1
|
Pitsikas N. Evaluation of the potential efficacy of the nitric oxide donor molsidomine for the treatment of schizophrenia. Med Gas Res 2024:01612956-990000000-00042. [PMID: 39511754 DOI: 10.4103/mgr.medgasres-d-24-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Schizophrenia is a chronic devastating psychiatric disease characterized by a high recurrence rate. Pharmacological management of this disorder appears disappointing since it is associated with a lack of efficacy for negative symptoms and cognitive deficits, typical features of schizophrenia, and the presence of severe undesired side effects. Thus, novel molecules with high efficacy and low toxicity for the treatment of schizophrenia are urgently needed. The involvement of the gaseous molecule nitric oxide in the pathogenesis of schizophrenia is well documented since low concentrations of nitric oxide are associated with this psychiatric disease. Therefore, chemicals able to normalize nitric oxide levels, such as nitric oxide donors, might be useful for the management of this type of schizophrenia. Molsidomine is a nitric oxide donor and is under investigation as a novel antischizophrenia agent. The aim of this review is to critically evaluate the potential efficacy of this molecule for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Dean B, Hopper S, Scarr E. Changes in levels of the zinc transporter SLC39A12 in Brodmann's area 44: Effects of sex, suicide, CNS pH and schizophrenia. J Psychiatr Res 2024; 177:177-184. [PMID: 39024742 DOI: 10.1016/j.jpsychires.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Disturbed CNS zinc homeostasis is suggested as part of the pathophysiology of schizophrenia. Our data, from multiple studies, suggests levels of cortical RNA for the solute carrier family 39 member 12 (SLC39A12), a putative zinc transporter, is higher in people with schizophrenia and is more perturbed in a sub-group of people with the disorder that can be separated because they have very low levels of muscarinic M1 receptors (MRDS). In this study qPCR was used to measure levels of two RNA splice variants of SLC39A12 (a and b) in Brodmann's area (BA) 44 from new cohorts of controls and people with schizophrenia. For the first time, in our study cohort as a whole, we report levels of both splice variants of SLC39A12 are lower in females compared to males and there are correlations between levels of SLC39A12 a and b and CNS pH. Levels of both splice variants were also lower in people with schizophrenia who were suicide completers compared to those who were not. Accounting for these factors, we showed levels of SLC39A12 a and b were higher in BA 44 in schizophrenia compared to controls. In further analyses, with and without our previous data on SLC39A12 a and b, we confirmed changes in levels of SLC39A12 RNAs were more profound in MRDS. In conclusion, our study argues there are higher levels of SLC39A12 a and b in BA 44 in schizophrenia which could be contributing to the breakdown in CNS zinc homeostasis suggested as part of the pathophysiology of schizophrenia, particularly in those with MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shaun Hopper
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Ebrahimi M, Ahangar N, Zamani E, Shaki F. L-Carnitine Prevents Behavioural Alterations in Ketamine-Induced Schizophrenia in Mice: Possible Involvement of Oxidative Stress and Inflammation Pathways. J Toxicol 2023; 2023:9093231. [PMID: 37363159 PMCID: PMC10289879 DOI: 10.1155/2023/9093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a chronic mental complaint known as cognitive impairment. There has been evidence that inflammation and oxidative stress play a main role in schizophrenia pathophysiology. This study aimed to investigate the effects of l-carnitine, as a potent antioxidant, on the treatment of behavioural and biochemical disturbances in mice with ketamine-induced schizophrenia. In this study, schizophrenia was induced in mice by ketamine (25 mg/kg/day, i.p). Before induction of schizophrenia, mice were treated with l-carnitine (100, 200, and 400 mg/kg/day, i.p). Then, behavioural impairments were evaluated by open field (OF) assessment and social interaction test (SIT). After brain tissue isolation, reactive oxygen species (ROS), glutathione concentration (GSH), lipid peroxidation (LPO), protein carbonyl oxidation, superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx) were assessed as oxidative stress markers. Furthermore, inflammatory biomarkers such as tumour necrosis factor alpha (TNF-α) and nitric oxide (NO) were evaluated in brain tissue. Our results showed ketamine increased inflammation and oxidative damage in brain tissue that was similar to behaviour disorders in mice. Interestingly, l-carnitine significantly decreased oxidative stress and inflammatory markers compared with ketamine-treated mice. In addition, l-carnitine prevented and reversed ketamine-induced alterations in the activities of SOD and GPx enzymes in mice's brains. Also, improved performance in OFT (locomotor activity test) and SIT was observed in l-carnitine-treated mice. These data provided evidence that, due to the antioxidant and anti-inflammatory effects of l-carnitine, it has a neuroprotective effect on mice model of schizophrenia.
Collapse
Affiliation(s)
- Mehrasa Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. Int J Mol Sci 2023; 24:ijms24021022. [PMID: 36674542 PMCID: PMC9866372 DOI: 10.3390/ijms24021022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SZ) is a heterogeneous mental disorder, affecting ~1% of the worldwide population. One of the main pathophysiological theories of SZ is the imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, involving N-methyl-D-aspartate receptors (NMDAr). This may lead to local glutamate storms coupled with excessive dendritic pruning and subsequent cellular stress, including nitrosative stress, during a critical period of neurodevelopment, such as adolescence. Nitrosative stress is mediated by nitric oxide (NO), which is released by NO synthases (NOS) and has emerged as a key signaling molecule implicated in SZ. Regarding glutamatergic models of SZ, the administration of NMDAr antagonists has been found to increase NOS levels in the prefrontal cortex (PFC) and ventral hippocampus (HPC). We hypothesized that suboptimal NOS function in adolescence could be a target for early treatments, including clozapine (CLZ) and the novel metabotropic glutamate receptor modulator JNJ-46356479 (JNJ). We analyzed the protein levels of NOS isoforms in adult PFC and HPC of a postnatal ketamine induced murine model of SZ receiving CLZ or JNJ during adolescence by western blot. Endothelial NOS and neuronal NOS increased under ketamine administration in PFC and decreased in CLZ or JNJ treatments. The same trends were found in the HPC in neuronal NOS. In contrast, inducible NOS was increased under JNJ treatment with respect to ketamine induction in the HPC, and the same trends were found in the PFC. Taken together, our findings suggest a misbalance of the NOS system following NMDAr antagonist administration, which was then modulated under early CLZ and JNJ treatments.
Collapse
|
6
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
7
|
Peplinska-Miaskowska J, Wichowicz H, Smoleński R, Jablonska P, Kaska L. The comparison of nucleotide metabolites and amino acids patterns in patients with eating disorders, with and without symptoms of depression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:333-341. [PMID: 35076345 DOI: 10.1080/15257770.2022.2028827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purines, pyrimidines, and amino acid level have gained attention recently as potential determinants of mental disorders. However, eating disorders patients (ED) have not been yet appropriately studied, especially subjects with coexisting mood disorders. This paper examines the serum level of nucleotide catabolites and plasma amino acids in eating disorders with hyperphagia, with and without Major Depressive Disorder (MDD). Samples were taken from adult persons suffering from eating disorders (two forms: simple obesity and binge eating disorder) with MDD (n = 20) and without (n = 17). Serum nucleotides and plasma amino acids concentrations were analyzed with high-performance liquid chromatography-mass spectrometry. The nucleotides metabolite in MDD patients had a significantly (p < 0.05) lower uridine. Among MDD patients with ED significantly (p < 0.05) higher levels of asparagine, glutamine, proline, and arginine were found as compared to the control group. This study demonstrated differences in nucleotide metabolite and amino acid pattern in depression patients with eating disorders. This may be relevant to the mechanisms and may help identify biomarkers.
Collapse
Affiliation(s)
| | - Hubert Wichowicz
- Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland.,Institute of Health Sciences, Pomeranian University of Slupsk, Poland
| | - Ryszard Smoleński
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
9
|
Goh XX, Tang PY, Tee SF. Blood-based oxidation markers in medicated and unmedicated schizophrenia patients: A meta-analysis. Asian J Psychiatr 2022; 67:102932. [PMID: 34839098 DOI: 10.1016/j.ajp.2021.102932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Increased reactive species due to the effect of antipsychotics on oxidative stress may be involved in the development of schizophrenia. However, antipsychotics may have different direct antioxidant effects due to their chemical structures. The present meta-analysis aimed to investigate whether the cause increased oxidant status in schizophrenia patients is due to the illness or induction by antipsychotics. Studies published from 1964 to 2021 were selected from Pubmed and Scopus databases. Data were analysed using Comprehensive Meta-Analysis version 2. Effect sizes were calculated and compared between unmedicated and medicated patients and healthy controls. Heterogeneity and publication bias were assessed. Subgroup analyses were conducted on drug-free and drug-naïve patients, and patients treated with atypical and typical antipsychotics. We found that medicated patients had significantly higher malondialdehyde (MDA), thiobarbituric acid reactive substances (TBARS) and total oxidant status (TOS). Meanwhile, significantly increased plasma/serum MDA and nitric oxide (NO) were observed in unmedicated patients only. Higher lipid peroxidation in the drug-naïve group may be associated schizophrenia. However, both atypical and typical antipsychotics may worsen lipid peroxidation. Antipsychotic discontinuation in the drug-free group led to significantly increased plasma/serum NO, with larger effect size than the atypical antipsychotic group. In conclusion, medicated schizophrenia patients were more suffered from increased oxidative stress. Therefore, future study may focus on the mechanism of action of specific antipsychotic on oxidative stress.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Malaysia.
| |
Collapse
|
10
|
Najafi M, Amini R, Maghsood AH, Fallah M, Foroughi-Parvar F. Co Expression of GMFβ, IL33, CCL2 and SDF1 Genes in the Acute Stage of Toxoplasmosis in Mice Model and Relation for Neuronal Impairment. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:426-434. [PMID: 34630588 PMCID: PMC8476739 DOI: 10.18502/ijpa.v16i3.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that migrates through macrophages or dendritic cells to neurons and nerve cells. Glia Maturation Factor (GMF) is a pre-inflammatory protein that is expressed in the central nervous system (CNS). GMFβ expression is related to IL33 and CCL2 and SDF1 in some neurodegenerative diseases. According to the importance of GMFβ in neurodegenerative diseases and its association with IL33, CCL2 and SDF1 genes, this study was designed to determine the level of expression of these genes in the brains of mice with acute toxoplasmosis. Methods Tachyzoites of T. gondii RH strains were injected to 5 Swiss Albino mice. At the same time, healthy mice were inoculated with the Phosphate-buffered saline (PBS). Their brains were removed and kept at -70 °C in order to RNA extraction, cDNA syntheses and Real Time PCR performance. The level of gene expression was investigated with SYBR Green Quantitative Real-Time PCR. Results GMFβ gene expression increased significantly (P=0.003) 3.26 fold in Toxoplasma infected mice in comparison to the control. GMFβ gene expression was associated with increased expression level of IL33, CCL2, and SDF1 genes. Conclusion Considering the prominent role of GMFβ in CNS as well as the immune system, the elevation of GMFβ, IL33, CCL2 and SDF1 genes expression in the early stage of toxoplasmosis is associated with the occurrence of neuropathological alterations. Detection of these genes as an indication of brain damage in the early stages of Toxoplasma infection can prevent neurodegenerative disorders following acquired toxoplasmosis.
Collapse
Affiliation(s)
- Mehri Najafi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Vrankova S, Galandakova Z, Benko J, Cebova M, Riecansky I, Pechanova O. Duration of Social Isolation Affects Production of Nitric Oxide in the Rat Brain. Int J Mol Sci 2021; 22:ijms221910340. [PMID: 34638682 PMCID: PMC8509065 DOI: 10.3390/ijms221910340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Social isolation deprives rodents of social interactions that are critical for normal development of brain and behavior. Several studies have indicated that postweaning isolation rearing may affect nitric oxide (NO) production. The aim of this study was to compare selected behavioral and biochemical changes related to NO production in the brain of rats reared in social isolation for different duration. At the age of 21 days, male Sprague Dawley rats were randomly assigned into four groups reared in isolation or socially for 10 or 29 weeks. At the end of the rearing, open-field and prepulse inhibition (PPI) tests were carried out. Furthermore, in several brain areas we assessed NO synthase (NOS) activity, protein expression of nNOS and iNOS isoforms and the concentration of conjugated dienes (CD), a marker of oxidative damage and lipid peroxidation. Social isolation for 10 weeks resulted in a significant decrease in PPI, which was accompanied by a decrease in NOS activity in the cerebral cortex and the cerebellum, an increase in iNOS in the hippocampus and an increase in CD concentration in cortex homogenate. On the other hand, a 29 week isolation had an opposite effect on NOS activity, which increased in the cerebral cortex and the cerebellum in animals reared in social isolation, accompanied by a decrease in CD concentration. The decrease in NOS activity after 10 weeks of isolation might have been caused by chronic stress induced by social isolation, which has been documented in previous studies. The increased oxidative state might result in the depleted NO bioavailability, as NO reacts with superoxide radical creating peroxynitrite. After 29 weeks of isolation, this loss of NO might be compensated by the subsequent increase in NOS activity.
Collapse
Affiliation(s)
- Stanislava Vrankova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Correspondence:
| | - Zuzana Galandakova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Jakub Benko
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Igor Riecansky
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
- Department of Psychiatry, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Olga Pechanova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| |
Collapse
|
12
|
Szewczyk-Golec K, Pawłowska M, Wesołowski R, Wróblewski M, Mila-Kierzenkowska C. Oxidative Stress as a Possible Target in the Treatment of Toxoplasmosis: Perspectives and Ambiguities. Int J Mol Sci 2021; 22:ijms22115705. [PMID: 34071892 PMCID: PMC8198901 DOI: 10.3390/ijms22115705] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.
Collapse
|
13
|
Zoupa E, Pitsikas N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021; 26:molecules26113196. [PMID: 34073534 PMCID: PMC8199342 DOI: 10.3390/molecules26113196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder affecting up to 1% of the worldwide population. Available therapy presents different limits comprising lack of efficiency in attenuating negative symptoms and cognitive deficits, typical features of schizophrenia and severe side effects. There is pressing requirement, therefore, to develop novel neuroleptics with higher efficacy and safety. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, appears to be implicated in the pathogenesis of schizophrenia. In particular, underproduction of this gaseous molecule is associated to this mental disease. The latter suggests that increment of nitrergic activity might be of utility for the medication of schizophrenia. Based on the above, molecules able to enhance NO production, as are NO donors, might represent a class of compounds candidates. Sodium nitroprusside (SNP) is a NO donor and is proposed as a promising novel compound for the treatment of schizophrenia. In the present review, we intended to critically assess advances in research of SNP for the therapy of schizophrenia and discuss its potential superiority over currently used neuroleptics.
Collapse
|
14
|
New insights on nitric oxide: Focus on animal models of schizophrenia. Behav Brain Res 2021; 409:113304. [PMID: 33865887 DOI: 10.1016/j.bbr.2021.113304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a devastating complex disorder characterised by a constellation of behavioral deficits with the underlying mechanisms not fully known. Nitric oxide (NO) has emerged as a key signaling molecule implicated in schizophrenia. Three nitric oxide sinthases (NOS), endothelial, neuronal, and inducible, release NO within the cell. Animal models of schizophrenia are grouped in four groups, neurovedelopmental, glutamatergic, dopaminergic and genetic. In this review, we aim to evaluate changes in NO levels in animal models of schizophrenia and the resulting long-lasting behavioral and neural consequences. In particular, NO levels are substantially modified, region-specific, in various neurodevelopmental models, e.g. bilateral excitotoxic lesion of the ventral hippocampus (nVHL), maternal immune activation and direct NO manipulations early in development, among others. In regards to glutamatergic models of schizophrenia, phencyclidine (PCP) administration increases NO levels in the prefrontal cortex (PFC) and ventral hippocampus. As far as genetic models are concerned, neuronal NOS knock-out mice display schizophrenia-related behaviors. Administration of NO donors can reverse schizophrenia-related behavioral deficits. While most modifications in NO are derived from neuronal NOS, recent evidence indicates that PCP treatment increases NO from the inducible NOS isoform. From a pharmacological perspective, treatment with various antipsychotics including clozapine, haloperidol and risperidone normalize NO levels in the PFC as well as improve behavioral deficits in nVHL rats. NO induced from the neuronal and inducible NOS is relevant to schizophrenia and warrants further research.
Collapse
|
15
|
Abstract
An increasing number of studies have focussed on the neurobiology of schizophrenia (SCH), contributing to a better understanding of this disorder. Prolidase is a metalloprotease found in various tissues, which has been associated with the concentrations of proline, a neurotransmitter, in the brain. There is evidence to suggest that elevated proline levels play a role in SCH. The aim of the present study was to compare plasma proline levels in patients with drug-naive first-episode psychosis (FEP) and in those with SCH. Patients diagnosed with FEP (n = 26) and SCH (n = 26) were recruited for this study, in addition to healthy control volunteers (n = 26). Plasma prolidase levels were found to be elevated in the SCH group compared to drug-naive FEP and healthy control groups. This finding indicates that prolidase levels are higher in SCH patients, while levels in patients with drug-naive FEP are similar to those of healthy control. Follow-up studies are needed to provide a better understanding of prolidase in the etiopathogenesis of SCH.
Collapse
|
16
|
Bernstein HG, Keilhoff G, Steiner J. The implications of hypothalamic abnormalities for schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:107-120. [PMID: 34266587 DOI: 10.1016/b978-0-12-819973-2.00008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until a few years ago, the hypothalamus was believed to play only a marginal role in schizophrenia pathophysiology. However, recent findings show that this rather small brain region involved in many pathways found disrupted-in schizophrenia. Gross anatomic abnormalities (volume changes of the third ventricle, the hypothalamus, and its individual nuclei) as well as alterations at the cellular level (circumscribed loss of neurons) can be observed. Further, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, several factors involved in the regulation of appetite and satiety, endogenous opiates, products of schizophrenia susceptibility genes as well as of enzymes involved in neurotransmitter and neuropeptide metabolism have been reported in schizophrenia and/or animal models of the disease. Remarkably, although profound disturbances of the hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-thyroid axis, and the hypothalamus-pituitary-gonadal axis are typical signs of schizophrenia, there is currently no evidence for alterations in the expression of hypothalamic-releasing and inhibiting factors that control these hormonal axes. Finally, the implications of hypothalamus for disease-related disturbances of the sleep-wakefulness cycle and neuroimmune dysfunctions in schizophrenia are outlined.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany.
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Zhang X, Zhang K, Wang Y, Ma R. Effects of Myricitrin and Relevant Molecular Mechanisms. Curr Stem Cell Res Ther 2020; 15:11-17. [PMID: 30474534 DOI: 10.2174/1574888x14666181126103338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 11/22/2022]
Abstract
In humans, oxidative stress is thought to be involved in the development of Parkinson's disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction and depression. Myricitrin, a botanical flavone, is abundantly distributed in the root bark of Myrica cerifera, Myrica esculenta, Ampelopsis grossedentata, Nymphaea lotus, Chrysobalanus icaco, and other plants. Considering the abundance of its natural sources, myricitrin is relatively easy to extract and purify. Myricitrin reportedly possesses effective anti-oxidative, anti-inflammatory, and anti-nociceptive activities, and can protect a variety of cells from in vitro and in vivo injuries. Therefore, our current review summarizes the research progress of myricitrin in cardiovascular diseases, nerve injury and anti-inflammatory, and provides new ideas for the development of myricitrin.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Ke Zhang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Youhan Wang
- Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Rui Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
18
|
Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, Zhang SY, Cheng Y. Metabolomic Identification of Exosome-Derived Biomarkers for Schizophrenia: A Large Multicenter Study. Schizophr Bull 2020; 47:615-623. [PMID: 33159208 PMCID: PMC8084447 DOI: 10.1093/schbul/sbaa166] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes have been suggested as promising targets for the diagnosis and treatment of neurological diseases, including schizophrenia (SCZ), but the potential role of exosome-derived metabolites in these diseases was rarely studied. Using ultra-performance liquid chromatography-tandem mass spectrometry, we performed the first metabolomic study of serum-derived exosomes from patients with SCZ. Our sample comprised 385 patients and 332 healthy controls recruited from 3 clinical centers and 4 independent cohorts. We identified 25 perturbed metabolites in patients that can be used to classify samples from patients and control participants with 95.7% accuracy (95% CI: 92.6%-98.9%) in the training samples (78 patients and 66 controls). These metabolites also showed good to excellent performance in differentiating between patients and controls in the 3 test sets of participants, with accuracies 91.0% (95% CI: 85.7%-96.3%; 107 patients and 62 controls), 82.7% (95% CI: 77.6%-87.9%; 104 patients and 142 controls), and 99.0% (95% CI: 97.7%-100%; 96 patients and 62 controls), respectively. Bioinformatic analysis suggested that these metabolites were enriched in pathways implicated in SCZ, such as glycerophospholipid metabolism. Taken together, our findings support a role for exosomal metabolite dysregulation in the pathophysiology of SCZ and indicate a strong potential for exosome-derived metabolites to inform the diagnosis of SCZ.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-Lin Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiang-Dong Xu
- Department of Psychiatry, Urumqi Fourth People’s Hospital, Urumqi, Xinjiang, China
| | - Shao-Bin Tai
- Department of Psychiatry, Huangshan Second People’s Hospital, Huangshan, An Hui, China
| | - Geng-Lin Yang
- Department of Psychiatry, Urumqi Fourth People’s Hospital, Urumqi, Xinjiang, China
| | - Quan Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Shu-Han Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China,College of Life and Environmental Sciences, Minzu University of China, Beijing, China,NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health-Care Hospital, Changsha, Hunan, China,To whom correspondence should be addressed; 27 South Zhongguancun Avenue, Beijing 100081, China; tel: 86-10-68931383, fax: 86-10-68936927, e-mail:
| |
Collapse
|
19
|
Weiser M, Zamora D, Levi L, Matei V, Gonen I, Radu P, Davidson M, Davis JM. Sodium Nitroprusside Infusion for the Treatment of Schizophrenia. ACTA ACUST UNITED AC 2020. [DOI: 10.1093/schizbullopen/sgaa047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
One previous small single-center clinical trial showed that a single intravenous administration of sodium nitroprusside added-on to antipsychotics improved a wide spectrum of schizophrenia (SCZ) symptoms more than placebo, and the improvement persisted for 4 weeks after infusion even though no additional drug was given. Our study attempted to replicate these data in a 4-week, add-on, double-blind, randomized, placebo-controlled trial on 20 patients performed in a site in Romania and a site in Moldova. This study’s sample size and protocol were identical to the previous trial, including patients with a diagnosis of SCZ, within the first 5 years after diagnosis. Patients recruited needed to have a baseline total positive and negative syndrome scale (PANSS) score of 60 or above. Ten participants received a single dose of 0.5 µg/kg/min intravenous sodium nitroprusside over 4 hours, and 10 participants received matching placebo infusion, added-on to antipsychotics. The primary outcomes were the PANSS total score and the PANSS negative subscale. There were no significant between-group differences in PANSS total scores or negative subscale scores during the infusion on daily evaluations for the next 7 days nor on weekly evaluations at weeks 2, 3, and 4. No significant differences were found between the 2 study groups in adverse events. Meta-analyses including all 5 published randomized controlled trials on the topic, representing 155 subjects, do not show a statistically significant benefit of sodium nitroprusside. We conclude that the current evidence does not support the efficacy of sodium nitroprusside in the treatment of SCZ.
Collapse
Affiliation(s)
- Mark Weiser
- Department of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
- Stanley Medical Research Institute, Kensington, MD
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| | - Linda Levi
- Department of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
| | - Valentin Matei
- Department of Psychiatry, Obrejia Hospital, Bucharest, Romania
| | | | | | - Michael Davidson
- Department of psychiatry, University of Nicosia Medical School, Nicosia, Cyprus
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, IL
- Department of Psychiatry, Johns Hopkins University Baltimore, MD
| |
Collapse
|
20
|
Oh SJ, Fan X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr Res 2020; 222:23-30. [PMID: 32475621 DOI: 10.1016/j.schres.2020.05.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Affiliation(s)
- SeungJu Jackie Oh
- University of Massachusetts Medical School, Worcester, MA, 01655, United States of America
| | - Xiaoduo Fan
- UMass Memorial Health Care, University of Massachusetts Medical School, United States of America.
| |
Collapse
|
21
|
Cao B, Wang D, Pan Z, McIntyre RS, Brietzke E, Subramanieapillai M, Nozari Y, Wang J. Metabolic profiling for water-soluble metabolites in patients with schizophrenia and healthy controls in a Chinese population: A case-control study. World J Biol Psychiatry 2020; 21:357-367. [PMID: 31161852 DOI: 10.1080/15622975.2019.1615639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Objective measures integrated with clinical symptoms may improve early prevention and detection of schizophrenia. Herein we aim to evaluate potential water-soluble metabolic biomarkers in schizophrenia.Methods: We recruited adults with schizophrenia (n = 113) who had not received pharmacological treatment for at least 1 month prior to enrollment and 111 age- and sex-matched healthy subjects from Weifang, Shandong province, China. All serum samples were analysed using liquid chromatography-tandem mass spectrometry coupled with a hydrophilic interaction liquid chromatography column.Results: Eleven metabolites, namely carnitines (oleoylcarnitine, l-palmitoylcarnitine, 9-decenoylcarnitine and 2-trans,4-cis-decadienoylcarnitine), polar lipids (lysophosphatidylcholine (LPC)(P-16:0), LPC (16:0), LPC (15:0) and LPC(14:0)), amino acids (taurine and l-arginine), and organic acid (2,5-dichloro-4-oxohex-2-enedioate), separated the patients and healthy controls. Compared with healthy controls, taurine, l-palmitoylcarnitine and oleoylcarnitine levels were higher, whereas the remaining eight metabolites were lower in patients with schizophrenia. A combination of four metabolites, i.e., oleoylcarnitine, 9-decenoylcarnitine, LPC (15:0) and LPC (14:0), provided the most robust between-group separation.Conclusions: This study appears to distinguish between groups of patients and controls, which should be considered as a contribution to putative potential biomarkers. The water-soluble metabolites were determined to be significantly different between the groups in the current study, and were primarily related to cellular bioenergetics, notably oxidative stress.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | | | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mehala Subramanieapillai
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Yasaman Nozari
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China.,Beijing Key Laboratory of Toxicological Research, Risk Assessment for Food Safety, Beijing, P. R. China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, P. R. China
| |
Collapse
|
22
|
Interaction of apelin, elabela and nitric oxide in schizophrenia patients. J Med Biochem 2020; 39:184-190. [PMID: 33033451 DOI: 10.2478/jomb-2019-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 01/25/2023] Open
Abstract
Background Apelin (APLN), elabela (ELA), and nitric oxide (NO) have effects on physiological and behavioural properties in biological systems. This study was designed to determine APLN, ELA and NO levels in schizophrenia patients and assess whether these molecules are of diagnostic value. Methods A total of 33 schizophrenic patients and 32 ageand sex-adjusted healthy participants were included in the study. ELA, APLN and NO levels were measured using ELISA methods. Results Although the ELA and NO levels of the patients were lower than the control group, APLN levels were higher (p = 0.039, p = 0.019, p = 0.048, respectively). There was a significant negative correlation between APLN levels and triglyceride (TG) and body mass index (BMI) levels (r = -0.426, p = < 0.001 and r = -0.330, p = 0.007, respectively). Respectively, the areas under the receiver-operating characteristic (ROC) curves of the ELA/APLN, ELA/NO and APLN/NO ratios were 0.628, 0.590 and 0.709, 95% confident intervals (CI): 0.491-0.764, 0.450-0.730 and 0.579-0.840. Conclusions Decreased levels of ELA and NO and increased APLN levels in schizophrenia suggest that these molecules may be involved in its etiopathology. The APLN/NO ratio also seems to show promise in the diagnosis of the disease and may be used in future.
Collapse
|
23
|
Ben‐Azu B, Aderibigbe AO, Ajayi AM, Umukoro S, Iwalewa EO. Involvement of
l
‐arginine‐nitric oxide pathway in the antidepressant and memory promoting effects of morin in mice. Drug Dev Res 2019; 80:1071-1079. [DOI: 10.1002/ddr.21588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Benneth Ben‐Azu
- Neuropharmacology Unit, Department of Pharmacology and TherapeuticsCollege of Medicine, University of Ibadan Ibadan Oyo State Nigeria
- Department of PharmacologyFaculty of Basic Medical Sciences, PAMO University of Medical Sciences Port Harcourt Rivers State Nigeria
| | - Adegbuyi O. Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and TherapeuticsCollege of Medicine, University of Ibadan Ibadan Oyo State Nigeria
| | - Abayomi M. Ajayi
- Neuropharmacology Unit, Department of Pharmacology and TherapeuticsCollege of Medicine, University of Ibadan Ibadan Oyo State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and TherapeuticsCollege of Medicine, University of Ibadan Ibadan Oyo State Nigeria
| | - Ezekiel O. Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and TherapeuticsCollege of Medicine, University of Ibadan Ibadan Oyo State Nigeria
| |
Collapse
|
24
|
Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Front Cell Neurosci 2019; 13:331. [PMID: 31396053 PMCID: PMC6664007 DOI: 10.3389/fncel.2019.00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5′-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM’s effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I, Juárez-Díaz I, Aguilar-Alonso P, de la Cruz F, Iannitti T, Flores G. Prenatal immune challenge induces behavioral deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience 2019; 406:594-605. [DOI: 10.1016/j.neuroscience.2019.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
26
|
Wei M, Liu Y, Pi Z, Li S, Hu M, He Y, Yue K, Liu T, Liu Z, Song F, Liu Z. Systematically Characterize the Anti-Alzheimer's Disease Mechanism of Lignans from S. chinensis based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC⁻Q-TOF-MS. Molecules 2019; 24:molecules24071203. [PMID: 30934777 PMCID: PMC6480032 DOI: 10.3390/molecules24071203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer’s disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for the first time, we performed an in-vivo ingredient analysis and implemented a target-network pharmacology strategy to assess the effects of lignans from S. chinensis in rats with AD. Ten absorbed prototype constituents and 39 metabolites were identified or tentatively characterized in the plasma of dosed rats with AD using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Based on the results of analysis of the effective constituents in vivo, the potential therapeutic mechanism of the effective constituents in the rats with AD was investigated using a target-network pharmacology approach and independent experimental validation. The results showed that the treatment effects of lignans from S. chinensis on cognitive impairment might involve the regulation of amyloid precursor protein metabolism, neurofibrillary tangles, neurotransmitter metabolism, inflammatory response, and antioxidant system. Overall, we identified the effective components of lignans in S. chinensis that can improve the cognitive impairment induced by AD and proposed potential therapeutic metabolic pathways. The results might serve as the basis for a fundamental strategy to explore effective therapeutic drugs to treat AD.
Collapse
Affiliation(s)
- Mengying Wei
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yuanyuan Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shizhe Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingxin Hu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Yang He
- Department of Pharmaceutical Analysis, School of Pharmacy and Food Science, Zhuhai College of Jilin University, 8 Anji East Road, Zhuhai 519041, China.
| | - Kexin Yue
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Tianshu Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhongying Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
27
|
Cao B, Jin M, Brietzke E, McIntyre RS, Wang D, Rosenblat JD, Ragguett RM, Zhang C, Sun X, Rong C, Wang J. Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry Clin Neurosci 2019; 73:100-108. [PMID: 30156046 DOI: 10.1111/pcn.12779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
AIM We sought to compare alterations in serum bioenergetic markers within a well-characterized sample of adults with schizophrenia at baseline and after 8 weeks of pharmacological treatment with the hypothesis that treatment would be associated with significant changes in bioenergetic markers given the role of bioenergetic dysfunction in schizophrenia. METHODS We recruited adults with schizophrenia (n = 122) who had not received pharmacological treatment for at least 1 month prior to enrollment, including drug-naïve (i.e., first-episode) participants and treatment non-adherent participants. Pre- and post-treatment serum samples were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS Metabolites with the greatest change, when comparing pre- and post-treatment levels, were identified revealing 14 water-soluble metabolites of interest. The composition of these metabolites was: amino acids (n = 6), carnitines (n = 4), polar lipids (n = 3), and organic acid (n = 1). All amino acids and lysophosphatidylcholines (LysoPC) were increased, while the four carnitines - oleoylcarnitine, L-palmitoylcarnitine, linoleyl carnitine, and L-acetylcarnitine - were decreased post-treatment. Of these metabolite biomarkers, six - oleoylcarnitine, linoleyl carnitine, L-acetylcarnitine, LysoPC(15:0), D-glutamic acid, and L-arginine - were identified as having most consistently and predictably changed after 8 weeks of treatment. CONCLUSION The current study identified several bioenergetic markers that consistently change with pharmacological treatment. These bioenergetic changes may provide further insights into the pathophysiology of schizophrenia along with furthering our understanding of the mechanisms subserving both the effects (e.g., antipsychotic effects) and side-effects (e.g., metabolic syndrome) of antipsychotics.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Min Jin
- School of Public Health, Baotou Medical College, Baotou, China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada.,The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | | | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
28
|
Wang X, Ding S, Lu Y, Jiao Z, Zhang L, Zhang Y, Yang Y, Zhang Y, Li W, Lv L. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Res Bull 2019; 147:140-147. [PMID: 30772438 DOI: 10.1016/j.brainresbull.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
Abstract
Schizophrenia treatment remains a major challenge, especially the associated cognitive impairments, as these are not consistently alleviated by conventional antipsychotics. Recent animal and clinical studies suggest that the nitric oxide (NO) donor sodium nitroprusside (SNP) reduces the psychiatric symptoms and cognitive deficits of schizophrenia. The present study was designed to investigate the efficacy of SNP against schizophrenia-like behavioral and cognitive deficits in the dizocilpine (MK-801) rat model. We used the rotarod and open field tests to identify the SNP dose which had no adverse effects on rat's exploratory and motor behavior, then established the schizophrenia model by injecting adult Sprague-Dawley rats intraperitoneally with MK-801 (0.4 mg/kg) with or without SNP pre-treatment. Behavioral changes were examined after 10 min. Prepulse inhibition (PPI) and the Y maze tests were conducted to assess cognitive deficits, and elevated plus maze and open field tests to assess anxiety-like behaviors. Preliminary rotarod and open field tests demonstrated that 2.5 mg/kg SNP had no effect on motor performance. Acute MK-801 treatment induced both cognitive deficits and anxiety. Co-administration of SNP (2.5 mg/kg) failed to improve these schizophrenia-like abnormalities. Sodium nitroprusside appears unable to improve schizophrenia-like symptoms and cognitive deficits induced by MK-801, inconsistent with the effectiveness of SNP as an adjunct therapy for anxiety disorders and working memory impairments in schizophrenia patients. Future studies are required to define an effective dose range for SNP monotherapy and adjunct therapy in different rodent models.
Collapse
Affiliation(s)
- Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Zhiqiang Jiao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Lin Zhang
- Wuhan Mental Health Center, The Ninth Clinical College of Huazhong University of Science and Technology, No.93, Youyi Road, Wuhan, 430022, Hubei, People's Republic of China.
| | - Yan Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, No.83, Hulan East Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Yujuan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| |
Collapse
|
29
|
The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review. J Psychiatr Res 2019; 108:57-83. [PMID: 30055853 DOI: 10.1016/j.jpsychires.2018.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 01/28/2023]
Abstract
Since the discovery of chlorpromazine in the 1950's, antipsychotic drugs have been the cornerstone of treatment of schizophrenia, and all attenuate dopamine transmission at the dopamine-2 receptor. Drug development for schizophrenia since that time has led to improvements in side effects and tolerability, and limited improvements in efficacy, with the exception of clozapine. However, the reasons for clozapine's greater efficacy remain unclear, despite the great efforts and resources invested therewith. We performed a comprehensive review of the literature to determine the fate of previously tested, non-dopamine-2 receptor experimental treatments. Overall we included 250 studies in the review from the period 1970 to 2017 including treatments with glutamatergic, serotonergic, cholinergic, neuropeptidergic, hormone-based, dopaminergic, metabolic, vitamin/naturopathic, histaminergic, infection/inflammation-based, and miscellaneous mechanisms. Despite there being several promising targets, such as allosteric modulation of the NMDA and α7 nicotinic receptors, we cannot confidently state that any of the mechanistically novel experimental treatments covered in this review are definitely effective for the treatment of schizophrenia and ready for clinical use. We discuss potential reasons for the relative lack of progress in developing non-dopamine-2 receptor treatments for schizophrenia and provide recommendations for future efforts pursuing novel drug development for schizophrenia.
Collapse
|
30
|
Bernstein HG, Bogerts B, Keilhoff G, Steiner J. Postmortem studies indicate altered cell chemical composition of the suprachiasmatic nucleus in mood disorders. Eur Arch Psychiatry Clin Neurosci 2018; 268:871-872. [PMID: 29119265 DOI: 10.1007/s00406-017-0849-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany. .,Department of Psychiatry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| |
Collapse
|
31
|
Dias KCF, de Almeida JC, Vasconcelos LC, Patrocínio MLV, Barbosa TM, Ximenes NC, Leitão APDA, Louchard BO, Pimenta ATÁ, Pinto FDCL, Leal LKAM, Honório Junior JER, Vasconcelos SMM. Standardized extract of Erythrina velutina Willd. attenuates schizophrenia-Like behaviours and oxidative parameters in experimental animal models. J Pharm Pharmacol 2018; 71:379-389. [PMID: 30456833 DOI: 10.1111/jphp.13039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To study the effects of the standardized extract from the leaves of Erythrina velutina in behavioural and oxidative parameters in the ketamine-induced schizophrenia model. METHODS Mice received ketamine (KET) or saline for 7 days. From 8th to 14th day, the animals received Erythrine (Eryt) (100, 200 or 400 mg/kg) or olanzapine (Olanz), 1 h after KET administration. At 14th day, 30 min after the last administration of KET, the open-field and pre-pulse inhibition (PPI) tests were performed. Then, the animals were sacrificed and the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were dissected for the oxidative tests. KEY FINDINGS Ketamine increased spontaneous locomotor activity and grooming. KET decreased the PPI, which was reversed by combining it with Eryt or olanzapine. KET decreased GSH concentration in PFC and ST this was reversed by Eryt. KET increased MDA concentration in PFC and HC this was reversed by Eryt. Eryt and Olanzapine reduced MDA concentration in ST when compared to KET group. Nitrite concentration was reduced by administration of KET in the PFC. CONCLUSIONS These results demonstrate that the standardized extract of E. velutina can prevent behavioural symptoms and oxidative stress induced by repeated doses of KET.
Collapse
Affiliation(s)
- Katia Cilene Ferreira Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil
| | - Jamily Cunha de Almeida
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil
| | - Luna Costa Vasconcelos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil
| | | | - Talita Matias Barbosa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil
| | - Naiara Coelho Ximenes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil
| | | | | | | | | | | | - José Eduardo Ribeiro Honório Junior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Ceará, Brazil.,School of Medicine, University Center Christus-Unichristus, Ceará, Brazil
| | | |
Collapse
|
32
|
Liu F, Zhang B, Xie L, Ruan Y, Xu X, Zeng Y, Messina L, Zhao J, Fan X. Changes in plasma levels of nitric oxide metabolites and negative symptoms after 16-week minocycline treatment in patients with schizophrenia. Schizophr Res 2018. [PMID: 29526457 DOI: 10.1016/j.schres.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study examined the effect of adjunctive minocycline on psychopathology and possibly relevant biomarkers in patients with schizophrenia. METHOD In a 16-week randomized, double-blind, placebo-controlled study, subjects received either minocycline (200mg per day) or placebo. Psychopathology was assessed using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS) at baseline and week 16. Plasma levels of tumor necrosis factor α (TNFα), interleukin-1 β (IL-1β) and nitric oxide metabolites were assessed at both time points. RESULTS Fifty-five patients completed the study (27 in the minocycline group, 28 in the placebo group). The minocycline group had significant decreases in the SANS total sore, the PANSS total score and the PANSS negative symptoms score at week 16 compared to the placebo group. In addition, the minocycline group had a significant decrease in plasma levels of nitric oxide metabolites, but no significant difference in changes in plasma levels of IL-1β or TNF-α, compared to the placebo group at week 16. Further, the more decrease in plasma levels of nitric oxide metabolites was associated with less improvement in negative symptoms. CONCLUSION The beneficial effect of adjunctive minocycline treatment on negative symptoms might be through mechanisms other than the nitric oxide pathway. The implications for future studies were discussed.
Collapse
Affiliation(s)
- Fang Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, China; Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Bingkui Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liqin Xie
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ye Ruan
- Mental Health Center of Yunnan Province, Kunming, China
| | - XiuFeng Xu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zeng
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Louis Messina
- Division of vascular surgery, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China.
| | - Xiaoduo Fan
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States.
| |
Collapse
|
33
|
Franco ÁDO, Starosta RT, Roriz-Cruz M. The specific impact of uremic toxins upon cognitive domains: a review. ACTA ACUST UNITED AC 2018; 41:103-111. [PMID: 30095142 PMCID: PMC6534037 DOI: 10.1590/2175-8239-jbn-2018-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
One of the mechanisms proposed for chronic kidney disease (CKD)-related cognitive impairment is the accumulation of uremic toxins due to the deterioration of the renal clearance function. Cognition can be categorized into five major domains according to its information processing functions: memory, attention, language, visual-spatial, and executive. We performed a review using the terms 'uric acid', 'indoxyl sulfate', 'p-cresyl sulfate', 'homocysteine', 'interleukins' and 'parathyroid hormone'. These are the compounds that were found to be strongly associated with cognitive impairment in CKD in the literature. The 26 selected articles point towards an association between higher levels of uric acid, homocysteine, and interleukin 6 with lower cognitive performance in executive, attentional, and memory domains. We also reviewed the hemodialysis effects on cognition. Hemodialysis seems to contribute to an amelioration of CKD-related encephalopathic dysfunction, although this improvement occurs more in some cognitive domains than in others.
Collapse
Affiliation(s)
| | - Rodrigo Tzovenos Starosta
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre, RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | - Matheus Roriz-Cruz
- Universidade Federal do Rio Grande do Sul, Departamento de Medicina Interna, Porto Alegre, RS, Brasil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
34
|
Morin Attenuates Neurochemical Changes and Increased Oxidative/Nitrergic Stress in Brains of Mice Exposed to Ketamine: Prevention and Reversal of Schizophrenia-Like Symptoms. Neurochem Res 2018; 43:1745-1755. [PMID: 29956036 DOI: 10.1007/s11064-018-2590-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022]
Abstract
Previous studies have revealed that morin (MOR), a neuroactive bioflavonoid, with proven psychotropic and neuroprotective properties reduced schizophrenic-like behaviors in mice. This study further evaluated the ability of MOR to prevent and reverse ketamine-induced schizophrenic-like behaviors and the underlying neurochemical changes and increased oxidative/nitrergic stress in mice. In the preventive protocol, mice received intraperitoneal injection of MOR (100 mg/kg), reference antipsychotic drugs [haloperidol (1 mg/kg), risperidone (0.5 mg/kg)], or saline daily for 14 consecutive days prior to i.p. injection of ketamine (KET) (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days prior to MOR, haloperidol, risperidone, or saline treatments. Schizophrenic-like behaviors: positive (open-field test), negative (social-interaction test) and cognitive (Y-maze test) symptoms were evaluated. Thereafter, the brain levels of dopamine, glutamate, 5-hydroxytryptamine and acetyl-cholinesterase, as well as biomarkers of oxidative/nitrergic stress were measured in the striatum, prefrontal-cortex (PFC) and hippocampus (HC). Morin prevented and reversed KET-induced hyperlocomotion, social and cognitive deficits. Also, MOR or risperidone attenuated altered dopaminergic, glutamatergic, 5-hydroxytryptaminergic and cholinergic neurotransmissions in brain region-dependent manner. The increased malondialdehyde and nitrite levels accompanied by decreased glutathione concentrations in the striatum, PFC and HC in KET-treated mice were significantly attenuated by MOR or risperidone. Taken together, these findings suggest that the anti-schizophrenic-like activity of MOR may be mediated via mechanisms related to attenuation of neurochemical changes and oxidative/nitrergic alterations in mice.
Collapse
|
35
|
Cao B, Wang D, Brietzke E, McIntyre RS, Pan Z, Cha D, Rosenblat JD, Zuckerman H, Liu Y, Xie Q, Wang J. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study. Amino Acids 2018; 50:1013-1023. [PMID: 29796929 DOI: 10.1007/s00726-018-2579-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023]
Abstract
Amino acids and derivatives participate in the biosynthesis and downstream effects of numerous neurotransmitters. Variations in specific amino acids have been implicated in the pathophysiology of schizophrenia. Herein, we sought to compare levels of amino acids and derivatives between subjects with schizophrenia and healthy controls (HC). Two hundred and eight subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia and 175 age- and sex-matched HC were enrolled. The levels of twenty-five amino acids and seven related derivatives were measured in plasma samples using hydrophilic interaction liquid chromatography (HILIC) liquid chromatography-tandem mass spectrometry (LC-MS). After controlling for age, sex and body mass index (BMI), four amino acids and derivatives (i.e., cysteine, GABA, glutamine and sarcosine) were observed to be higher in the schizophrenia group when compared with HC; seven amino acids and derivatives were lower in the schizophrenia group (i.e., arginine, L-ornithine, threonine, taurine, tryptophan, methylcysteine, and kynurenine). Statistically significant differences in plasma amino-acid profiles between subjects with first-episode vs. recurrent schizophrenia for aspartate and glutamine were also demonstrated using generalized linear models controlling for age, sex, and BMI. The differences in amino acids and derivatives among individuals with schizophrenia when compared to HC may represent underlying pathophysiology, including but not limited to dysfunctional proteinogenic processes, alterations in excitatory and inhibitory neurotransmission, changes in ammonia metabolism and the urea cycle. Taken together, amino-acid profiling may provide a novel stratification approach among individuals with schizophrenia.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Danielle Cha
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, 38 Xue-Yuan Road, Haidian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, People's Republic of China. .,Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
36
|
The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell Tissue Res 2018; 375:243-258. [DOI: 10.1007/s00441-018-2849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
|
37
|
Ben-Azu B, Omogbiya IA, Aderibigbe AO, Umukoro S, Ajayi AM, Iwalewa EO. Doxycycline prevents and reverses schizophrenic-like behaviors induced by ketamine in mice via modulation of oxidative, nitrergic and cholinergic pathways. Brain Res Bull 2018; 139:114-124. [DOI: 10.1016/j.brainresbull.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
|
38
|
Pereira Orenha R, Tfouni E, Galembeck SE. How does the total charge and isomerism influence the Ru–NO ammine complexes? Phys Chem Chem Phys 2018; 20:13348-13356. [DOI: 10.1039/c8cp00865e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NO bioavailability is controlled from Ru–NO complexes, and thus, the influence of the total charge and ligands is explored from DFT calculations.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Departamento de Química, Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto
- Brazil
| | - Elia Tfouni
- Departamento de Química, Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto
- Brazil
| | - Sérgio Emanuel Galembeck
- Departamento de Química, Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto
- Brazil
| |
Collapse
|
39
|
DINCEL GC. First description of enhanced expression of glia maturation factor-beta in experimental toxoplasmic encephalitis. J Int Med Res 2017; 45:1670-1679. [PMID: 28774213 PMCID: PMC5805200 DOI: 10.1177/0300060517700320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Objective We previously showed that Toxoplasma gondii infection induces severe neuropathology in the form of oxidative stress, high nitric oxide production, glial activation, and apoptosis. This study examined the association between glia maturation factor-beta (GMF-β) expression, activated astrocytes/microglia, and neuropathology in toxoplasmic encephalitis (TE). Methods Mouse brain GMF expression was examined by immunohistochemistry on days 10 and 30 post- T. gondii infection. Results Neuropathology of infected mice was associated with increased GMF expression in reactive glial cells and neurons compared with healthy controls. Specific up-regulation of GMF-β expression in glial cells was associated with increased gliosis in TE. Conclusions GMF up-regulation in glial cells causes neuronal destruction, suggesting a TE pathological pathway involving GMF-mediated brain cell cytotoxicity. GMF-β may therefore be a good biomarker for disease risk assessment and to estimate host neuropathy after exposure to T. gondii, as well as providing a new therapeutic target. This is the first study to demonstrate the expression of GMF-β in reactive glial cells and its association with neuropathology in TE.
Collapse
|
40
|
Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: Pathophysiological and phenotypic implications. Schizophr Res 2017; 188:98-109. [PMID: 28100419 DOI: 10.1016/j.schres.2017.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 01/07/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although a clear mechanism underlying the pathophysiology of schizophrenia (SZ) remains elusive, oxidative stress, inflammatory syndrome and immune activation have become an attractive hypothesis for explaining the pathophysiology of SZ. Data from prior studies on the role of matrix metalloproteinase 9 (MMP-9) and brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms (SNPs) in SZ are contradictory. We aimed to investigate whether oxidative stress, inflammatory and immune activation markers as well as MMP-9 levels may be implicated in SZ pathogenesis. The association of MMP-9 and BDNF SNPs with the clinical expression of SZ was examined. SUBJECTS AND METHODS Ninety-four subjects were recruited, including 44 SZ patients and 50 healthy controls. Serum levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), nitrite, C-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), Beta-2 microglobulin (Β2M), complement component 3 (C3), C4 and MMP-9 were measured. The MMP-9 -1562C>T and BDNF196G>A SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism assay. Psychopathology was assessed using the positive and negative syndrome scale (PANSS). RESULTS SZ patients showed significantly higher TBARS, PCC, nitrite, CRP, IL-6, TNF-α, Β2M, C3 and MMP-9 levels than controls. In distinguishing SZ patients from healthy controls, CRP and MMP-9 yielded similar discriminatory performance, and both perform better than IL-6, Β2M, C3, nitrite, TBARS, PCC, TNF-α and C4. The MMP-9 -1562C>T SNP genotypes distribution didn't differ significantly between controls and SZ patients. As compared to controls, SZ patients harbor a significantly higher frequency of the BDNF196GG genotype and a lower frequency of the BDNF196GA/AA genotype. Patients carrying the MMP-9 -1562CC or BDNF196GG genotype revealed a significantly higher PANSS than those carrying MMP-9 -1562CT/TT or BDNF196GA/AA genotype. Male gender and the MMP-9 -1562CC genotype were identified as independent predictive factors for higher PANSS. CONCLUSIONS Redox dysregulation and alterations in the immuno-inflammatory pathways are major culprits in the pathogenesis of SZ. MMP-9 and BDNF SNPs are associated with the clinical phenotype of SZ and, thus, may be a useful marker predicting the phenotypic expression and prognosis of SZ patients.
Collapse
|
41
|
Association Between NOS1 Gene Polymorphisms and Schizophrenia in Asian and Caucasian Populations: A Meta-Analysis. Neuromolecular Med 2017; 19:452-461. [PMID: 28795310 DOI: 10.1007/s12017-017-8460-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/01/2017] [Indexed: 01/11/2023]
Abstract
Schizophrenia is a complex psychiatric disorder characterized by memory impairments with delusions and hallucinations. Several investigations have focused on determining the association between NOS1 (nitric oxide synthase-1) polymorphisms and risk of schizophrenia (SZ). However, the association of rs2682826, rs3782206, rs499776, rs3782219, rs41279104, rs3782221, rs1879417, rs4767540, rs561712, and rs6490121 polymorphisms with schizophrenia remains inconclusive. We performed a systematic meta-analysis for each polymorphism to determine its association with SZ by calculating their pooled odds ratio and 95% confidence intervals. The heterogeneity between studies was evaluated using Cochran's Q test to adopt random effects or fixed effects model. Based on our analysis, the rs3782206 polymorphism showed a strongest association with schizophrenia in allelic OR 1.15 (95% CI [1.05-1.25]), homozygote OR 1.35 (95% CI [1.09-1.66]), dominant OR 1.16 (95% CI [1.04-1.29]), and recessive OR 1.29 (95% CI [1.05-1.58]) models in Asian population. Similarly, in Caucasian population, the rs499776 polymorphism attributes risk association in homozygote OR 0.70 (95% CI [0.50-0.98]), dominant OR 3.57 (95% CI [2.34-5.27]), and recessive models OR 0.68 (95% CI [0.50-0.93]) with schizophrenia. Further, the sensitivity analysis was carried out based on leave-one-out method to confirm the reliability of the analysis. Overall, our meta-analysis demonstrates the significance of NOS1 genetic variants that are functionally associated with cognitive and neuropsychiatric symptoms of schizophrenia.
Collapse
|
42
|
Jabbari B, Vaziri ND. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial Int 2017; 22:150-160. [PMID: 28799704 DOI: 10.1111/hdi.12587] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perhaps no other organ in the body is affected as often and in as many ways as the brain is in patients with chronic kidney disease (CKD). Several factors contribute to the neurological disorders in CKD including accumulation of uremic toxins, metabolic and hemodynamic disorders, oxidative stress, inflammation, and impaired blood brain barrier among others. The neurological disorders in CKD involve both peripheral and central nervous system. The peripheral neurological symptoms of CKD are due to somatic and cranial peripheral neuropathies as well as a myopathy. The central neurological symptoms of CKD are due to the cortical predominantly cortical, or subcortical lesions. Cognitive decline, encephalopathy, cortical myoclonus, asterixis and epileptic seizures are distinct features of the cortical disorders of CKD. Diffuse white matter disease due to ischemia and hypoxia may be an important cause of subcortical encephalopathy. A special and more benign form of subcortical disorder caused by brain edema in CKD is termed posterior reversible encephalopathy. Subcortical pathology especially when it affects the basal ganglia causes a number of movement disorders including Parkinsonism, chorea and dystonia. A stimulus-sensitive reflex myoclonus is believed to originate from the medullary structures. Sleep disorder and restless leg syndrome are common in CKD and have both central and peripheral origin. This article provides an overview of the available data on the nature, prevalence, pathophysiology, consequences and treatment of neurological complications of CKD.
Collapse
Affiliation(s)
- Bahman Jabbari
- Department of Neurology, Division of Movement disorders, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nosratola D Vaziri
- Departments of Medicine, Physiology and Biophysics, Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
43
|
Abstract
Many psychopathological symptoms, including schizophrenia, can be associated with magnesium metabolism disturbances. In the literature, contradictory data exist regarding magnesium levels in patients with this disorder. However, this situation might be caused by determination of extracellular concentration of magnesium; although, this is mainly an intracellular ion. There are no data concerning determination of the ionized fraction of magnesium in patients with schizophrenia, while the ionized fraction represents 67% of the total pool of magnesium in healthy people. Also, the mechanism of magnesium action-the effect of magnesium ions on NMDA and GABA receptors-has not yet been fully investigated. There are preliminary studies aimed at increasing the effectiveness of schizophrenia pharmacotherapy via magnesium supplementation. Multidirectional activity of magnesium can significantly increase its therapeutic effect in psychiatry. This observation is confirmed by recent studies conducted by various research teams. However, further studies on the role of magnesium supplementation in patients with schizophrenia are needed.
Collapse
|
44
|
Potential drug targets and treatment of schizophrenia. Inflammopharmacology 2017; 25:277-292. [DOI: 10.1007/s10787-017-0340-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
|
45
|
da Silva Araújo T, Maia Chaves Filho AJ, Monte AS, Isabelle de Góis Queiroz A, Cordeiro RC, de Jesus Souza Machado M, de Freitas Lima R, Freitas de Lucena D, Maes M, Macêdo D. Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 2017; 84:49-58. [PMID: 27697587 DOI: 10.1016/j.jpsychires.2016.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023]
Abstract
Immune dysregulation observed in schizophrenia alters tryptophan metabolism. Tryptophan metabolism is triggered by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Tryptophan is converted to quinolinic acid, a potent neurotoxin, and to kynurenic acid, an NMDA antagonist. 1-Methyl-D-tryptophan (MDT) inhibits IDO. Melatonin is metabolized by IDO while inhibiting TDO. We evaluated the reversal of ketamine-induced schizophrenia-like behavioral and neurochemical alterations in mice by the administration of MDT (20 or 40 mg/kg, i.p.) or melatonin (15 mg/kg, per os). Oxidative stress and inflammatory alterations, i.e. myeloperoxidase activity (MPO), reduced glutathione (GSH), lipid peroxidation (LPO) and interleukin (IL)-4 and IL-6 were measured in the prefrontal cortex (PFC), hippocampus and striatum. Risperidone was used as standard antipsychotic. Ketamine triggered positive- (PPI deficits and hyperlocomotion), cognitive- (working memory deficits) and negative (social interaction deficits) schizophrenia-like symptoms. These symptoms were accompanied by increased MPO activity, decreased GSH and increased LPO in all brain areas and increments in hippocampal IL-4 and IL-6. MDT and melatonin reversed all ketamine-induced behavioral alterations. Risperidone did not reverse working memory deficits. MDT and melatonin reversed alterations in MPO activity and GSH levels. LP was reversed only by melatonin and risperidone. Risperidone could not reverse MPO alterations in the PFC and striatum. All drugs reversed the alterations in IL-4 and IL-6. The hippocampus and striatum of ketamine+melatonin-treated animals had lower levels of IL-6. Our findings provide further preclinical evidence that immune-inflammatory and oxidative pathways are involved in schizophrenia and that targeting these pathways is a valid treatment option in schizophrenia.
Collapse
Affiliation(s)
- Tatiane da Silva Araújo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Adriano Jose Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ana Isabelle de Góis Queiroz
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rafaela Carneiro Cordeiro
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ricardo de Freitas Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
46
|
|
47
|
MacKay M, Cetin M, Baker G, Dursun S. Modulation of Central Nitric Oxide as a Therapeutic Strategy for Schizophrenia. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10177833.2010.11790644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marnie MacKay
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada, Centre for Psychiatric Assessment and Therapeutics, Alberta Hospital Edmonton, Alberta Health Services, Edmonton, Canada
| | - Mesut Cetin
- GATA Haydarpasa Training Hospital, Department of Psychiatry, Istanbul-Turkey
| | - Glen Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada, Centre for Psychiatric Assessment and Therapeutics, Alberta Hospital Edmonton, Alberta Health Services, Edmonton, Canada
| | - Serdar Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Canada, Centre for Psychiatric Assessment and Therapeutics, Alberta Hospital Edmonton, Alberta Health Services, Edmonton, Canada
| |
Collapse
|
48
|
Santos CM, Peres FF, Diana MC, Justi V, Suiama MA, Santana MG, Abílio VC. Peripubertal exposure to environmental enrichment prevents schizophrenia-like behaviors in the SHR strain animal model. Schizophr Res 2016; 176:552-559. [PMID: 27338757 DOI: 10.1016/j.schres.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a highly disabling mental disorder, in which genetics and environmental factors interact culminating in the disease. The treatment of negative symptoms and cognitive deficits with antipsychotics is currently inefficient and is an important field of research. Environmental enrichment (EE) has been suggested to improve some cognitive deficits in animal models of various psychiatric disorders. In this study, we aimed to evaluate a possible beneficial effect of early and long-term exposure to EE on an animal model of schizophrenia, the SHR strain. Young male Wistar rats (control strain) and SHRs (21 post-natal days) were housed for 6weeks in two different conditions: in large cages (10 animals per cage) containing objects of different textures, forms, colors and materials that were changed 3 times/week (EE condition) or in standard cages (5 animals per cage - Control condition). Behavioral evaluations - social interaction (SI), locomotion, prepulse inhibition of startle (PPI) and spontaneous alternation (SA) - were performed 6weeks after the end of EE. SHRs presented deficits in PPI (a sensorimotor impairment), SI (mimicking the negative symptoms) and SA (a working memory deficit), and also hyperlocomotion (modeling the positive symptoms). EE was able to reduce locomotion and increase PPI in both strains, and to prevent the working memory deficit in SHRs. EE also increased the number of neurons in the CA1 and CA3 of the hippocampus. In conclusion, EE can be a potential nonpharmacological strategy to prevent some behavioral deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Fernanda Fiel Peres
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mariana Cepollaro Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Veronica Justi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Mayra Akimi Suiama
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Marcela Gonçalves Santana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 5° andar, Ed. de Pesquisas II, CEP 04039-032 São Paulo, SP, Brazil
| |
Collapse
|
49
|
Telo S, Gurok MG. Asymmetric dimethylarginine (ADMA), 4-OH-nonenal and Vitamin E levels in chronic schizophrenic patients. Psychiatry Res 2016; 240:295-299. [PMID: 27138821 DOI: 10.1016/j.psychres.2016.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/02/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Selda Telo
- Department of Biochemistry and Clinical Biochemistry, Firat University, School of Medicine (Firat Medical Center), 23119 Elazig, Turkey.
| | | |
Collapse
|
50
|
Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol 2016; 29:226-40. [PMID: 26966143 PMCID: PMC5806720 DOI: 10.1177/0394632016638668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress (OS) plays an essential role in the pathogenesis of common neurodegenerative diseases. We have previously shown that Toxoplasma gondii (T. gondii) induces high nitric oxide (NO) production, glial activation, and apoptosis that altogether cause severe neuropathology in toxoplasma encephalitis (TE). The objective of this study was to investigate the cytotoxic effect of OS and to identify a correlation between the causes of T. gondii induced neuropathology. Expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (SOD1), neuron specific enolase (NSE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were investigated. Results of the study revealed that the levels of GR (P <0.005) and NSE (P <0.001) expression in the brain tissue markedly increased while SOD1 activity decreased (P <0.001) in the infected group compared to the non-infected group. In addition, intense staining for 8-OHdG (P <0.05) was observed both in the nucleus and the cytoplasm of neurons and glial cells that underwent OS. These results were reasonable to suggest that T. gondii-mediated OS might play a pivotal role and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of TE. The results also clearly indicated that increased levels of NO and apoptosis might contribute to OS-related pathogenesis of TE. As a result, OS and expression of NSE might give an idea of the disease progress and may have a critical diagnostic significance for patients with T. gondii infection.
Collapse
Affiliation(s)
- Gungor Cagdas Dincel
- Gumushane University, Siran Mustafa Beyaz Vocational High School, Siran, Gumushane, Turkey
| | - Hasan Tarik Atmaca
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Yahsihan, Kirikkale, Turkey
| |
Collapse
|