1
|
Kovalová A, Prouza V, Zavřel M, Hájek M, Dzijak R, Magdolenová A, Pohl R, Voburka Z, Parkan K, Vrabel M. Selection of Galectin-Binding Ligands from Synthetic Glycopeptide Libraries. Chempluschem 2024; 89:e202300567. [PMID: 37942669 DOI: 10.1002/cplu.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Galectins, a class of carbohydrate-binding proteins, play a crucial role in various physiological and disease processes. Therefore, the identification of ligands that efficiently bind these proteins could potentially lead to the development of new therapeutic compounds. In this study, we present a method that involves screening synthetic click glycopeptide libraries to identify lectin-binding ligands with low micromolar affinity. Our methodology, initially optimized using Concanavalin A, was subsequently applied to identify binders for the therapeutically relevant galectin 1. Binding affinities were assessed using various methods and showed that the selected glycopeptides exhibited enhanced binding potency to the target lectins compared to the starting sugar moieties. This approach offers an alternative means of discovering galectin-binding ligands as well as other carbohydrate-binding proteins, which are considered important therapeutic targets.
Collapse
Affiliation(s)
- Anna Kovalová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Vít Prouza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague, Czech Republic
| | - Martin Zavřel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Alžbeta Magdolenová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| | - Kamil Parkan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague, Czech Republic
| |
Collapse
|
2
|
Pei X, Zhu J, Wang Y, Zhang F, He Y, Li Y, Si Y. Placental galectins: a subfamily of galectins lose the ability to bind β-galactosides with new structural features†. Biol Reprod 2023; 109:799-811. [PMID: 37672213 DOI: 10.1093/biolre/ioad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of β-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.
Collapse
Affiliation(s)
- Xuejing Pei
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Xuzhou Tongshan Maocun High School, Xuzhou 221135, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yufeng He
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yuchun Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
3
|
Kalhor S, Fattahi A. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies. Sci Rep 2022; 12:21941. [PMID: 36535965 PMCID: PMC9763358 DOI: 10.1038/s41598-022-25963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Designing drug delivery systems for therapeutic compounds whose receptors are located in the cytosol of cells is challenging as a bilayer cell membrane is negatively charged. The newly designed drug delivery systems should assist the mentioned drugs in passing the membrane barriers and achieving their targets. This study concentrated on developing novel ionic liquids (ILs) that interact effectively with cell membranes. These ILs are based on glucose-containing choline and are expected to be non-toxic. The binding energies of the known pharmaceutically active ionic liquids were calculated at the B3LYP/6-311++G(d,p) level in the gas phase and compared with those of our newly designed carbohydrate-based ionic liquids. Subsequently, we employed MD simulations to obtain information about the interactions of these known and designed ILs with the cell membrane. In our approach, we adopted QM and MD studies and illustrated that there could be a link between the QM and MD results.
Collapse
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Galectin-8, cytokines, and the storm. Biochem Soc Trans 2022; 50:135-149. [PMID: 35015084 PMCID: PMC9022973 DOI: 10.1042/bst20200677] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) belongs to a family of animal lectins that modulate cell adhesion, cell proliferation, apoptosis, and immune responses. Recent studies have shown that mammalian Gal-8 induces in an autocrine and paracrine manner, the expression and secretion of cytokines and chemokines such as RANKL, IL-6, IL-1β, SDF-1, and MCP-1. This involves Gal-8 binding to receptor complexes that include MRC2/uPAR/LRP1, integrins, and CD44. Receptors ligation triggers FAK, ERK, Akt, and the JNK signaling pathways, leading to induction of NF-κB that promotes cytokine expression. Indeed, immune-competent Gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for Gal-8 transgenic animals. Cytokine and chemokine secretion, induced by Gal-8, promotes the migration of cancer cells toward cells expressing this lectin. Accordingly, Gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These observations suggest the existence of a ‘vicious cycle’ whereby Gal-8 expression and secretion promotes the secretion of cytokines and chemokines that further promote Gal-8 expression. This ‘vicious cycle’ could enhance the development of a ‘cytokine storm’ which is a key contributor to the poor prognosis of COVID-19 patients.
Collapse
|
6
|
Lopes N, Correia VG, Palma AS, Brito C. Cracking the Breast Cancer Glyco-Code through Glycan-Lectin Interactions: Targeting Immunosuppressive Macrophages. Int J Mol Sci 2021; 22:1972. [PMID: 33671245 PMCID: PMC7922062 DOI: 10.3390/ijms22041972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The immune microenvironment of breast cancer (BC) is composed by high macrophage infiltrates, correlated with the most aggressive subtypes. Tumour-associated macrophages (TAM) within the BC microenvironment are key regulators of immune suppression and BC progression. Nevertheless, several key questions regarding TAM polarisation by BC are still not fully understood. Recently, the modulation of the immune microenvironment has been described via the recognition of abnormal glycosylation patterns at BC cell surface. These patterns rise as a resource to identify potential targets on TAM in the BC context, leading to the development of novel immunotherapies. Herein, we will summarize recent studies describing advances in identifying altered glycan structures in BC cells. We will focus on BC-specific glycosylation patterns known to modulate the phenotype and function of macrophages recruited to the tumour site, such as structures with sialylated or N-acetylgalactosamine epitopes. Moreover, the lectins present at the surface of macrophages reported to bind to such antigens, inducing tumour-prone TAM phenotypes, will also be highlighted. Finally, we will discuss and give our view on the potential and current challenges of targeting these glycan-lectin interactions to reshape the immunosuppressive landscape of BC.
Collapse
Affiliation(s)
- Nuno Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Viviana G. Correia
- UCIBIO, Departamento de Química, NOVA School of Science and Technology, FCT-NOVA, 2829-516 Caparica, Portugal;
| | - Angelina S. Palma
- UCIBIO, Departamento de Química, NOVA School of Science and Technology, FCT-NOVA, 2829-516 Caparica, Portugal;
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
7
|
Shatz-Azoulay H, Vinik Y, Isaac R, Kohler U, Lev S, Zick Y. The Animal Lectin Galectin-8 Promotes Cytokine Expression and Metastatic Tumor Growth in Mice. Sci Rep 2020; 10:7375. [PMID: 32355198 PMCID: PMC7193594 DOI: 10.1038/s41598-020-64371-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/10/2020] [Indexed: 01/15/2023] Open
Abstract
Secreted animal lectins of the galectin family are key players in cancer growth and metastasis. Here we show that galectin-8 (gal-8) induces the expression and secretion of cytokines and chemokines such as SDF-1 and MCP-1 in a number of cell types. This involves gal-8 binding to a uPAR/LRP1/integrin complex that activates JNK and the NFkB pathway. Cytokine and chemokine secretion, induced by gal-8, promotes migration of cancer cells toward cells treated with this lectin. Indeed, immune-competent gal-8 knockout (KO) mice express systemic lower levels of cytokines and chemokines while the opposite is true for gal-8 transgenic animals. Accordingly, gal-8 KO mice experience reduced tumor size and smaller and fewer metastatic lesions when injected with cancer cells. These results suggest the existence of a 'vicious cycle' whereby gal-8 secreted by the tumor microenvironment, promotes secretion of chemoattractants at the metastatic niche that promote further recruitment of tumor cells to that site. This study further implicate gal-8 in control of cancer progression and metastasis through its effects on the production of immunoregulatory cytokines.
Collapse
Affiliation(s)
- Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulrike Kohler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
8
|
Besançon C, Guillot A, Blaise S, Dauchez M, Belloy N, Prévoteau-Jonquet J, Baud S. Umbrella Visualization: A method of analysis dedicated to glycan flexibility with UnityMol. Methods 2020; 173:94-104. [PMID: 31302178 PMCID: PMC7128144 DOI: 10.1016/j.ymeth.2019.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/17/2023] Open
Abstract
N-glycosylation is a post-translational modification heavily impacting protein functions. Some alterations of glycosylation, such as sialic acid hydrolysis, are related to protein dysfunction. Because of their high flexibility and the many reactive groups of the glycan chains, studying glycans with in vitro methods is a challenging task. Molecular dynamics is a useful tool and probably the only one in biology able to overcome this problem and gives access to conformational information through exhaustive sampling. To better decipher the impact of N-glycans, the analysis and visualization of their influence over time on protein structure is a prerequisite. We developed the Umbrella Visualization, a graphical method that assigns the glycan intrinsic flexibility during a molecular dynamics trajectory. The density plot generated by this method brought relevant informations regarding glycans dynamics and flexibility, but needs further development in order to integrate an accurate description of the protein topology and its interactions. We propose here to transform this analysis method into a visualization mode in UnityMol. UnityMol is a molecular editor, viewer and prototyping platform, coded in C#. The new representation of glycan chains presented in this study takes into account both the main positions adopted by each antenna of a glycan and their statistical relevance. By displaying the collected data on the protein surface, one is then able to investigate the protein/glycan interactions.
Collapse
Affiliation(s)
- Camille Besançon
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France.
| | - Alexandre Guillot
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Sébastien Blaise
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France
| | - Manuel Dauchez
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| | - Nicolas Belloy
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| | | | - Stéphanie Baud
- Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51097 Reims, France; Université de Reims Champagne Ardenne, Plateau de Modélisation Moléculaire Multi-Echelle (P3M), Maison de la Simulation de Champagne Ardenne (MaSCA), 51097 Reims, France
| |
Collapse
|
9
|
The sugar code: letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem J 2019; 476:2623-2655. [PMID: 31551311 DOI: 10.1042/bcj20170853] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Ubiquitous occurrence in Nature, abundant presence at strategically important places such as the cell surface and dynamic shifts in their profile by diverse molecular switches qualifies the glycans to serve as versatile biochemical signals. However, their exceptional structural complexity often prevents one noting how simple the rules of objective-driven assembly of glycan-encoded messages are. This review is intended to provide a tutorial for a broad readership. The principles of why carbohydrates meet all demands to be the coding section of an information transfer system, and this at unsurpassed high density, are explained. Despite appearing to be a random assortment of sugars and their substitutions, seemingly subtle structural variations in glycan chains by a sophisticated enzymatic machinery have emerged to account for their specific biological meaning. Acting as 'readers' of glycan-encoded information, carbohydrate-specific receptors (lectins) are a means to turn the glycans' potential to serve as signals into a multitude of (patho)physiologically relevant responses. Once the far-reaching significance of this type of functional pairing has become clear, the various modes of spatial presentation of glycans and of carbohydrate recognition domains in lectins can be explored and rationalized. These discoveries are continuously revealing the intricacies of mutually adaptable routes to achieve essential selectivity and specificity. Equipped with these insights, readers will gain a fundamental understanding why carbohydrates form the third alphabet of life, joining the ranks of nucleotides and amino acids, and will also become aware of the importance of cellular communication via glycan-lectin recognition.
Collapse
|
10
|
Polonskaya Z, Savage PB, Finn MG, Teyton L. High-affinity anti-glycan antibodies: challenges and strategies. Curr Opin Immunol 2019; 59:65-71. [PMID: 31029911 DOI: 10.1016/j.coi.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
High-affinity binding of antibodies provides for increased specificity and usually higher effector functions in vivo. This goal, well documented in cancer immunotherapy, is very relevant to vaccines as well, and has particularly significant application toward glycan antigens. The inability to elicit high-affinity antibodies has limited potential applications of glycan-based immunogens, giving rise to insufficient population coverage due to low titers and short duration of protection. That such vaccines have achieved widespread use in spite of these shortcomings highlights the surpassing importance of glycans as prophylactic immunological targets. New advances in the combination of synthetic chemistry, bioconjugation, and mechanistic immunology offer the possibility to vastly expand the number of potential molecular targets in cancer and infectious diseases by opening a wider world of carbohydrate structures to immunological recognition and high-affinity response.
Collapse
Affiliation(s)
- Zinaida Polonskaya
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, UT, USA
| | - M G Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus 2019; 9:20180060. [PMID: 30842868 DOI: 10.1098/rsfs.2018.0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Essentially all living systems produce complex carbohydrates as an energy source, structural component, protective coat or adhesive for cell attachment. Many polysaccharides are displayed on the cell surface or are threaded through proteinaceous tunnels for degradation. Dictated by their chemical composition and mode of polymerization, the physical properties of complex carbohydrates differ substantially, from amphipathic water-insoluble polymers to highly hydrated hydrogel-forming macromolecules. Accordingly, diverse recognition and translocation mechanisms evolved to transport polysaccharides to their final destinations. This review will summarize and compare diverse polysaccharide transport mechanisms implicated in the biosynthesis and degradation of cell surface polymers in pro- and eukaryotes.
Collapse
Affiliation(s)
- Jochen Zimmer
- University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Biophysical Analyses for Probing Glycan-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:119-147. [PMID: 30484247 PMCID: PMC7153041 DOI: 10.1007/978-981-13-2158-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycan-protein interactions occur at many physiological events, and the analyses are of considerable importance for understanding glycan-dependent mechanisms. Biophysical approaches including 3D structural analysis are essential for revealing glycan-protein interactions at the atomic level. The inherent diversity of glycans suits them to function as identification tags, e.g., distinguish self from the nonself components of pathogens. However, the complexity of glycans and poor affinities for interaction partners limit the usefulness of conventional analyses. To cope with such troublesome glycans, a logical sequence of biophysical analyses need to be developed. In this chapter, we introduce a workflow of glycan-protein interaction analysis consisting of six steps: preparation of lectin and glycan, screening of glycan ligand, determination of binding epitope, quantitative interaction analysis, 3D structural analysis, and molecular dynamics simulation. Our increasing knowledge and understanding of lectin-glycan interactions will hopefully lead to the design of glyco-based medicines and vaccines.
Collapse
|
13
|
Extracellular galectins as controllers of cytokines in hematological cancer. Blood 2018; 132:484-491. [PMID: 29875102 DOI: 10.1182/blood-2018-04-846014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Galectins and cytokines are both secreted proteins whose levels are prognosis factors for several cancers. Extracellular galectins bind to the glycans decorating glycoproteins and are overproduced in most cancers. Accumulative evidence shows that galectins regulate cytokines during cancer progression. Although galectins alter cytokine function by binding to the glycans decorating cytokines or their receptors, cytokines could also regulate galectin expression and function. This review revises these complex interactions and their clinical impact, particularly in hematological cancers.
Collapse
|
14
|
Link-Lenczowski P, Bubka M, Balog CIA, Koeleman CAM, Butters TD, Wuhrer M, Lityńska A. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans. Glycoconj J 2018; 35:217-231. [PMID: 29502191 PMCID: PMC5916991 DOI: 10.1007/s10719-018-9814-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/15/2018] [Accepted: 01/30/2018] [Indexed: 11/28/2022]
Abstract
N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan "bisection" and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266-4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the "bisecting" GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of "bisecting" GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of "bisected" oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Michałowskiego 12, 31-126, Kraków, Poland.
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Crina I A Balog
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Hanashima S, Suga A, Yamaguchi Y. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini. Carbohydr Res 2018; 456:53-60. [PMID: 29274553 DOI: 10.1016/j.carres.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/10/2017] [Indexed: 01/23/2023]
Abstract
Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1H and 13C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3JC-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3JC-H and 3JH-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events.
Collapse
Affiliation(s)
- Shinya Hanashima
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Akitsugu Suga
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
16
|
Lorenz V, Cejas RB, Bennett EP, Nores GA, Irazoqui FJ. Functional control of polypeptide GalNAc-transferase 3 through an acetylation site in the C-terminal lectin domain. Biol Chem 2017; 398:1237-1246. [PMID: 28672761 DOI: 10.1515/hsz-2017-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/21/2017] [Indexed: 11/15/2022]
Abstract
O-GalNAc glycans are important structures in cellular homeostasis. Their biosynthesis is initiated by members of the polypeptide GalNAc-transferase (ppGalNAc-T) enzyme family. Mutations in ppGalNAc-T3 isoform cause diseases (congenital disorders of glycosylation) in humans. The K626 residue located in the C-terminal β-trefoil fold of ppGalNAc-T3 was predicted to be a site with high likelihood of acetylation by CBP/p300 acetyltransferase. We used a site-directed mutagenesis approach to evaluate the role of this acetylation site in biological properties of the enzyme. Two K626 mutants of ppGalNAc-T3 (T3K626Q and T3K626A) had GalNAc-T activities lower than that of wild-type enzyme. Direct and competitive interaction assays revealed that GalNAc recognition by the lectin domain was altered in the mutants. The presence of GlcNAc glycosides affected the interaction of the three enzymes with mucin-derived peptides. In GalNAc-T activity assays, the presence of GlcNAc glycosides significantly inhibited activity of the mutant (T3K626Q) that mimicked acetylation. Our findings, taken together, reveal the crucial role of the K626 residue in the C-terminal β-trefoil fold in biological properties of human ppGalNAc-T3. We propose that acetylated residues on ppGalNAc-T3 function as control points for enzyme activity, and high level of GlcNAc glycosides promote a synergistic regulatory mechanism, leading to a metabolically disordered state.
Collapse
|
17
|
Nagae M, Mishra SK, Hanashima S, Tateno H, Yamaguchi Y. Distinct roles for each N-glycan branch interacting with mannose-binding type Jacalin-related lectins Orysata and Calsepa. Glycobiology 2017; 27:1120-1133. [DOI: 10.1093/glycob/cwx081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sushil K Mishra
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinya Hanashima
- Department of Chemistry, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Tateno
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance. Anal Biochem 2017; 538:53-63. [PMID: 28947169 DOI: 10.1016/j.ab.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/21/2023]
Abstract
Glycan profiling of proteins was studied through their lectin binding activity by Surface Plasmon Resonance (SPR). To validate the method, we monitored specific lectin binding with sequential removal of sugar moieties from human transferrin using specific glycosidases. The results clearly indicated that glycans on the protein can be identified by their selective binding activity to various lectins. Using this method, we characterized Fc glycosylation profiles of therapeutic peptibodies and antibodies expressed in mammalian cells (CHO and HEK 293 6E cells), with E. coli expressed proteins as the negative controls. We observed that antibodies expressed in CHO cells did not contain any sialic acid, while antibodies expressed in 293 6E cells contained sialic acid. CHO cell expressed antibodies were also more heavily fucosylated than the ones expressed by 293 6E cells. We further applied this method to measure the fucose composition of glycan engineered mouse antibodies, as well as to determine mannose composition of human antibody variants with depletion or enrichment of high mannose. The glycan profiles generated using this method were comparable to results from 2-AB labeled glycan analysis of normal-phase separated glycans, and Fc gamma receptor binding activity of the glycan engineered antibodies were consistent with their glycan profiles. Hence, we demonstrated that SPR lectin binding analysis can be a quick alternative method to profile protein glycosylation.
Collapse
|
19
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
20
|
Abstract
More than half of all proteins are glycosylated. The attached glycans provide proteins with important structural and functional properties and glycan parts of glycoproteins have essential roles in many key biological processes. This chapter describes the effect of glycosylation on the structure and function of proteins, with emphasis on regulation of protein half-life and modulation of protein function by alternative glycosylation. In addition, this chapter highlights the importance of glycan-lectin interactions, the ability of glycans to block phosphorylation of proteins, and the importance of glycans in disease.
Collapse
Affiliation(s)
- Jasminka Krištić
- Genos Glycoscience Research Laboratory, Hondlova 2/11, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Hondlova 2/11, Zagreb, Croatia. .,Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
21
|
Abstract
An experimental observation on selecting binding partners underlies the introduction of the term 'lectin'. Agglutination of erythrocytes depending on their blood-group status revealed the presence of activities in plant extracts that act in an epitope-specific manner like antibodies. As it turned out, their binding partners on the cell surface are carbohydrates of glycoconjugates. By definition, lectins are glycan-specific (mono- or oligosaccharides presented by glycoconjugates or polysaccharides) receptors, distinguished from antibodies, from enzymes using carbohydrates as substrates and from transporters of free saccharides. They are ubiquitous in Nature and structurally widely diversified. More than a dozen types of folding pattern have evolved for proteins that bind glycans. Used as tool, this capacity facilitates versatile mapping of glycan presence so that plant/fungal and also animal/human lectins have found a broad spectrum of biomedical applications. The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.
Collapse
|
22
|
Nakashima I, Kishida A, Takaoka Y, Morisada S, Ohto K, Kawakita H, Iwasaki W, Sathuluri RR, Miyazaki M. Adsorption and Elution of Glucuronic Acid and Chondroitin Sulfate Using Amino-Group-Containing Spherical Gel. J Appl Glycosci (1999) 2016; 63:69-75. [PMID: 34354485 PMCID: PMC8056919 DOI: 10.5458/jag.jag.jag-2016_004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/14/2016] [Indexed: 11/04/2022] Open
Abstract
Abstract: A spherical gel containing amino groups was prepared using monomers of N,N-dimethylacrylamide and N,N-dimethylaminoethyl methacrylate, with a cross-linker composed of N,N′-methylenebisacrylamide prepared by suspension polymerization for the adsorption of glucuronic acid and chondroitin sulfate. The prepared gel was immersed in glucose, glucuronic acid, and chondroitin sulfate solutions to determine the adsorption performance in batch mode, which demonstrated that 20 % of the chondroitin sulfate was adsorbed to the amino-group-containing gel. The amino-group-containing gel was packed into a column to permeate the chondroitin sulfate-containing solution (0.40 g/L) at pH 2.0, and it adsorbed chondroitin sulfate to the gel at a space velocity of 4.5 h-1. When the space velocity was changed to 1.5 h-1, the amount of chondroitin sulfate increased. When 0.50 M NaCl solution was permeated through the chondroitin-sulfate-adsorbed gel in column mode, 70 % of the chondroitin sulfate was eluted. This spherical gel may be applicable for acidic glycan recovery using batch and permeation modes.
Collapse
Affiliation(s)
- Izumi Nakashima
- 1 Department of Chemistry and Applied Chemistry, Saga University
| | - Akari Kishida
- 1 Department of Chemistry and Applied Chemistry, Saga University
| | - Yuji Takaoka
- 1 Department of Chemistry and Applied Chemistry, Saga University
| | | | - Keisuke Ohto
- 1 Department of Chemistry and Applied Chemistry, Saga University
| | | | - Wataru Iwasaki
- 2 Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Ramachandra Rao Sathuluri
- 2 Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Masaya Miyazaki
- 2 Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
23
|
Reesink HL, Bonnevie ED, Liu S, Shurer CR, Hollander MJ, Bonassar LJ, Nixon AJ. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage. Sci Rep 2016; 6:25463. [PMID: 27157803 PMCID: PMC4860590 DOI: 10.1038/srep25463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.
Collapse
Affiliation(s)
- Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sherry Liu
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R Shurer
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States of America
| | - Michael J Hollander
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Alan J Nixon
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
24
|
Nagae M, Ikeda A, Hanashima S, Kojima T, Matsumoto N, Yamamoto K, Yamaguchi Y. Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. FEBS Lett 2016; 590:1280-8. [PMID: 27015765 DOI: 10.1002/1873-3468.12162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Human dendritic cell inhibitory receptor (DCIR) is a C-type lectin receptor expressed in classical dendritic cells and accepts several oligosaccharide ligands including N-glycans. Here, we report the crystal structures of human DCIR C-type lectin domains in the absence and presence of a branched N-glycan unit. The domain has a typical C-type lectin fold and two bound calcium ions. In the ligand-bound form, the disaccharide unit (GlcNAcβ1-2Man) acceptably fits the electron density map, indicating that it forms the main epitope. The recognition of the nonterminal N-glycan unit explains the relatively broad specificity of this lectin.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Akemi Ikeda
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Shinya Hanashima
- Department of Chemistry, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| | - Takumi Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| |
Collapse
|
25
|
Nakakita SI, Itoh A, Nakakita Y, Nonaka Y, Ogawa T, Nakamura T, Nishi N. Cooperative Interactions of Oligosaccharide and Peptide Moieties of a Glycopeptide Derived from IgE with Galectin-9. J Biol Chem 2015; 291:968-79. [PMID: 26582205 DOI: 10.1074/jbc.m115.694448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/06/2023] Open
Abstract
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.
Collapse
Affiliation(s)
| | - Aiko Itoh
- Division of Research Instrument and Equipment, Life Science Research Center, and
| | | | - Yasuhiro Nonaka
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Ogawa
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takanori Nakamura
- the Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Nozomu Nishi
- Division of Research Instrument and Equipment, Life Science Research Center, and
| |
Collapse
|