1
|
Bonin JP, Aramini JM, Kay LE. Structural Plasticity as a Driver of the Maturation of Pro-Interleukin-18. J Am Chem Soc 2024. [PMID: 39447133 DOI: 10.1021/jacs.4c09805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Dynamics are often critical for biomolecular function. Herein we explore the role of motion in driving the maturation process of pro-IL-18, a potent pro-inflammatory cytokine that is cleaved by caspases-1 and -4 to generate the mature form of the protein. An NMR dynamics study of pro-IL-18, probing time scales over 12 orders of magnitude and focusing on 1H, 13C, and 15N spin probes along the protein backbone and amino-acid side chains, reveals a plastic structure, with millisecond time scale dynamics occurring in a pair of β-strands, β1 and β*, that show large structural variations in a comparison of caspase-free and bound pro-IL-18 states. Fits of the relaxation data to a three-site model of exchange showed that the ground state secondary structure is maintained in the excited conformers, with the side chain of I48 that undergoes a buried-to-exposed conformational change in the caspase-free to -bound transition of pro-IL-18, sampling a more extensive range of torsion angles in one of the excited states characterized, suggesting partial unpacking in this region. Hydrogen exchange measurements establish the occurrence of an additional process, whereby strands β1 and β* locally unfold. Our data are consistent with a hierarchy of dynamic events that likely prime pro-IL-18 for facile caspase binding.
Collapse
Affiliation(s)
- Jeffrey P Bonin
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - James M Aramini
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lewis E Kay
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
2
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
3
|
Klyshko E, Kim JSH, McGough L, Valeeva V, Lee E, Ranganathan R, Rauscher S. Functional protein dynamics in a crystal. Nat Commun 2024; 15:3244. [PMID: 38622111 PMCID: PMC11018856 DOI: 10.1038/s41467-024-47473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.
Collapse
Affiliation(s)
- Eugene Klyshko
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justin Sung-Ho Kim
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Lauren McGough
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Victoria Valeeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rama Ranganathan
- Center for Physics of Evolving Systems and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Gelenter MD, Yau WM, Anfinrud PA, Bax A. From Milliseconds to Minutes: Melittin Self-Assembly from Concerted Non-Equilibrium Pressure-Jump and Equilibrium Relaxation Nuclear Magnetic Resonance. J Phys Chem Lett 2024; 15:1930-1935. [PMID: 38346015 PMCID: PMC10896212 DOI: 10.1021/acs.jpclett.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Non-equilibrium kinetics techniques like pressure-jump nuclear magnetic resonance (NMR) are powerful in tracking changes in oligomeric populations and are not limited by relaxation rates for the time scales of exchange that can be probed. However, these techniques are less sensitive to minor, transient populations than are Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments. We integrated non-equilibrium pressure-jump and equilibrium CPMG relaxation dispersion data to fully map the kinetic landscape of melittin tetramerization. While monomeric peptides weakly form dimers (Kd,D/M ≈ 26 mM) whose population never exceeds 1.6% at 288 K, dimers associate tightly to form stable tetrameric species (Kd,T/D ≈ 740 nM). Exchange between the monomer and dimer, along with exchange between the dimer and tetramer, occurs on the millisecond time scale. The NMR approach developed herein can be readily applied to studying the folding and misfolding of a wide range of oligomeric assemblies.
Collapse
Affiliation(s)
- Martin D Gelenter
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States
| | - Philip A Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Karamanos TK, Matthews S. Biomolecular NMR in the AI-assisted structural biology era: Old tricks and new opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140949. [PMID: 37572958 DOI: 10.1016/j.bbapap.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.
Collapse
Affiliation(s)
| | - Stephen Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London.
| |
Collapse
|
6
|
Ramelot TA, Tejero R, Montelione GT. Representing structures of the multiple conformational states of proteins. Curr Opin Struct Biol 2023; 83:102703. [PMID: 37776602 PMCID: PMC10841472 DOI: 10.1016/j.sbi.2023.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Roberto Tejero
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
7
|
Roy R, Geng A, Shi H, Merriman DK, Dethoff EA, Salmon L, Al-Hashimi HM. Kinetic Resolution of the Atomic 3D Structures Formed by Ground and Excited Conformational States in an RNA Dynamic Ensemble. J Am Chem Soc 2023; 145:22964-22978. [PMID: 37831584 DOI: 10.1021/jacs.3c04614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Knowing the 3D structures formed by the various conformations populating the RNA free-energy landscape, their relative abundance, and kinetic interconversion rates is required to obtain a quantitative and predictive understanding of how RNAs fold and function at the atomic level. While methods integrating ensemble-averaged experimental data with computational modeling are helping define the most abundant conformations in RNA ensembles, elucidating their kinetic rates of interconversion and determining the 3D structures of sparsely populated short-lived RNA excited conformational states (ESs) remains challenging. Here, we developed an approach integrating Rosetta-FARFAR RNA structure prediction with NMR residual dipolar couplings and relaxation dispersion that simultaneously determines the 3D structures formed by the ground-state (GS) and ES subensembles, their relative abundance, and kinetic rates of interconversion. The approach is demonstrated on HIV-1 TAR, whose six-nucleotide apical loop was previously shown to form a sparsely populated (∼13%) short-lived (lifetime ∼ 45 μs) ES. In the GS, the apical loop forms a broad distribution of open conformations interconverting on the pico-to-nanosecond time scale. Most residues are unpaired and preorganized to bind the Tat-superelongation protein complex. The apical loop zips up in the ES, forming a narrow distribution of closed conformations, which sequester critical residues required for protein recognition. Our work introduces an approach for determining the 3D ensemble models formed by sparsely populated RNA conformational states, provides a rare atomic view of an RNA ES, and kinetically resolves the atomic 3D structures of RNA conformational substates, interchanging on time scales spanning 6 orders of magnitude, from picoseconds to microseconds.
Collapse
Affiliation(s)
- Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elizabeth A Dethoff
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
8
|
Shukla VK, Siemons L, Hansen DF. Intrinsic structural dynamics dictate enzymatic activity and inhibition. Proc Natl Acad Sci U S A 2023; 120:e2310910120. [PMID: 37782780 PMCID: PMC10576142 DOI: 10.1073/pnas.2310910120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Lucas Siemons
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - D. Flemming Hansen
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Vedel IM, Papagiannoula A, Naudi-Fabra S, Milles S. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems. Curr Opin Struct Biol 2023; 82:102659. [PMID: 37499445 PMCID: PMC10565672 DOI: 10.1016/j.sbi.2023.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Many proteins require different structural states or conformations for function, and intrinsically disordered proteins, i.e. proteins without stable three-dimensional structure, are certainly an extreme. Single molecule fluorescence and nuclear magnetic resonance (NMR) spectroscopy are both exceptionally well suited to decipher and describe these states and their interconversion. Different time scales, from picoseconds to several milliseconds, can be addressed by both techniques. The length scales probed and the sample requirements (e.g. concentration, molecular weight, sample complexity) are, however, vastly different, making NMR and single molecule fluorescence an excellent combination for integrated studies. Here, we review recently undertaken approaches for the combined use of NMR and single molecule fluorescence to study protein dynamics.
Collapse
Affiliation(s)
- Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Andromachi Papagiannoula
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
10
|
Tužinčin D, Padrta P, Šanderová H, Rabatinová A, Bendová K, Krásný L, Žídek L, Kadeřávek P. Characterization of a transitionally occupied state and thermal unfolding of domain 1.1 of σ A factor of RNA polymerase from Bacillus subtilis. Proteins 2023; 91:1276-1287. [PMID: 37350110 DOI: 10.1002/prot.26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilisσ A exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and β strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full lengthσ A and its shortened version lacking domain 1.1 (σ A _ Δ 1.1 ). The results revealed that while full lengthσ A increases transcription activity of RNAP with increasing temperature, transcription withσ A _ Δ 1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.
Collapse
Affiliation(s)
- Dávid Tužinčin
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Petr Padrta
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alžběta Rabatinová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Bendová
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lukáš Žídek
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Kadeřávek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Pinto ÉSM, Krause MJ, Dorn M, Feltes BC. The nucleotide excision repair proteins through the lens of molecular dynamics simulations. DNA Repair (Amst) 2023; 127:103510. [PMID: 37148846 DOI: 10.1016/j.dnarep.2023.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Mutations that affect the proteins responsible for the nucleotide excision repair (NER) pathway can lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, and Cerebro-oculo-facio-skeletal syndrome. Hence, understanding their molecular behavior is needed to elucidate these diseases' phenotypes and how the NER pathway is organized and coordinated. Molecular dynamics techniques enable the study of different protein conformations, adaptable to any research question, shedding light on the dynamics of biomolecules. However, as important as they are, molecular dynamics studies focused on DNA repair pathways are still becoming more widespread. Currently, there are no review articles compiling the advancements made in molecular dynamics approaches applied to NER and discussing: (i) how this technique is currently employed in the field of DNA repair, focusing on NER proteins; (ii) which technical setups are being employed, their strengths and limitations; (iii) which insights or information are they providing to understand the NER pathway or NER-associated proteins; (iv) which open questions would be suited for this technique to answer; and (v) where can we go from here. These questions become even more crucial considering the numerous 3D structures published regarding the NER pathway's proteins in recent years. In this work, we tackle each one of these questions, revising and critically discussing the results published in the context of the NER pathway.
Collapse
Affiliation(s)
| | - Mathias J Krause
- Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Márcio Dorn
- Center for Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil; Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; National Institute of Science and Technology - Forensic Science, Porto Alegre, RS, Brazil
| | - Bruno César Feltes
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Olivieri C, Walker C, Manu V, Porcelli F, Taylor SS, Bernlohr DA, Veglia G. An NMR portrait of functional and dysfunctional allosteric cooperativity in cAMP-dependent protein kinase A. FEBS Lett 2023; 597:1055-1072. [PMID: 36892429 PMCID: PMC11334100 DOI: 10.1002/1873-3468.14610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - V.S. Manu
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Nakama T, Rossen A, Ebihara R, Yagi-Utsumi M, Fujita D, Kato K, Sato S, Fujita M. Hysteresis behavior in the unfolding/refolding processes of a protein trapped in metallo-cages. Chem Sci 2023; 14:2910-2914. [PMID: 36937586 PMCID: PMC10016334 DOI: 10.1039/d2sc05879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Confinement of molecules in a synthetic host can physically isolate even their unstable temporary structures, which has potential for application to protein transient structure analysis. Here we report the NMR snapshot observation of protein unfolding and refolding processes by confining a target protein in a self-assembled coordination cage. With increasing acetonitrile content in CD3CN/H2O media (50 to 90 vol%), the folding structure of a protein sharply denatured at 83 vol%, clearly revealing the regions of initial unfolding. Unfavorable aggregation of the protein leading to irreversible precipitation is completely prevented because of the spatial isolation of the single protein molecule in the cage. When the acetonitrile content reversed (84 to 70 vol%), the once-denatured protein started to regain its original folded structure at 80 vol%, showing that the protein folding/unfolding process can be referred to as a phase transition with hysteresis behavior.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Anouk Rossen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Ebihara
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Daishi Fujita
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Koichi Kato
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Sota Sato
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
15
|
Karamanos TK. Chasing long-range evolutionary couplings in the AlphaFold era. Biopolymers 2023; 114:e23530. [PMID: 36752285 PMCID: PMC10909459 DOI: 10.1002/bip.23530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.
Collapse
|
16
|
Gavrilov Y, Prestel A, Lindorff-Larsen K, Teilum K. Slow conformational changes in the rigid and highly stable chymotrypsin inhibitor 2. Protein Sci 2023; 32:e4604. [PMID: 36807681 PMCID: PMC10031225 DOI: 10.1002/pro.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Slow conformational changes are often directly linked to protein function. It is however less clear how such processes may perturb the overall folding stability of a protein. We previously found that the stabilizing double mutant L49I/I57V in the small protein chymotrypsin inhibitor 2 from barley led to distributed increased nanosecond and faster dynamics. Here we asked what effects the L49I and I57V substitutions, either individually or together, have on the slow conformational dynamics of CI2. We used 15 N CPMG spin relaxation dispersion experiments to measure the kinetics, thermodynamics and structural changes associated with slow conformational change in CI2. These changes result in an excited state that is populated to 4.3% at 1 °C. As the temperature is increased the population of the excited state decreases. Structural changes in the excited state are associated with residues that interact with water molecules that have well defined positions and are found at these positions in all crystal structures of CI2. The substitutions in CI2 have only little effect on the structure of the excited state whereas the stability of the excited state to some extent follows the stability of the main state. The minor state is thus most populated for the most stable CI2 variant and least populated for the least stable variant. We hypothesize that the interactions between the substituted residues and the well-ordered water molecules links subtle structural changes around the substituted residues to the region in the protein that experience slow conformational changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Present address: Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Zhang S, McCallum SA, Gillilan R, Wang J, Royer CA. High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. J Phys Chem B 2022; 126:10597-10607. [PMID: 36455152 PMCID: PMC10314987 DOI: 10.1021/acs.jpcb.2c05498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Given the central role of conformational dynamics in protein function, it is essential to characterize the time scales and structures associated with these transitions. High pressure (HP) perturbation favors transitions to excited states because they typically occupy a smaller molar volume, thus facilitating characterization of conformational dynamics. Repeat proteins, with their straightforward architecture, provide good models for probing the sequence dependence of protein conformational dynamics. Investigations of chemical exchange by 15N CPMG relaxation dispersion analysis revealed that introduction of a cavity via substitution of isoleucine 7 by alanine in the N-terminal capping motif of the pp32 leucine-rich repeat protein leads to pressure-dependent conformational exchange detected on the 500 μs-2 ms CPMG time scale. Exchange amplitude decreased from the N- to C-terminus, revealing a gradient of conformational exchange across the protein. In contrast, introduction of a cavity in the central core of pp32 via the L60A mutation led to pressure-induced exchange on a slower (>2 ms) time scale detected by 15N-CEST analysis. Excited state 15N chemical shifts indicated that in the excited state detected by HP CEST, the N-terminal region is mostly unfolded, while the core retains native-like structure. These HP chemical exchange measurements reveal that cavity position dictates exchange on distinct time scales, highlighting the subtle, yet central role of sequence in determining protein conformational dynamics.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Richard Gillilan
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY USA 14853
| | - Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy NY USA 12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY USA 12180
| |
Collapse
|
18
|
Ahmed R, Forman-Kay JD. NMR insights into dynamic, multivalent interactions of intrinsically disordered regions: from discrete complexes to condensates. Essays Biochem 2022; 66:863-873. [PMID: 36416859 PMCID: PMC9760423 DOI: 10.1042/ebc20220056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
The spatial and temporal organization of interactions between proteins underlie the regulation of most cellular processes. The requirement for such interactions to be specific predisposes a view that protein-protein interactions are relatively static and are formed through the stable complementarity of the interacting partners. A growing body of reports indicate, however, that many interactions lead to fuzzy complexes with an ensemble of conformations in dynamic exchange accounting for the observed binding. Here, we discuss how NMR has facilitated the characterization of these discrete, dynamic complexes and how such characterization has aided the understanding of dynamic, condensed phases of phase-separating proteins with exchanging multivalent interactions.
Collapse
Affiliation(s)
- Rashik Ahmed
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
19
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
21
|
Clore GM. NMR spectroscopy, excited states and relevance to problems in cell biology - transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease. J Cell Sci 2022; 135:jcs258695. [PMID: 35703323 PMCID: PMC9270955 DOI: 10.1242/jcs.258695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing three-dimensional structure and dynamics of macromolecules at atomic resolution. Recent advances have exploited the unique properties of NMR in exchanging systems to detect, characterize and visualize excited sparsely populated states of biological macromolecules and their complexes, which are only transient. These states are invisible to conventional biophysical techniques, and play a key role in many processes, including molecular recognition, protein folding, enzyme catalysis, assembly and fibril formation. All the NMR techniques make use of exchange between sparsely populated NMR-invisible and highly populated NMR-visible states to transfer a magnetization property from the invisible state to the visible one where it can be easily detected and quantified. There are three classes of NMR experiments that rely on differences in distance, chemical shift or transverse relaxation (molecular mass) between the NMR-visible and -invisible species. Here, I illustrate the application of these methods to unravel the complex mechanism of sub-millisecond pre-nucleation oligomerization of the N-terminal region of huntingtin, encoded by exon-1 of the huntingtin gene, where CAG expansion leads to Huntington's disease, a fatal autosomal-dominant neurodegenerative condition. I also discuss how inhibition of tetramerization blocks the much slower (by many orders of magnitude) process of fibril formation.
Collapse
Affiliation(s)
- G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
22
|
Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci 2022; 79:281. [PMID: 35508574 PMCID: PMC9068654 DOI: 10.1007/s00018-022-04296-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.
Collapse
Affiliation(s)
- Ryan C Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
23
|
Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem 2022; 283:106769. [DOI: 10.1016/j.bpc.2022.106769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
24
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Martinez Pomier K, Akimoto M, Byun JA, Khamina M, Melacini G. Allosteric Regulation of Cyclic Nucleotide Dependent Protein Kinases. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinases include a wide variety of valuable drug targets, but full therapeutic exploitation requires a high degree of selectivity. A promising avenue to engineer the desired kinase selectivity relies on allosteric sites. Here we provide a focused minireview of recent progress in allosteric modulation of cyclic nucleotide-dependent kinases, including protein kinases A and G. We show how apparently diverse emerging concepts such as allosteric pluripotency, allosteric non-additive binding and uncompetitive allosteric inhibition are all manifestations of complex conformational ensembles. Such ensembles include not only the typical apo-inactive and effector-bound-active states, but also mixed intermediates that feature attributes of the former states within a single molecule. We also discuss how allosteric responses are amplified by aggregation processes, thus establishing a novel interface between the signaling and amyloid fields. Finally, we critically evaluate the challenges and opportunities for clinical translation opened by these emerging allosteric concepts.
Collapse
Affiliation(s)
| | | | - Jung Ah Byun
- McMaster University, 3710, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
26
|
Cheng X, Chen R, Zhou T, Zhang B, Li Z, Gao M, Huang Y, Liu H, Su Z. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Nat Commun 2022; 13:1087. [PMID: 35228542 PMCID: PMC8885691 DOI: 10.1038/s41467-022-28721-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Overexpressed Mdm2 and its 7homolog MdmX impair p53 activity in many cancers. Small molecules mimicking a p53 peptide can effectively inhibit Mdm2 but not MdmX. Here, we show a strategy for improving lead compounds for Mdm2 and MdmX inhibition based on the multivalency of the p53 peptide. Crystal structures of MdmX complexed with nutlin-3a, a strong Mdm2 inhibitor but a weak one for MdmX, reveal that nutlin-3a fits into the ligand binding pocket of MdmX mimicking the p53 peptide. However, due to distinct flexibility around the MdmX ligand binding pocket, the structures are missing many important intermolecular interactions that exist in the MdmX/p53 peptide and Mdm2/nultin-3a complexes. By targeting these flexible regions, we identify allosteric and additive fragments that enhance the binding affinity of nutlin-3a for MdmX, leading to potent Mdm2/MdmX inhibitors with anticancer activity. Our work provides a practical approach to drug design for signal transduction therapy. Peptide fragments derived from the interfaces of protein-protein interactions (PPIs) provide useful templates for designing small molecule PPI inhibitors. Here, the authors utilize the multivalency of an MdmX-binding p53 peptide to develop a weak inhibitor of MdmX into potent Mdm2/MdmX inhibitors.
Collapse
|
27
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
28
|
Mariño Pérez L, Ielasi FS, Bessa LM, Maurin D, Kragelj J, Blackledge M, Salvi N, Bouvignies G, Palencia A, Jensen MR. Visualizing protein breathing motions associated with aromatic ring flipping. Nature 2022; 602:695-700. [PMID: 35173330 PMCID: PMC8866124 DOI: 10.1038/s41586-022-04417-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/07/2022] [Indexed: 01/11/2023]
Abstract
Aromatic residues cluster in the core of folded proteins, where they stabilize the structure through multiple interactions. Nuclear magnetic resonance (NMR) studies in the 1970s showed that aromatic side chains can undergo ring flips-that is, 180° rotations-despite their role in maintaining the protein fold1-3. It was suggested that large-scale 'breathing' motions of the surrounding protein environment would be necessary to accommodate these ring flipping events1. However, the structural details of these motions have remained unclear. Here we uncover the structural rearrangements that accompany ring flipping of a buried tyrosine residue in an SH3 domain. Using NMR, we show that the tyrosine side chain flips to a low-populated, minor state and, through a proteome-wide sequence analysis, we design mutants that stabilize this state, which allows us to capture its high-resolution structure by X-ray crystallography. A void volume is generated around the tyrosine ring during the structural transition between the major and minor state, and this allows fast flipping to take place. Our results provide structural insights into the protein breathing motions that are associated with ring flipping. More generally, our study has implications for protein design and structure prediction by showing how the local protein environment influences amino acid side chain conformations and vice versa.
Collapse
Affiliation(s)
- Laura Mariño Pérez
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Luiza M Bessa
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Damien Maurin
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Jaka Kragelj
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | | |
Collapse
|
29
|
Tugarinov V, Ceccon A, Clore GM. NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:1-24. [PMID: 35282867 PMCID: PMC8921508 DOI: 10.1016/j.pnmrs.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
30
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
31
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
32
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity. Curr Res Struct Biol 2021; 3:324-336. [PMID: 34901882 PMCID: PMC8640258 DOI: 10.1016/j.crstbi.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a β1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC “activators” aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC's activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme's redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules. When the heme of Ns H-NOX is replaced by the sGC activators, the protein’s flexibility is significantly reduced. Heme causes the conformational exchange of Ns H-NOX, as many residues around the heme adopt invisible conformation. L-ascorbate prevents the proper action of BAY 58-2667 and BAY 60-2770 from forming a stable complex with the Ns H-NOX. In A7r5 cells, L-ascorbate does not affect cGMP formation induced by BAY 58-2667 and it inhibits the effect of BAY 60-2770. BAY molecules act on the H-NOX or the sGC in a bi-directional way, depending on the redox state of the heme.
Collapse
|
34
|
Waudby C, Christodoulou J. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:777-793. [PMID: 37905227 PMCID: PMC10583286 DOI: 10.5194/mr-2-777-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/02/2023]
Abstract
Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13 CH3 -labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1 H chemical shift differences.
Collapse
Affiliation(s)
- Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| |
Collapse
|
35
|
Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021; 201:127-140. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
36
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
37
|
Bengs C, Dagys L, Moustafa GAI, Whipham JW, Sabba M, Kiryutin AS, Ivanov KL, Levitt MH. Nuclear singlet relaxation by chemical exchange. J Chem Phys 2021; 155:124311. [PMID: 34598559 DOI: 10.1063/5.0066182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - James W Whipham
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
38
|
Pinkston J, Jo J, Olsen KJ, Comer D, Glaittli CA, Loria JP, Johnson SJ, Hengge AC. Significant Loop Motions in the SsoPTP Protein Tyrosine Phosphatase Allow for Dual General Acid Functionality. Biochemistry 2021; 60:2888-2901. [PMID: 34496202 DOI: 10.1021/acs.biochem.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.
Collapse
Affiliation(s)
- Justin Pinkston
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Jihye Jo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Drake Comer
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Charsti A Glaittli
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
39
|
Tsegaye S, Dedefo G, Mehdi M. Biophysical applications in structural and molecular biology. Biol Chem 2021; 402:1155-1177. [PMID: 34218543 DOI: 10.1515/hsz-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022]
Abstract
The main objective of structural biology is to model proteins and other biological macromolecules and link the structural information to function and dynamics. The biological functions of protein molecules and nucleic acids are inherently dependent on their conformational dynamics. Imaging of individual molecules and their dynamic characteristics is an ample source of knowledge that brings new insights about mechanisms of action. The atomic-resolution structural information on most of the biomolecules has been solved by biophysical techniques; either by X-ray diffraction in single crystals or by nuclear magnetic resonance (NMR) spectroscopy in solution. Cryo-electron microscopy (cryo-EM) is emerging as a new tool for analysis of a larger macromolecule that couldn't be solved by X-ray crystallography or NMR. Now a day's low-resolution Cryo-EM is used in combination with either X-ray crystallography or NMR. The present review intends to provide updated information on applications like X-ray crystallography, cryo-EM and NMR which can be used independently and/or together in solving structures of biological macromolecules for our full comprehension of their biological mechanisms.
Collapse
Affiliation(s)
- Solomon Tsegaye
- Department of Biochemistry, College of Health Sciences, Arsi University, Oromia, Ethiopia
| | - Gobena Dedefo
- Department of Medical Laboratory Technology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
40
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
41
|
Hosoe Y, Sekiguchi H, Sasaki YC, Oda M. Structural dynamics of a DNA-binding protein analyzed using diffracted X-ray tracking. Biophys Chem 2021; 278:106669. [PMID: 34416518 DOI: 10.1016/j.bpc.2021.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Diffracted X-ray tracking (DXT) is one of methods for the real-time evaluation of protein structural dynamics by detecting the movement of a gold-nanocrystal attached to a target protein. However, one of the technical concerns is the size of the gold-nanocrystals, which are larger than the protein. In our previous results of mean square angular displacement curves in DXT analysis, dynamical movements of the DNA-binding protein, c-Myb R2R3, were observed in only one population in either DNA-unbound or -bound state, and was found to decrease upon DNA binding. In this study, c-Myb R2R3 dynamical movements were re-evaluated with a low density of the protein immobilized on the DXT substrate, to decrease the possibility that the gold-nanocrystals attached to more than one R2R3 molecule. We observed two dynamical moving populations in the DNA-bound state, which could be classified due to electrostatic attraction and repulsion between the DNA-protein complexes, and determined the apparent angular diffusion constant, which was similar to the value calculated in our previous study. We showed more real movement of the protein could be observed by lowering the immobilization density of the protein.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan.
| |
Collapse
|
42
|
Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021; 433:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
Stunning advances have been achieved in addressing the protein folding problem, providing deeper understanding of the mechanisms by which proteins navigate energy landscapes to reach their native states and enabling powerful algorithms to connect sequence to structure. However, the realities of the in vivo protein folding problem remain a challenge to reckon with. Here, we discuss the concept of the "proteome folding problem"-the problem of how organisms build and maintain a functional proteome-by admitting that folding energy landscapes are characterized by many misfolded states and that cells must deploy a network of chaperones and degradation enzymes to minimize deleterious impacts of these off-pathway species. The resulting proteostasis network is an inextricable part of in vivo protein folding and must be understood in detail if we are to solve the proteome folding problem. We discuss how the development of computational models for the proteostasis network's actions and the relationship to the biophysical properties of the proteome has begun to offer new insights and capabilities.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Lila M Gierasch
- Departments of Biochemistry & Molecular Biology and Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
43
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
44
|
Affiliation(s)
- Dorothee Kern
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
45
|
Wernersson S, Carlström G, Jakobsson A, Akke M. Rapid measurement of heteronuclear transverse relaxation rates using non-uniformly sampled R1ρ accordion experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:571-587. [PMID: 37905216 PMCID: PMC10539792 DOI: 10.5194/mr-2-571-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/01/2023]
Abstract
Multidimensional, heteronuclear NMR relaxation methods are used extensively to characterize the dynamics of biological macromolecules. Acquisition of relaxation datasets on proteins typically requires significant measurement time, often several days. Accordion spectroscopy offers a powerful means to shorten relaxation rate measurements by encoding the "relaxation dimension" into the indirect evolution period in multidimensional experiments. Time savings can also be achieved by non-uniform sampling (NUS) of multidimensional NMR data, which is used increasingly to improve spectral resolution or increase sensitivity per unit time. However, NUS is not commonly implemented in relaxation experiments, because most reconstruction algorithms are inherently nonlinear, leading to problems when estimating signal intensities, relaxation rate constants and their error bounds. We have previously shown how to avoid these shortcomings by combining accordion spectroscopy with NUS, followed by data reconstruction using sparse exponential mode analysis, thereby achieving a dramatic decrease in the total length of longitudinal relaxation experiments. Here, we present the corresponding transverse relaxation experiment, taking into account the special considerations required for its successful implementation in the framework of the accordion-NUS approach. We attain the highest possible precision in the relaxation rate constants by optimizing the NUS scheme with respect to the Cramér-Rao lower bound of the variance of the estimated parameter, given the total number of sampling points and the spectrum-specific signal characteristics. The resulting accordion-NUS R 1 ρ relaxation experiment achieves comparable precision in the parameter estimates compared to conventional CPMG (Carr-Purcell-Meiboom-Gill) R 2 or spin-lock R 1 ρ experiments while saving an order of magnitude in experiment time.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund
University, P.O. Box 124, 22100 Lund, Sweden
| | - Andreas Jakobsson
- Department of Mathematical Statistics, Lund University, P.O. Box 118,
22100 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
46
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
47
|
Solution NMR Structure of Titin N2A Region Ig Domain I83 and Its Interaction with Metal Ions. J Mol Biol 2021; 433:166977. [PMID: 33811919 DOI: 10.1016/j.jmb.2021.166977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Titin, the largest single chain protein known so far, has long been known to play a critical role in passive muscle function but recent studies have highlighted titin's role in active muscle function. One of the key elements in this role is the Ca2+-dependent interaction between titin's N2A region and the thin filament. An important element in this interaction is I83, the terminal immunoglobulin domain in the N2A region. There is limited structural information about this domain, but experimental evidence suggests that it plays a critical role in the N2A-actin binding interaction. We now report the solution NMR structure of I83 and characterize its dynamics and metal binding properties in detail. Its structure shows interesting relationships to other I-band Ig domains. Metal binding and dynamics data point towards the way the domain is evolutionarily optimized to interact with neighbouring domains. We also identify a calcium binding site on the N-terminal side of I83, which is expected to impact the interdomain interaction with the I82 domain. Together these results provide a first step towards a better understanding of the physiological effects associated with deletion of most of the I83 domain, as occurs in the mdm mouse model, as well as for future investigations of the N2A region.
Collapse
|
48
|
Anklin C, Byrd RA. Combined multi-band decoupling in biomolecular NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:89-95. [PMID: 33751371 PMCID: PMC8317164 DOI: 10.1007/s10858-021-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Multi-resonance NMR experiments are powerful analytical and structural tools. Their conceptualization assumes that RF fields may be combined independently to manipulate spin interactions. However, practical implementation can compromise performance. One limitation is the generation of combination bands when two or more RF fields are applied simultaneously within the NMR probe. The combination bands can lead to significant interference with the detection circuitry. A facile approach to combined multi-band decoupling can resolve these problems and increase sensitivity two-fold (or more), by time sharing the application of the individual frequencies rather than time sharing decoupling and data acquisition.
Collapse
Affiliation(s)
| | - R Andrew Byrd
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
49
|
Xu X, Gagné D, Aramini JM, Gardner KH. Volume and compressibility differences between protein conformations revealed by high-pressure NMR. Biophys J 2021; 120:924-935. [PMID: 33524371 DOI: 10.1016/j.bpj.2020.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Proteins often interconvert between different conformations in ways critical to their function. Although manipulating such equilibria for biophysical study is often challenging, the application of pressure is a potential route to achieve such control by favoring the population of lower volume states. Here, we use this feature to study the interconversion of ARNT PAS-B Y456T, which undergoes a dramatic +3 slip in the β-strand register as it switches between two stably folded conformations. Using high-pressure biomolecular NMR approaches, we obtained the first, to our knowledge, quantitative data testing two key hypotheses of this process: the slipped conformation is both smaller and less compressible than the wild-type equivalent, and the interconversion proceeds through a chiefly unfolded intermediate state. Data collected in steady-state pressure and time-resolved pressure-jump modes, including observed pressure-dependent changes in the populations of the two conformers and increased rate of interconversion between conformers, support both hypotheses. Our work exemplifies how these approaches, which can be generally applied to protein conformational switches, can provide unique information that is not easily accessible through other techniques.
Collapse
Affiliation(s)
- Xingjian Xu
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York; Ph.D Program in Biochemistry, The Graduate Center, CUNY, New York, New York
| | - Donald Gagné
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York
| | - James M Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York; Department of Chemistry and Biochemistry, City College of New York, New York, New York; Ph.D. Programs in Biochemistry, Chemistry, and Biology, The Graduate Center, CUNY, New York, New York.
| |
Collapse
|
50
|
Raich L, Meier K, Günther J, Christ CD, Noé F, Olsson S. Discovery of a hidden transient state in all bromodomain families. Proc Natl Acad Sci U S A 2021; 118:e2017427118. [PMID: 33468647 PMCID: PMC7848705 DOI: 10.1073/pnas.2017427118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.
Collapse
Affiliation(s)
- Lluís Raich
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Meier
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 42096 Wuppertal, Germany
| | - Judith Günther
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Clara D Christ
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Simon Olsson
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|