1
|
Karl MT, Kim YD, Rajendran K, Manger PR, Sherwood CC. Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function. J Comp Neurol 2024; 532:e25669. [PMID: 39291629 PMCID: PMC11412485 DOI: 10.1002/cne.25669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Collapse
Affiliation(s)
- Molly T Karl
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Young Do Kim
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kavita Rajendran
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Fernandes EFA, Palner M, Raval NR, Jeppesen TE, Danková D, Bærentzen SL, Werner C, Eilts J, Maric HM, Doose S, Aripaka SS, Kaalund SS, Aznar S, Kjaer A, Schlosser A, Haugaard-Kedström LM, Knudsen GM, Herth MM, Stro Mgaard K. Development of Peptide-Based Probes for Molecular Imaging of the Postsynaptic Density in the Brain. J Med Chem 2024; 67:11975-11988. [PMID: 38981131 DOI: 10.1021/acs.jmedchem.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.
Collapse
Affiliation(s)
- Eduardo F A Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Troels E Jeppesen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Daniela Danková
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Simone L Bærentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Hans M Maric
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Sanjay Sagar Aripaka
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Sanne Simone Kaalund
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
| | - Susana Aznar
- Center for Neuroscience and Stereology, Bispebjerg University Hospital, Nielsine Nielsens Vej 6B, Copenhagen DK-2400, Denmark
- Center for Translational Research, Bispebjerg University Hospital, Nielsine Nielsens Vej 4B, Copenhagen DK-2400, Denmark
| | - Andreas Kjaer
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Andreas Schlosser
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University, Am Hubland, Würzburg D-97074, Germany
| | - Linda M Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Matthias M Herth
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | - Kristian Stro Mgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
3
|
Delhaye M, LeDue J, Robinson K, Xu Q, Zhang Q, Oku S, Zhang P, Craig AM. Adaptation of Magnified Analysis of the Proteome for Excitatory Synaptic Proteins in Varied Samples and Evaluation of Cell Type-Specific Distributions. J Neurosci 2024; 44:e1291232024. [PMID: 38360747 PMCID: PMC10993037 DOI: 10.1523/jneurosci.1291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Collapse
Affiliation(s)
- Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaylie Robinson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Qin Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
4
|
Marcatti M, Jamison D, Fracassi A, Zhang WR, Limon A, Taglialatela G. A method to study human synaptic protein-protein interactions by using flow cytometry coupled to proximity ligation assay (Syn-FlowPLA). J Neurosci Methods 2023; 396:109920. [PMID: 37459899 DOI: 10.1016/j.jneumeth.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Marcatti
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Danielle Jamison
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Wen-Ru Zhang
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA.
| |
Collapse
|
5
|
Papantoniou C, Laugks U, Betzin J, Capitanio C, Ferrero JJ, Sánchez-Prieto J, Schoch S, Brose N, Baumeister W, Cooper BH, Imig C, Lučić V. Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming. SCIENCE ADVANCES 2023; 9:eadf6222. [PMID: 37343100 PMCID: PMC10284560 DOI: 10.1126/sciadv.adf6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.
Collapse
Affiliation(s)
- Christos Papantoniou
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia Betzin
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Cristina Capitanio
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - José Javier Ferrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Susanne Schoch
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin H. Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vladan Lučić
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Falconieri A, De Vincentiis S, Cappello V, Convertino D, Das R, Ghignoli S, Figoli S, Luin S, Català-Castro F, Marchetti L, Borello U, Krieg M, Raffa V. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Rep 2022; 42:111912. [PMID: 36640304 PMCID: PMC9902337 DOI: 10.1016/j.celrep.2022.111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is crucial in guiding axon outgrowth before and after synapse formation. This process is referred to as "stretch growth." However, how neurons transduce mechanical input into signaling pathways remains poorly understood. Another open question is how stretch growth is coupled in time with the intercalated addition of new mass along the entire axon. Here, we demonstrate that active mechanical force generated by magnetic nano-pulling induces remodeling of the axonal cytoskeleton. Specifically, the increase in the axonal density of microtubules induced by nano-pulling leads to an accumulation of organelles and signaling vesicles, which, in turn, promotes local translation by increasing the probability of assembly of the "translation factories." Modulation of axonal transport and local translation sustains enhanced axon outgrowth and synapse maturation.
Collapse
Affiliation(s)
| | - Sara De Vincentiis
- Department of Biology, Università di Pisa, 56127 Pisa, Italy,The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Ravi Das
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | | | - Sofia Figoli
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Stefano Luin
- National Enterprise for NanoScience and NanoTechnology (NEST) Laboratory, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Frederic Català-Castro
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy,Department of Pharmacy, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Michael Krieg
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy.
| |
Collapse
|
7
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
8
|
Isotropic reconstruction for electron tomography with deep learning. Nat Commun 2022; 13:6482. [PMID: 36309499 PMCID: PMC9617606 DOI: 10.1038/s41467-022-33957-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. However, anisotropic resolution arising from the intrinsic "missing-wedge" problem has presented major challenges in visualization and interpretation of tomograms. Here, we have developed IsoNet, a deep learning-based software package that iteratively reconstructs the missing-wedge information and increases signal-to-noise ratio, using the knowledge learned from raw tomograms. Without the need for sub-tomogram averaging, IsoNet generates tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three representative types of cryoET data demonstrate greatly improved structural interpretability: resolving lattice defects in immature HIV particles, establishing architecture of the paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without sub-tomogram averaging. Its application to high-resolution cellular tomograms should also help identify differently oriented complexes of the same kind for sub-tomogram averaging.
Collapse
|
9
|
Digitalizing neuronal synapses with cryo-electron tomography and correlative microscopy. Curr Opin Neurobiol 2022; 76:102595. [DOI: 10.1016/j.conb.2022.102595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
|
10
|
Computational methods for ultrastructural analysis of synaptic complexes. Curr Opin Neurobiol 2022; 76:102611. [PMID: 35952541 DOI: 10.1016/j.conb.2022.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
Electron microscopy (EM) provided fundamental insights about the ultrastructure of neuronal synapses. The large amount of information present in the contemporary EM datasets precludes a thorough assessment by visual inspection alone, thus requiring computational methods for the analysis of the data. Here, I review image processing software methods ranging from membrane tracing in large volume datasets to high resolution structures of synaptic complexes. Particular attention is payed to molecular level analysis provided by recent cryo-electron microscopy and tomography methods.
Collapse
|
11
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
12
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
13
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
14
|
Zuber B, Lučić V. Neurons as a model system for cryo-electron tomography. J Struct Biol X 2022; 6:100067. [PMID: 35310407 PMCID: PMC8924422 DOI: 10.1016/j.yjsbx.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cryo-ET imaging of neurons is a versatile system for cell biology in situ. Structural and spatial localization analysis yields new insights into synaptic transmission. The synapse provides a rich environment for the development of image processing tools.
Cryo-electron tomography (Cryo-ET) provides unique opportunities to image cellular components at high resolution in their native state and environment. While many different cell types were investigated by cryo-ET, here we review application to neurons. We show that neurons are a versatile system that can be used to investigate general cellular components such as the cytoskeleton and membrane-bound organelles, in addition to neuron-specific processes such as synaptic transmission. Furthermore, the synapse provides a rich environment for the development of cryo-ET image processing tools suitable to elucidate the functional and spatial organization of compositionally and morphologically heterogeneous macromolecular complexes involved in biochemical signaling cascades, within their native, crowded cellular environments.
Collapse
|
15
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Radulović S, Sunkara S, Maurer C, Leitinger G. Digging Deeper: Advancements in Visualization of Inhibitory Synapses in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:12470. [PMID: 34830352 PMCID: PMC8623765 DOI: 10.3390/ijms222212470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.
Collapse
Affiliation(s)
- Snježana Radulović
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Sowmya Sunkara
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| | - Christa Maurer
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, 8010 Graz, Austria;
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (S.S.)
| |
Collapse
|
17
|
Zhang X, Liu Y, Hong X, Li X, Meshul CK, Moore C, Yang Y, Han Y, Li WG, Qi X, Lou H, Duan S, Xu TL, Tong X. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun 2021; 12:5740. [PMID: 34593806 PMCID: PMC8484468 DOI: 10.1038/s41467-021-25956-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
NG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.
Collapse
Affiliation(s)
- Xiao Zhang
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Liu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Hong
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Charles K Meshul
- Research Services, VA Medical Center, Portland, OR, USA
- Department of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Cynthia Moore
- Research Services, VA Medical Center, Portland, OR, USA
| | - Yabing Yang
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Qi
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Lou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian-Le Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| |
Collapse
|
18
|
Tran HT, Lucas MS, Ishikawa T, Shahmoradian SH, Padeste C. A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging. Front Neurosci 2021; 15:726763. [PMID: 34566569 PMCID: PMC8455873 DOI: 10.3389/fnins.2021.726763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.
Collapse
Affiliation(s)
- Hung Tri Tran
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
19
|
León A, Aparicio GI, Scorticati C. Neuronal Glycoprotein M6a: An Emerging Molecule in Chemical Synapse Formation and Dysfunction. Front Synaptic Neurosci 2021; 13:661681. [PMID: 34017241 PMCID: PMC8129562 DOI: 10.3389/fnsyn.2021.661681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular and molecular mechanisms underlying neuropsychiatric and neurodevelopmental disorders show that most of them can be categorized as synaptopathies-or damage of synaptic function and plasticity. Synaptic formation and maintenance are orchestrated by protein complexes that are in turn regulated in space and time during neuronal development allowing synaptic plasticity. However, the exact mechanisms by which these processes are managed remain unknown. Large-scale genomic and proteomic projects led to the discovery of new molecules and their associated variants as disease risk factors. Neuronal glycoprotein M6a, encoded by the GPM6A gene is emerging as one of these molecules. M6a has been involved in neuron development and synapse formation and plasticity, and was also recently proposed as a gene-target in various neuropsychiatric disorders where it could also be used as a biomarker. In this review, we provide an overview of the structure and molecular mechanisms by which glycoprotein M6a participates in synapse formation and maintenance. We also review evidence collected from patients carrying mutations in the GPM6A gene; animal models, and in vitro studies that together emphasize the relevance of M6a, particularly in synapses and in neurological conditions.
Collapse
Affiliation(s)
| | | | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas “Rodolfo A. Ugalde”, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Martinez-Sanchez A, Laugks U, Kochovski Z, Papantoniou C, Zinzula L, Baumeister W, Lučić V. Trans-synaptic assemblies link synaptic vesicles and neuroreceptors. SCIENCE ADVANCES 2021; 7:7/10/eabe6204. [PMID: 33674312 PMCID: PMC7935360 DOI: 10.1126/sciadv.abe6204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Synaptic transmission is characterized by fast, tightly coupled processes and complex signaling pathways that require a precise protein organization, such as the previously reported nanodomain colocalization of pre- and postsynaptic proteins. Here, we used cryo-electron tomography to visualize synaptic complexes together with their native environment comprising interacting proteins and lipids on a 2- to 4-nm scale. Using template-free detection and classification, we showed that tripartite trans-synaptic assemblies (subcolumns) link synaptic vesicles to postsynaptic receptors and established that a particular displacement between directly interacting complexes characterizes subcolumns. Furthermore, we obtained de novo average structures of ionotropic glutamate receptors in their physiological composition, embedded in plasma membrane. These data support the hypothesis that synaptic function is carried by precisely organized trans-synaptic units. It provides a framework for further exploration of synaptic and other large molecular assemblies that link different cells or cellular regions and may require weak or transient interactions to exert their function.
Collapse
Affiliation(s)
- Antonio Martinez-Sanchez
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Department of Computer Sciences, Faculty of Sciences, University of Oviedo, Federico Garcia Lorca 18, 33007, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avenida Hospital Universitario s/n, 33011 Oviedo, Spain
- Institute of Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Ulrike Laugks
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Zdravko Kochovski
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christos Papantoniou
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Luca Zinzula
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Vladan Lučić
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Mesophasic organization of GABA A receptors in hippocampal inhibitory synapses. Nat Neurosci 2020; 23:1589-1596. [PMID: 33139942 DOI: 10.1038/s41593-020-00729-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 09/28/2020] [Indexed: 11/08/2022]
Abstract
Information processing in the brain depends on specialized organization of neurotransmitter receptors and scaffolding proteins within the postsynaptic density. However, how these molecules are organized in situ remains largely unknown. In this study, template-free classification of oversampled sub-tomograms was used to analyze cryo-electron tomograms of hippocampal synapses. We identified type-A GABA receptors (GABAARs) in inhibitory synapses and determined their in situ structure at 19-Å resolution. These receptors are organized hierarchically: from GABAAR super-complexes with a preferred inter-receptor distance of 11 nm but variable relative angles, through semi-ordered, two-dimensional receptor networks with reduced Voronoi entropy, to mesophasic assembly with a sharp phase boundary. These assemblies likely form via interactions among postsynaptic scaffolding proteins and receptors and align with putative presynaptic vesicle release sites. Such mesophasic self-organization might allow synapses to achieve a 'Goldilocks' state, striking a balance between stability and flexibility and enabling plasticity in information processing.
Collapse
|
22
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
23
|
Ohadi D, Rangamani P. Geometric Control of Frequency Modulation of cAMP Oscillations due to Calcium in Dendritic Spines. Biophys J 2019; 117:1981-1994. [PMID: 31668747 PMCID: PMC7018999 DOI: 10.1016/j.bpj.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
The spatiotemporal regulation of cyclic adenosine monophosphate (cAMP) and its dynamic interactions with other second messengers such as calcium are critical features of signaling specificity required for neuronal development and connectivity. cAMP is known to contribute to long-term potentiation and memory formation by controlling the formation and regulation of dendritic spines. Despite the recent advances in biosensing techniques for monitoring spatiotemporal cAMP dynamics, the underlying molecular mechanisms that attribute to the subcellular modulation of cAMP remain unknown. In this work, we model the spatiotemporal dynamics of calcium-induced cAMP signaling pathway in dendritic spines. Using a three-dimensional reaction-diffusion model, we investigate the effect of different spatial characteristics of cAMP dynamics that may be responsible for subcellular regulation of cAMP concentrations. Our model predicts that the volume/surface ratio of the spine, regulated through the spine head size, spine neck size, and the presence of physical barriers (spine apparatus), is an important regulator of cAMP dynamics. Furthermore, localization of the enzymes responsible for the synthesis and degradation of cAMP in different compartments also modulates the oscillatory patterns of cAMP through exponential relationships. Our findings shed light on the significance of complex geometric and localization relationships for cAMP dynamics in dendritic spines.
Collapse
Affiliation(s)
- Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California.
| |
Collapse
|
24
|
Zuber B, Lučić V. Molecular architecture of the presynaptic terminal. Curr Opin Struct Biol 2019; 54:129-138. [PMID: 30925443 DOI: 10.1016/j.sbi.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitter release at the presynaptic terminal is one of the fundamental processes in neuronal communication. It is a complex process comprising signaling pathways that exert a precise spatio-temporal coordination to prepare and bring synaptic vesicles to exocytosis. While many molecular components involved have been identified, their direct observation at different stages of the neurotransmitter release is lacking. Three-dimensional imaging by electron tomography provided remarkable views of the synaptic vesicles and the cytomatrix. Imaging fully hydrated, vitrified samples allowed a direct visualization, precise localization and a quantitative characterization of pleomorphic synaptic vesicle-bound complexes in situ, as well as the elucidation of their function in the neurotransmitter release.
Collapse
Affiliation(s)
- Benoît Zuber
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladan Lučić
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
25
|
Editorial overview: Synapses: bridging the gap between their structure and function. Curr Opin Struct Biol 2019; 54:iii-vii. [DOI: 10.1016/j.sbi.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|