinities in the μM range. One of the best variants induced a loss of 92% of luminescent activity, suggesting that this Cheytin preferentially binds to the Kaz active site.
Collapse
|
9
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|
10
|
Chidyausiku TM, Mendes SR, Klima JC, Nadal M, Eckhard U, Roel-Touris J, Houliston S, Guevara T, Haddox HK, Moyer A, Arrowsmith CH, Gomis-Rüth FX, Baker D, Marcos E. De novo design of immunoglobulin-like domains. Nat Commun 2022; 13:5661. [PMID: 36192397 PMCID: PMC9530121 DOI: 10.1038/s41467-022-33004-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies, and antibody derivatives such as nanobodies, contain immunoglobulin-like (Ig) β-sandwich scaffolds which anchor the hypervariable antigen-binding loops and constitute the largest growing class of drugs. Current engineering strategies for this class of compounds rely on naturally existing Ig frameworks, which can be hard to modify and have limitations in manufacturability, designability and range of action. Here, we develop design rules for the central feature of the Ig fold architecture—the non-local cross-β structure connecting the two β-sheets—and use these to design highly stable Ig domains de novo, confirm their structures through X-ray crystallography, and show they can correctly scaffold functional loops. Our approach opens the door to the design of antibody-like scaffolds with tailored structures and superior biophysical properties. The immunoglobulin domain framework of antibodies has been a long standing design challenge. Here, the authors describe design rules for tailoring these domains and show they can be accurately designed, de novo, with high stability and the ability to scaffold functional loops.
Collapse
Affiliation(s)
- Tamuka M Chidyausiku
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.,Novartis Institutes for BioMedical Research Inc., San Diego, CA, 92121, USA
| | - Soraia R Mendes
- Proteolysis Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Jason C Klima
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.,Encodia, Inc., San Diego, CA, 92121, USA
| | - Marta Nadal
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Jorge Roel-Touris
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Hugh K Haddox
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Adam Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| | - Enrique Marcos
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain.
| |
Collapse
|
11
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022. [PMID: 35258937 DOI: 10.1101/2021.03.27.437344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Pamela J E Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom†
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
12
|
Synakewicz M, Eapen RS, Perez-Riba A, Rowling PJE, Bauer D, Weißl A, Fischer G, Hyvönen M, Rief M, Itzhaki LS, Stigler J. Unraveling the Mechanics of a Repeat-Protein Nanospring: From Folding of Individual Repeats to Fluctuations of the Superhelix. ACS NANO 2022; 16:3895-3905. [PMID: 35258937 PMCID: PMC8944806 DOI: 10.1021/acsnano.1c09162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Tandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive mechanical properties that are proposed to direct their cellular functions. Here, we use single-molecule optical tweezers to study the folding of consensus-designed tetratricopeptide repeats (CTPRs), superhelical arrays of short helix-turn-helix motifs. We find that CTPRs display a spring-like mechanical response in which individual repeats undergo rapid equilibrium fluctuations between partially folded and unfolded conformations. We rationalize the force response using Ising models and dissect the folding pathway of CTPRs under mechanical load, revealing how the repeat arrays form from the center toward both termini simultaneously. Most strikingly, we also directly observe the protein's superhelical tertiary structure in the force signal. Using protein engineering, crystallography, and single-molecule experiments, we show that the superhelical geometry can be altered by carefully placed amino acid substitutions, and we examine how these sequence changes affect intrinsic repeat stability and inter-repeat coupling. Our findings provide the means to dissect and modulate repeat-protein stability and dynamics, which will be essential for researchers to understand the function of natural repeat proteins and to exploit artificial repeats proteins in nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Marie Synakewicz
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Rohan S. Eapen
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Albert Perez-Riba
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Pamela J. E. Rowling
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Daniela Bauer
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas Weißl
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Matthias Rief
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene
Center Munich, Ludwig-Maximilians-Universität
München, Feodor-Lynen-Straße 25, 81377 München, Germany
| |
Collapse
|
13
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Svobodova Z, Novotny J, Ospalkova B, Slovakova M, Bilkova Z, Foret F. Affiblot: a dot blot-based screening device for selection of reliable antibodies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3874-3884. [PMID: 34528947 DOI: 10.1039/d1ay00955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The key factor in the development of antibody-based assays is to find an antibody that has an appropriate affinity, high specificity, and low cross-reactivity. However, this task is not easy to carry out since the research antibodies on the market may suffer from low specificity and reproducibility. Here, we report on a palm-sized dot blot-based device, called the affiblot, that has a specially designed lid that allows simultaneous semi-quantitative comparison of up to five antibodies from different suppliers regarding their affinity/avidity, cross-reactivity, and batch-to-batch reliability. The only required peripheral equipment is a vacuum pump, a camera, and densitometry software. The affiblot device was tested for its functionality and its measurements were compared against those obtained by standard dot blot and ELISA. The benefit over these methods, when various antibodies are evaluated, is in its simplicity. It allows easy antigen deposition, fast application and the discarding of the solutions, a compact undivided membrane, and therefore significant decrease of labor. The device was tested with specific anti-ApoE, anti-EpCAM, anti-Salmonella, anti-E. coli, and anti-Listeria antibodies from different suppliers. Their properties were compared for their ability to interact specifically with antigen and/or non-target structures and the best-suited antibody for the intended application was identified.
Collapse
Affiliation(s)
- Zuzana Svobodova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, Czech Republic.
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Zborovska 2089, Czech Republic
| | - Jakub Novotny
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, Czech Republic.
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 967/97, Brno, Czech Republic
| | - Barbora Ospalkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, Czech Republic.
| | - Marcela Slovakova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, Czech Republic.
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, Czech Republic.
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 967/97, Brno, Czech Republic
| |
Collapse
|
15
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
16
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
17
|
Cucuzza S, Güntert P, Plückthun A, Zerbe O. An automated iterative approach for protein structure refinement using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2021; 75:319-334. [PMID: 34338940 PMCID: PMC8473369 DOI: 10.1007/s10858-021-00376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 05/02/2023]
Abstract
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Tokyo, Japan
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
18
|
Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GK. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. FRONTIERS IN ALLERGY 2021; 2:668781. [PMID: 35387044 PMCID: PMC8974912 DOI: 10.3389/falgy.2021.668781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant "reservoir" for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
Collapse
Affiliation(s)
- Yorissa Padayachee
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Sabine Flicker
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sophia Linton
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre (KHSC), Kingston, ON, Canada
| | - John Cafferkey
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Martin Desrosiers
- Department of Otorhinolaryngologie, The University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Paul Turner
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rudolf Valenta
- Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Glenis Kathleen Scadding
- Royal National Ear Nose and Throat Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Palacio-Castañeda V, Dumas S, Albrecht P, Wijgers TJ, Descroix S, Verdurmen WPR. A Hybrid In Silico and Tumor-on-a-Chip Approach to Model Targeted Protein Behavior in 3D Microenvironments. Cancers (Basel) 2021; 13:cancers13102461. [PMID: 34070171 PMCID: PMC8158470 DOI: 10.3390/cancers13102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Engineered proteins possess a great therapeutic potential, but the development of such therapies is impeded during preclinical studies by the lack of in vitro models that accurately simulate the human physiology. Animal models, on the other hand, also have difficulties predicting human responses, and are ethically concerning. In this study, we employed a hybrid approach where we combined mathematical modeling with 3D in vitro models that mimic aspects of the tumor microenvironment, in order to simulate the delivery of therapeutic proteins targeting cancer cells and to predict the biological activity. By cross-comparing simulated and experimental data from 3D models, we were able to correctly predict the best dose needed to deliver toxic proteins specifically to tumor cells, while leaving the surrounding non-tumor cells untouched. This study shows the potential of combining computational approaches with novel in vitro models to advance the development of protein therapeutics. Abstract To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s−1 and 2 µm2 ·s−1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Simon Dumas
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Philipp Albrecht
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Thijmen J. Wijgers
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
| | - Stéphanie Descroix
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (V.P.-C.); (P.A.); (T.J.W.)
- Correspondence: ; Tel.: +31-24-3614263
| |
Collapse
|
20
|
Torres C, Dumas S, Palacio-Castañeda V, Descroix S, Brock R, Verdurmen WPR. A Computational Investigation of In Vivo Cytosolic Protein Delivery for Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13040562. [PMID: 33921165 PMCID: PMC8071550 DOI: 10.3390/pharmaceutics13040562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to specifically block or degrade cytosolic targets using therapeutic proteins would bring tremendous therapeutic opportunities in cancer therapy. Over the last few years, significant progress has been made with respect to tissue targeting, cytosolic delivery, and catalytic inactivation of targets, placing this aim within reach. Here, we developed a mathematical model specifically built for the evaluation of approaches towards cytosolic protein delivery, involving all steps from systemic administration to translocation into the cytosol and target engagement. Focusing on solid cancer tissues, we utilized the model to investigate the effects of microvascular permeability, receptor affinity, the cellular density of targeted receptors, as well as the mode of activity (blocking/degradation) on therapeutic potential. Our analyses provide guidance for the rational optimization of protein design for enhanced activity and highlight the importance of tuning the receptor affinity as a function of receptor density as well as the receptor internalization rate. Furthermore, we provide quantitative insights into how enzymatic cargoes can enhance the distribution, extent, and duration of therapeutic activity, already at very low catalytic rates. Our results illustrate that with current protein engineering approaches, the goal of delivery of cytosolic delivery of proteins for therapeutic effects is well within reach.
Collapse
Affiliation(s)
- Camilo Torres
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Simon Dumas
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Stéphanie Descroix
- Physico-Chemistry Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne University, 75005 Paris, France; (S.D.); (S.D.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (C.T.); (V.P.-C.); (R.B.)
- Correspondence:
| |
Collapse
|
21
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
22
|
Trimmer JS. Recombinant Antibodies in Basic Neuroscience Research. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e106. [PMID: 33151027 PMCID: PMC7665837 DOI: 10.1002/cpns.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic neuroscience research employs antibodies as key reagents to label, capture, and modulate the function of proteins of interest. Antibodies are immunoglobulin proteins. Recombinant antibodies are immunoglobulin proteins whose nucleic acid coding regions, or fragments thereof, have been cloned into expression plasmids that allow for unlimited production. Recombinant antibodies offer many advantages over conventional antibodies including their unambiguous identification and digital archiving via DNA sequencing, reliable expression, ease and reliable distribution as DNA sequences and as plasmids, and the opportunity for numerous forms of engineering to enhance their utility. Recombinant antibodies exist in many different forms, each of which offers potential advantages and disadvantages for neuroscience research applications. I provide an overview of recombinant antibodies and their development. Examples of their emerging use as valuable reagents in basic neuroscience research are also discussed. Many of these examples employ recombinant antibodies in innovative experimental approaches that cannot be pursued with conventional antibodies. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
23
|
Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools - the potential of engineered binding scaffolds. FEBS J 2020; 288:2103-2118. [PMID: 32794303 PMCID: PMC8048499 DOI: 10.1111/febs.15523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B‐cell malignancies. In contrast to these highly potent CD19‐targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen‐binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non‐immunoglobulin‐based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody‐based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds—even in those based on nonhuman proteins—is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.
Collapse
Affiliation(s)
- Charlotte U Zajc
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
24
|
Garousi J, Vorobyeva A, Altai M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020; 25:molecules25112673. [PMID: 32526905 PMCID: PMC7321166 DOI: 10.3390/molecules25112673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (A.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia
| | - Mohamed Altai
- Division of Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, 222 43 Lund, Sweden
- Correspondence: ; Tel.: +46-704128699
| |
Collapse
|
25
|
Fu MP, Guo ZL, Tang HL, Zhu HF, Shen GX, He Y, Lei P. Selection for Anti-transferrin Receptor Bispecific T-cell Engager in Different Molecular Formats. Curr Med Sci 2020; 40:28-34. [PMID: 32166662 DOI: 10.1007/s11596-020-2143-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Selecting an ideal molecular format from diverse structures is a major challenge in developing a bispecific antibody (BsAb). To choose an ideal format of anti-CD3 × anti-transferrin receptor (TfR) bispecific antibodies for clinical application, we constructed TfR bispecific T-cell engager (BiTE) in two extensively applied formats, including single-chain tandem single-chain variable fragments (scFvs) and double-chain diabodies, and evaluated their functional characterizations in vitro. Results demonstrated that TfR-BiTE in both formats directed potent killing of TfR+ HepG2 cells. However, compared to two-chain diabodies, scFvs were more efficient in antigen binding and TfR+ target killing. Furthermore, different domain orders in scFvs would also be evaluated because single-TfR-CD3-His was preferable to single-CD3-TfR-His in immunotherapeutic strategies. Thus, the single-chain tandem TfR-CD3 format was favored for further investigation in cancer therapy.
Collapse
Affiliation(s)
- Ming-Peng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Long Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Ling Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Fen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guan-Xin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Affibody Molecules as Targeting Vectors for PET Imaging. Cancers (Basel) 2020; 12:cancers12030651. [PMID: 32168760 PMCID: PMC7139392 DOI: 10.3390/cancers12030651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Affibody molecules are small (58 amino acids) engineered scaffold proteins that can be selected to bind to a large variety of proteins with a high affinity. Their small size and high affinity make them attractive as targeting vectors for molecular imaging. High-affinity affibody binders have been selected for several cancer-associated molecular targets. Preclinical studies have shown that radiolabeled affibody molecules can provide highly specific and sensitive imaging on the day of injection; however, for a few targets, imaging on the next day further increased the imaging sensitivity. A phase I/II clinical trial showed that 68Ga-labeled affibody molecules permit an accurate and specific measurement of HER2 expression in breast cancer metastases. This paper provides an overview of the factors influencing the biodistribution and targeting properties of affibody molecules and the chemistry of their labeling using positron emitters.
Collapse
|
27
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
28
|
Deyev SM, Vorobyeva A, Schulga A, Abouzayed A, Günther T, Garousi J, Konovalova E, Ding H, Gräslund T, Orlova A, Tolmachev V. Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. Int J Biol Macromol 2019; 145:216-225. [PMID: 31863835 DOI: 10.1016/j.ijbiomac.2019.12.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Collapse
Affiliation(s)
- Sergey M Deyev
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Center of Biomedical Engineering, Sechenov University, Moscow, Russia
| | - Anzhelika Vorobyeva
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tyran Günther
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Neubacher S, Saya JM, Amore A, Grossmann TN. In Situ Cyclization of Proteins (INCYPRO): Cross-Link Derivatization Modulates Protein Stability. J Org Chem 2019; 85:1476-1483. [PMID: 31790232 PMCID: PMC7011175 DOI: 10.1021/acs.joc.9b02490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Protein macrocyclization represents a very efficient
strategy to
increase the stability of protein tertiary structures. Here, we describe
a panel of novel C3-symmetric tris-electrophilic agents and their
use for the cyclization of proteins. These electrophiles are reacted
with a protein domain harboring three solvent-exposed cysteine residues,
resulting in the in situ cyclization of the protein (INCYPRO). We
observe a clear dependency of cross-linking rates on the electrophilicity.
All nine obtained cross-linked protein versions show considerably
increased thermal stability (up to 29 °C increased melting temperature)
when compared to that of the linear precursor. Most interestingly,
the degree of stabilization correlates with the hydrophilicity of
the cross-link. These results will support the development of novel
cross-linked proteins and enable a more rational design process.
Collapse
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jordy M Saya
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Alessia Amore
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Tom N Grossmann
- Department of Chemistry & Pharmaceutical Sciences , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
30
|
Adamson H, Nicholl A, Tiede C, Tang AA, Davidson A, Curd H, Wignall A, Ford R, Nuttall J, McPherson MJ, Johnson M, Tomlinson DC. Affimers as anti-idiotypic affinity reagents for pharmacokinetic analysis of biotherapeutics. Biotechniques 2019; 67:261-269. [DOI: 10.2144/btn-2019-0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Therapeutic antibodies are the fastest growing class of drugs in the treatment of cancer, and autoimmune and inflammatory diseases that require the concomitant development of assays to monitor therapeutic antibody levels. Here, we demonstrate that the use of Affimer nonantibody binding proteins provides an advantage over current antibody-based detection systems. For four therapeutic antibodies, we used phage display to isolate highly specific anti-idiotypic Affimer reagents, which selectively bind to the therapeutic antibody idiotype. For each antibody target the calibration curves met US Food and Drug Administration criteria and the dynamic range compared favorably with commercially available reagents. Affimer proteins therefore represent promising anti-idiotypic reagents that are simple to select and manufacture, and that offer the sensitivity, specificity and consistency required for pharmacokinetic assays.
Collapse
Affiliation(s)
- Hope Adamson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amanda Nicholl
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Christian Tiede
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna A Tang
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex Davidson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Helen Curd
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Alex Wignall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Robert Ford
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - James Nuttall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Michael J McPherson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matt Johnson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Darren C Tomlinson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
31
|
Mathias S, Wippermann A, Raab N, Zeh N, Handrick R, Gorr I, Schulz P, Fischer S, Gamer M, Otte K. Unraveling what makes a monoclonal antibody difficult‐to‐express: From intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnol Bioeng 2019; 117:5-16. [DOI: 10.1002/bit.27196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Sven Mathias
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Anna Wippermann
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Nadja Raab
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Nikolas Zeh
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - René Handrick
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Ingo Gorr
- Early Stage Bioprocess Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Simon Fischer
- Cell Line Development CMB, Bioprocess & Analytical DevelopmentBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Martin Gamer
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Kerstin Otte
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| |
Collapse
|
32
|
Ernst P, Honegger A, van der Valk F, Ewald C, Mittl PRE, Plückthun A. Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts. Sci Rep 2019; 9:16162. [PMID: 31700118 PMCID: PMC6838082 DOI: 10.1038/s41598-019-52121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Designed armadillo repeat proteins (dArmRPs) bind extended peptides in a modular way. The consensus version recognises alternating arginines and lysines, with one dipeptide per repeat. For generating new binding specificities, the rapid and robust analysis by crystallography is key. Yet, we have previously found that crystal contacts can strongly influence this analysis, by displacing the peptide and potentially distorting the overall geometry of the scaffold. Therefore, we now used protein design to minimise these effects and expand the previously described concept of shared helices to rigidly connect dArmRPs and designed ankyrin repeat proteins (DARPins), which serve as a crystallisation chaperone. To shield the peptide-binding surface from crystal contacts, we rigidly fused two DARPins to the N- and C-terminal repeat of the dArmRP and linked the two DARPins by a disulfide bond. In this ring-like structure, peptide binding, on the inside of the ring, is very regular and undistorted, highlighting the truly modular binding mode. Thus, protein design was utilised to construct a well crystallising scaffold that prevents interference from crystal contacts with peptide binding and maintains the equilibrium structure of the dArmRP. Rigid DARPin-dArmRPs fusions will also be useful when chimeric binding proteins with predefined geometries are required.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Floor van der Valk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Christina Ewald
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Cytometry Facility, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
33
|
Shilovskiy IP, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. The Role of Interleukin-37 in the Pathogenesis of Allergic Diseases. Acta Naturae 2019; 11:54-64. [PMID: 31993235 PMCID: PMC6977961 DOI: 10.32607/20758251-2019-11-4-54-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cytokines of the interleukin-1 (IL-1) family play an important role in the realization of the protective functions of innate immunity and are the key mediators involved in the pathogenesis of a wide range of diseases, including various manifestations of allergy. The IL-1 family includes more than 11 members. However, the functions of many of them remain to be elucidated. Recently, new members of the IL-1 family have been discovered. In 2000, several independent research groups reported the discovery of a new interleukin of this family, which was named IL-37, or IL-1F7 (according to the new nomenclature). IL-37 was assigned to the IL-1 family based on its structural similarity with other members of this family. The study of its biological properties showed that its activity changes in inflammatory diseases, such as rheumatoid arthritis, psoriasis, as well as allergic diseases (allergic rhinitis, bronchial asthma, and atopic dermatitis). However, unlike most members of the IL-1 family, IL-37 acts as a negative regulator of inflammation. Activation of IL-37 suppresses inflammation, resulting in the suppression of inflammatory cytokines and chemokines, which in turn prevents infiltration of pro-inflammatory cells, mainly eosinophils and neutrophils. The exact molecular and cellular mechanisms of the anti-inflammatory effect of IL-37 in the development of allergic diseases (AD) have not been fully studied. This review summarizes and analyzes the accumulated experimental data on the role of IL-37 in the pathogenesis of AD, such as allergic rhinitis, bronchial asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- I. P. Shilovskiy
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. E. Dyneva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - O. M. Kurbacheva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - D. A. Kudlay
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. R. Khaitov
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| |
Collapse
|
34
|
Shilova ON, Deyev SM. DARPins: Promising Scaffolds for Theranostics. Acta Naturae 2019; 11:42-53. [PMID: 31993234 PMCID: PMC6977956 DOI: 10.32607/20758251-2019-11-4-42-53] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies are the classical basis for targeted therapy, but the development of alternative binding proteins has made it possible to use non-immunoglobulin proteins as targeting modules. The advantages of DARPins, scaffold proteins based on ankyrin repeats, over antibodies are as follows: small size, stability over a wide range of temperatures and pH values, low aggregation tendency, and ease of production in heterologous expression systems. The differences in the structure of the paratope of DARPin and antibodies broaden the spectrum of target molecules, while the ease of creating hybrid fusion proteins allows one to obtain bispecific and multivalent constructs. In this article, we summarize recent data on the development of therapeutic and imaging compounds based on DARPins.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | - S. M. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| |
Collapse
|
35
|
Studies of the oligomerisation mechanism of a cystatin-based engineered protein scaffold. Sci Rep 2019; 9:9067. [PMID: 31227800 PMCID: PMC6588553 DOI: 10.1038/s41598-019-45565-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.
Collapse
|
36
|
Huang K, Li Z, Su T, Shen D, Hu S, Cheng K. Bispecific Antibody Therapy for Effective Cardiac Repair through Redirection of Endogenous Stem Cells. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Teng Su
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Deliang Shen
- Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences North Carolina University Raleigh NC 27607 USA
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27695 USA
- Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
37
|
Béhar G, Renodon‐Cornière A, Kambarev S, Vukojicic P, Caroff N, Corvec S, Mouratou B, Pecorari F. Whole‐bacterium ribosome display selection for isolation of highly specific anti‐
Staphyloccocus aureus
Affitins for detection‐ and capture‐based biomedical applications. Biotechnol Bioeng 2019; 116:1844-1855. [DOI: 10.1002/bit.26989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ghislaine Béhar
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | | | - Stanimir Kambarev
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Petar Vukojicic
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Nathalie Caroff
- EA3826 Thérapeutiques cliniques et expérimentales des infections, UFR de MédecineUniversité de NantesNantes France
| | - Stéphane Corvec
- CRCINA, INSERMUniversité d'Angers, Université de NantesNantes France
- Service de Bactériologie – Hygiène hospitalièreCHU de NantesNantes France
| | - Barbara Mouratou
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Frédéric Pecorari
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| |
Collapse
|
38
|
Meksiriporn B, Ludwicki MB, Stephens EA, Jiang A, Lee HC, Waraho-Zhmayev D, Kummer L, Brandl F, Plückthun A, DeLisa MP. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins. Nat Commun 2019; 10:1830. [PMID: 31015433 PMCID: PMC6478843 DOI: 10.1038/s41467-019-09854-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity. Protein phosphorylation helps to control many important cellular activities. Here the authors describe a genetic selection strategy to isolate designed ankyrin repeat proteins that bind specifically to phosphomodified targets.
Collapse
Affiliation(s)
- Bunyarit Meksiriporn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Morgan B Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen Jiang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hyeon-Cheol Lee
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Lutz Kummer
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Matthew P DeLisa
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
39
|
Andres F, Iamele L, Meyer T, Stüber JC, Kast F, Gherardi E, Niemann HH, Plückthun A. Inhibition of the MET Kinase Activity and Cell Growth in MET-Addicted Cancer Cells by Bi-Paratopic Linking. J Mol Biol 2019; 431:2020-2039. [PMID: 30930049 DOI: 10.1016/j.jmb.2019.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
MET, the product of the c-MET proto-oncogene, and its ligand hepatocyte growth factor/scatter factor (HGF/SF) control survival, proliferation and migration during development and tissue regeneration. HGF/SF-MET signaling is equally crucial for growth and metastasis of a variety of human tumors, but resistance to small-molecule inhibitors of MET kinase develops rapidly and therapeutic antibody targeting remains challenging. We made use of the designed ankyrin repeat protein (DARPin) technology to develop an alternative approach for inhibiting MET. We generated a collection of MET-binding DARPins covering epitopes in the extracellular MET domains and created comprehensive sets of bi-paratopic fusion proteins. This new class of molecules efficiently inhibited MET kinase activity and downstream signaling, caused receptor downregulation and strongly inhibited the proliferation of MET-dependent gastric carcinoma cells carrying MET locus amplifications. MET-specific bi-paratopic DARPins may represent a novel and potent strategy for therapeutic targeting of MET and other receptors, and this study has elucidated their mode of action.
Collapse
Affiliation(s)
- Fabio Andres
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Italy
| | - Timo Meyer
- Department of Chemistry, Bielefeld University, Germany
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Lowe AR, Perez-Riba A, Itzhaki LS, Main ERG. PyFolding: Open-Source Graphing, Simulation, and Analysis of the Biophysical Properties of Proteins. Biophys J 2019; 114:516-521. [PMID: 29414697 DOI: 10.1016/j.bpj.2017.11.3779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 11/25/2022] Open
Abstract
For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data analysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods and analysis for publication and among research teams.
Collapse
Affiliation(s)
- Alan R Lowe
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom.
| | - Albert Perez-Riba
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
41
|
Litvak-Greenfeld D, Vaks L, Dror S, Nahary L, Benhar I. "BIClonals": Production of Bispecific Antibodies in IgG Format in Transiently Transfected Mammalian Cells. Methods Mol Biol 2019; 1904:431-454. [PMID: 30539485 DOI: 10.1007/978-1-4939-8958-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not possible with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated. Many of these are based on antibody fragments or on inclusion of non-antibody components. For some therapeutic applications, full-size, native IgG-like bsAbs may be the optimal format.To prepare bsAbs in IgG format, two challenges should be met. One is that each heavy chain will only pair with the heavy chain of the second specificity and that heavy chain homodimerization will be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and that pairing with the light chain of the second specificity will be prevented. The first solution to the first criterion (known as knobs into holes, KIH) was presented in 1996 by Genentech and additional solutions were presented more recently. However, until recently, out of >120 published formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested.Here, we present a protocol for preparing bsAbs in IgG format in transfected mammalian cells. For heavy chain dimerization we use KIH while as a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs we present our "BIClonals" technology; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL.During our studies of bsAbs we found that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies; hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs that suits every antibody sequence, making it necessary to carefully evaluate the optimal solution for each new antibody.
Collapse
Affiliation(s)
- Dana Litvak-Greenfeld
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Lilach Vaks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Stav Dror
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
42
|
Single chain variable fragment antibodies directed against SOD1 ameliorate disease in mutant SOD1 transgenic mice. Neurobiol Dis 2019; 121:131-137. [DOI: 10.1016/j.nbd.2018.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
|
43
|
Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis 2018; 10:1651-1665. [DOI: 10.4155/bio-2018-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Alternative scaffold proteins have emerged as novel platforms for development of therapeutic applications. One such application is in protein–drug conjugates (PDCs), which are analogous to antibody–drug conjugates. Methodology: Liquid chromatography–mass spectrometry methods for quantitation of total protein, conjugate and free payload for a PDC based on Centyrin scaffold were developed. Tryptic peptides generated from a region of the Centyrin that does not contain a conjugation site, and another that has the conjugation site with the linker-payload attached were used as surrogates of the total and conjugated Centyrin, respectively. Conclusion: The methods were successfully applied to analysis of samples from mice to quantify the plasma and tissue concentrations. This same workflow can potentially be applied to other PDCs and site-specific antibody–drug conjugates.
Collapse
|
44
|
Voiculescu I, Toda M, Inomata N, Ono T, Li F. Nano and Microsensors for Mammalian Cell Studies. MICROMACHINES 2018; 9:E439. [PMID: 30424372 PMCID: PMC6187600 DOI: 10.3390/mi9090439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
This review presents several sensors with dimensions at the nano- and micro-scale used for biological applications. Two types of cantilever beams employed as highly sensitive temperature sensors with biological applications will be presented. One type of cantilever beam is fabricated from composite materials and is operated in the deflection mode. In order to achieve the high sensitivity required for detection of heat generated by a single mammalian cell, the cantilever beam temperature sensor presented in this review was microprocessed with a length at the microscale and a thickness in the nanoscale dimension. The second type of cantilever beam presented in this review was operated in the resonant frequency regime. The working principle of the vibrating cantilever beam temperature sensor is based on shifts in resonant frequency in response to temperature variations generated by mammalian cells. Besides the cantilever beam biosensors, two biosensors based on the electric cell-substrate impedance sensing (ECIS) used to monitor mammalian cells attachment and viability will be presented in this review. These ECIS sensors have dimensions at the microscale, with the gold films used for electrodes having thickness at the nanoscale. These micro/nano biosensors and their mammalian cell applications presented in the review demonstrates the diversity of the biosensor technology and applications.
Collapse
Affiliation(s)
- Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA.
| | - Masaya Toda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Naoki Inomata
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Takahito Ono
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Fang Li
- Mechanical Engineering, New York Institute of Technology, New York, NY 11568, USA.
| |
Collapse
|
45
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
46
|
Pelay‐Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018; 57:11164-11170. [PMID: 29847004 PMCID: PMC6120448 DOI: 10.1002/anie.201804506] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface-exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.
Collapse
Affiliation(s)
- Marta Pelay‐Gimeno
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell BiologyMax-Planck Institute of Molecular PhysiologyOtto-Hahn-Str. 1144227DortmundGermany
- Department for Systems ChronobiologyLMU MunichGoethe-Str. 3180336MunichGermany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
47
|
McCarthy AM, Kim J, Museth AK, Henning RK, Heath JE, Winson E, Oh JJ, Liang J, Hong S, Heath JR. Allosteric Inhibitor of KRas Identified Using a Barcoded Assay Microchip Platform. Anal Chem 2018; 90:8824-8830. [PMID: 29979578 PMCID: PMC6734936 DOI: 10.1021/acs.analchem.8b00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein catalyzed capture agents (PCCs) are synthetic antibody surrogates that can target a wide variety of biologically relevant proteins. As a step toward developing a high-throughput PCC pipeline, we report on the preparation of a barcoded rapid assay platform for the analysis of hits from PCC library screens. The platform is constructed by first surface patterning a micrometer scale barcode composed of orthogonal ssDNA strands onto a glass slide. The slide is then partitioned into microwells, each of which contains multiple copies of the full barcode. Biotinylated candidate PCCs from a click screen are assembled onto the barcode stripes using a complementary ssDNA-encoded cysteine-modified streptavidin library. This platform was employed to evaluate candidate PCC ligands identified from an epitope targeted in situ click screen against the two conserved allosteric switch regions of the Kirsten rat sarcoma (KRas) protein. A single microchip was utilized for the simultaneous evaluation of 15 PCC candidate fractions under more than a dozen different assay conditions. The platform also permitted more than a 10-fold savings in time and a more than 100-fold reduction in biological and chemical reagents relative to traditional multiwell plate assays. The best ligand was shown to exhibit an in vitro inhibition constant (IC50) of ∼24 μM.
Collapse
Affiliation(s)
- Amy M. McCarthy
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jungwoo Kim
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - A. Katrine Museth
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan K. Henning
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John E. Heath
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Emma Winson
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joseph J. Oh
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jingxin Liang
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| | - Sunga Hong
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| | - James R. Heath
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| |
Collapse
|
48
|
Vaks L, Litvak-Greenfeld D, Dror S, Shefet-Carasso L, Matatov G, Nahary L, Shapira S, Hakim R, Alroy I, Benhar I. Design Principles for Bispecific IgGs, Opportunities and Pitfalls of Artificial Disulfide Bonds. Antibodies (Basel) 2018; 7:E27. [PMID: 31544879 PMCID: PMC6640675 DOI: 10.3390/antib7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not achievable with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated, but as many of them are small recombinant fragments, their utility could be limited. For some therapeutic applications, full-size IgGs may be the optimal format. Two challenges should be met to make bispecific IgGs; one is that each heavy chain will only pair with the heavy chain of the second specificity and that homodimerization be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and not with the light chain of the second specificity. The first solution to the first criterion (knobs into holes, KIH) was presented in 1996 by Paul Carter's group from Genentech. Additional solutions were presented later on. However, until recently, out of >120 published bsAb formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested. We present a solution for the second challenge-correct pairing of heavy and light chains of bispecific IgGs; an engineered (artificial) disulfide bond between the antibodies' variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL. We name antibodies produced according to this design "BIClonals". Bispecific IgGs where the artificial disulfide bond is placed in the CH1-CL interface are also presented. Briefly, we found that an artificial disulfide bond between VH position 44 to VL position 100 provides for effective and correct H-L chain pairing while also preventing the formation of wrong H-L chain pairs. When the artificial disulfide bond links the CH1 with the CL domain, effective H-L chain pairing also occurs, but in some cases, wrong H-L pairing is not totally prevented. We conclude that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies, hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs, making it necessary to carefully evaluate the optimal solution for each new antibody.
Collapse
Affiliation(s)
- Lilach Vaks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Dana Litvak-Greenfeld
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Stav Dror
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - LeeRon Shefet-Carasso
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Galia Matatov
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shiran Shapira
- Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel.
| | - Rahely Hakim
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Iris Alroy
- FusiMab, Ltd., 14 Shenkar St. POB 4093 Herzelia, Israel.
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
49
|
|
50
|
Pelay-Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Pelay-Gimeno
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell Biology; Max-Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Department for Systems Chronobiology; LMU Munich; Goethe-Str. 31 80336 Munich Germany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|