1
|
Suárez-Rama JJ, Arrojo M, Sobrino B, Amigo J, Brenlla J, Agra S, Paz E, Brión M, Carracedo Á, Páramo M, Costas J. Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. J Psychiatr Res 2015; 66-67:38-44. [PMID: 25943950 DOI: 10.1016/j.jpsychires.2015.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/20/2022]
Abstract
A fraction of genetic risk to develop schizophrenia may be due to low-frequency variants. This multistep study attempted to find low-frequency variants of high effect at coding regions of eleven schizophrenia susceptibility genes supported by genome-wide association studies (GWAS) and nine genes for the DISC1 interactome, a susceptibility gene-set. During the discovery step, a total of 125 kb per sample were resequenced in 153 schizophrenia patients and 153 controls from Galicia (NW Spain), and the cumulative role of low-frequency variants at a gene or at the DISC1 gene-set were analyzed by burden and variance-based tests. Relevant results were meta-analyzed when appropriate data were available. In addition, case-only putative damaging variants were genotyped in a further 419 cases and 398 controls. The discovery step revealed a protective effect of rare missense variants at NRXN1, a result supported by meta-analysis (OR = 0.67, 95% CI: 0.47-0.94, P = 0.021, based on 3848 patients and 3896 controls from six studies). The follow-up step based on case-only putative damaging variants revealed a promising risk variant at AKAP9. This variant, K873R, reached nominal significance after inclusion of 240 additional Spanish controls from databases. The variant, located in an ADCY2 binding region, is absent from large public databases. Interestingly, GWAS revealed an association between common ADCY2 variants and bipolar disorder, a disorder with considerable genetic overlap with schizophrenia. These data suggest a role of rare missense variants at NRXN1 and AKAP9 in schizophrenia susceptibility, probably related to alteration of the excitatory/inhibitory synaptic balance, deserving further investigation.
Collapse
Affiliation(s)
- José Javier Suárez-Rama
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Jorge Amigo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Julio Brenlla
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Santiago Agra
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Eduardo Paz
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - María Brión
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Mario Páramo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago(CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Jenkins A, Apud JA, Zhang F, Decot H, Weinberger DR, Law AJ. Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia. Neuropsychopharmacology 2014; 39:2170-8. [PMID: 24633560 PMCID: PMC4104334 DOI: 10.1038/npp.2014.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/09/2014] [Indexed: 12/22/2022]
Abstract
Neurexins are presynaptic neuronal adhesion molecules that interact with postsynaptic neuroligins to form an inter-synaptic complex required for synaptic specification and efficient neurotransmission. Deletions and point mutations in the neurexin 1 (NRXN1) gene are associated with a broad spectrum of neuropsychiatric and neurodevelopmental disorders, including autism, intellectual disability, epilepsy, developmental delay, and schizophrenia. Recently, small nucleotide polymorphisms in NRXN1 have been associated with antipsychotic drug response in patients with schizophrenia. Based on previous suggestive evidence of an impact on clozapine response in patients with schizophrenia, we conducted an association study of NRXN1 polymorphisms (rs12467557 and rs10490162) with antipsychotic treatment response in 54 patients with schizophrenia in a double blind, placebo-controlled NIMH inpatient crossover trial and examined for association with risk for schizophrenia in independent case-control and family-based clinical cohorts. Pharmacogenetic analysis in the placebo controlled trial revealed significant association of rs12467557and rs10490162 with drug response, whereby individuals homozygous for the A allele, at either SNP, showed significant improvement in positive symptoms, general psychopathology, thought disturbance, and negative symptoms, whereas patients carrying the G allele showed no overall response. Although we did not find evidence of the same NRXN1 SNPs being associated with results of the NIMH sponsored CATIE trial, other SNPs showed weakly positive signals. The family and case-control analyses for schizophrenia risk were negative. Our results provide confirmatory evidence of genetically determined differences in drug response in patients with schizophrenia related to NRXN1 variation. Furthermore, these findings potentially implicate NRXN1 in the therapeutic actions of antipsychotic drugs.
Collapse
Affiliation(s)
- Aaron Jenkins
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA,University of Kentucky College of Medicine, Lexington, KY, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Heather Decot
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institute of Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA,Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amanda J Law
- Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, CO, USA,Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Mailstop 8344, RC1 North, RM. 8101, Aurora, CO 80045, USA, Tel: +1 303 724 4418, Fax: +1 303 724 4425, E-mail:
| |
Collapse
|
3
|
Identification of gene ontologies linked to prefrontal-hippocampal functional coupling in the human brain. Proc Natl Acad Sci U S A 2014; 111:9657-62. [PMID: 24979789 DOI: 10.1073/pnas.1404082111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional interactions between the dorsolateral prefrontal cortex and hippocampus during working memory have been studied extensively as an intermediate phenotype for schizophrenia. Coupling abnormalities have been found in patients, their unaffected siblings, and carriers of common genetic variants associated with schizophrenia, but the global genetic architecture of this imaging phenotype is unclear. To achieve genome-wide hypothesis-free identification of genes and pathways associated with prefrontal-hippocampal interactions, we combined gene set enrichment analysis with whole-genome genotyping and functional magnetic resonance imaging data from 269 healthy German volunteers. We found significant enrichment of the synapse organization and biogenesis gene set. This gene set included known schizophrenia risk genes, such as neural cell adhesion molecule (NRCAM) and calcium channel, voltage-dependent, beta 2 subunit (CACNB2), as well as genes with well-defined roles in neurodevelopmental and plasticity processes that are dysfunctional in schizophrenia and have mechanistic links to prefrontal-hippocampal functional interactions. Our results demonstrate a readily generalizable approach that can be used to identify the neurogenetic basis of systems-level phenotypes. Moreover, our findings identify gene sets in which genetic variation may contribute to disease risk through altered prefrontal-hippocampal functional interactions and suggest a link to both ongoing and developmental synaptic plasticity.
Collapse
|
4
|
Dabell MP, Rosenfeld JA, Bader P, Escobar LF, El-Khechen D, Vallee SE, Dinulos MBP, Curry C, Fisher J, Tervo R, Hannibal MC, Siefkas K, Wyatt PR, Hughes L, Smith R, Ellingwood S, Lacassie Y, Stroud T, Farrell SA, Sanchez-Lara PA, Randolph LM, Niyazov D, Stevens CA, Schoonveld C, Skidmore D, MacKay S, Miles JH, Moodley M, Huillet A, Neill NJ, Ellison JW, Ballif BC, Shaffer LG. Investigation ofNRXN1deletions: Clinical and molecular characterization. Am J Med Genet A 2013; 161A:717-31. [DOI: 10.1002/ajmg.a.35780] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
|
5
|
Chen X, Shen Y, Zhang F, Chiang C, Pillalamarri V, Blumenthal I, Talkowski M, Wu BL, Gusella J. Molecular analysis of a deletion hotspot in the NRXN1 region reveals the involvement of short inverted repeats in deletion CNVs. Am J Hum Genet 2013; 92:375-86. [PMID: 23472757 PMCID: PMC3591860 DOI: 10.1016/j.ajhg.2013.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 01/07/2023] Open
Abstract
NRXN1 microdeletions occur at a relatively high frequency and confer increased risk for neurodevelopmental and neurobehavioral abnormalities. The mechanism that makes NRXN1 a deletion hotspot is unknown. Here, we identified deletions of the NRXN1 region in affected cohorts, confirming a strong association with the autism spectrum and other neurodevelopmental disorders. Interestingly, deletions in both affected and control individuals were clustered in the 5' portion of NRXN1 and its immediate upstream region. To explore the mechanism of deletion, we mapped and analyzed the breakpoints of 32 deletions. At the deletion breakpoints, frequent microhomology (68.8%, 2-19 bp) suggested predominant mechanisms of DNA replication error and/or microhomology-mediated end-joining. Long terminal repeat (LTR) elements, unique non-B-DNA structures, and MEME-defined sequence motifs were significantly enriched, but Alu and LINE sequences were not. Importantly, small-size inverted repeats (minus self chains, minus sequence motifs, and partial complementary sequences) were significantly overrepresented in the vicinity of NRXN1 region deletion breakpoints, suggesting that, although they are not interrupted by the deletion process, such inverted repeats can predispose a region to genomic instability by mediating single-strand DNA looping via the annealing of partially reverse complementary strands and the promoting of DNA replication fork stalling and DNA replication error. Our observations highlight the potential importance of inverted repeats of variable sizes in generating a rearrangement hotspot in which individual breakpoints are not recurrent. Mechanisms that involve short inverted repeats in initiating deletion may also apply to other deletion hotspots in the human genome.
Collapse
Affiliation(s)
- Xiaoli Chen
- Capital Institute of Pediatrics, Beijing 100020, China
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA 02115, USA
| | - Yiping Shen
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA 02115, USA
- Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Colby Chiang
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bai-Lin Wu
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Children’s Hospital and Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Carter MT, Scherer SW. Autism spectrum disorder in the genetics clinic: a review. Clin Genet 2013; 83:399-407. [PMID: 23425232 DOI: 10.1111/cge.12101] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders affecting social communication, language and behavior. The underlying cause(s) in a given individual is often elusive, with the exception of clinically recognizable genetic syndromes with readily available molecular diagnosis, such as fragile X syndrome. Clinical geneticists approach patients with ASDs by ruling out known genetic and genomic syndromes, leaving more than 80% of families without a definitive diagnosis and an uncertain risk of recurrence. Advances in microarray technology and next-generation sequencing are revealing rare variants in genes with important roles in synapse formation, function and maintenance. This review will focus on the clinical approach to ASDs, given the current state of knowledge about their complex genetic architecture.
Collapse
Affiliation(s)
- M T Carter
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
| | | |
Collapse
|
7
|
Chojnicka I, Strawa K, Fudalej S, Fudalej M, Pawlak A, Kostrzewa G, Wojnar M, Krajewski P, Płoski R. Analysis of four genes involved in the neurodevelopment shows association of rs4307059 polymorphism in the cadherin 9/10 region with completed suicide. Neuropsychobiology 2013; 66:134-40. [PMID: 22846907 DOI: 10.1159/000339559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND We hypothesized that DNA variants affecting neurodevelopment such as rs4307059 (CDH10/CDH9), rs930752 (NRXN1), rs6265 (BDNF) or rs10868235 (NTRK2) may predispose to completed suicide. METHODOLOGY We used a case-control two-stage approach based on a discovery cohort (557 cases and ∼550 controls) and replication cohort (159 cases and 186 controls). The suicides were ascertained as consecutive cases autopsied at the Department of Forensic Medicine, Medical University of Warsaw, Poland. RESULTS In the discovery cohort we found an association between suicide and the CC genotype in the rs4307059 polymorphism (OR 1.64, p = 0.012). The trend for an overrepresentation of the CC homozygotes among suicides was replicated in the second cohort (OR 1.97, p = 0.056). Analysis in the pooled cohorts showed that rs4307059 CC was associated with completed suicide (OR 1.71, p = 0.002) also after Bonferroni correction (p(cor.) = 0.024). In an exploratory search for genotype-phenotype correlation we found that males with the rs4307059 CC genotype committed suicide earlier than those with CT/TT genotypes (p = 0.049). CONCLUSIONS The CC genotype of rs4307059 located in the region between CDH9 and CDH10 is associated with completed suicide in a Polish cohort.
Collapse
Affiliation(s)
- Izabela Chojnicka
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nasser E, Mangold E, Tradowsky DC, Fier H, Becker J, Boehmer AC, Herberz R, Fricker N, Barth S, Wahle P, Nowak S, Reutter H, Reich RH, Lauster C, Braumann B, Kreusch T, Hemprich A, Pötzsch B, Hoffmann P, Kramer FJ, Knapp M, Lange C, Nöthen MM, Ludwig KU. Resequencing of VAX1 in patients with nonsyndromic cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2012; 94:925-33. [PMID: 23081944 DOI: 10.1002/bdra.23078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common of all congenital anomalies, and has a multifactorial etiology involving both environmental and genetic factors. Recent genome-wide association studies (GWAS) identified strong association between a locus on chromosome 10q25.3 and NSCL/P in European samples. One gene at 10q25.3, the ventral anterior homeobox 1 (VAX1) gene, is considered a strong candidate gene for craniofacial malformations. The purpose of the present study was to provide further evidence that VAX1 is the causal gene at the 10q25.3 locus through identification of an excess of rare mutations in patients with NSCL/P. METHODS The 5'UTR, complete coding regions, and adjacent splice sites of the two known VAX1 isoforms were sequenced in 384 patients with NSCL/P and 384 controls of Central European descent. Observed variants were investigated with respect to familial cosegregation or de novo occurrence, and in silico analyses were performed to identify putative effects on the transcript or protein level. RESULTS Eighteen single-base variants were found, 15 of them rare and previously unreported. In the long VAX1 isoform, predicted functionally relevant variants were observed more often in NSCL/P cases, although this difference was not significant (p = 0.17). Analysis of family members demonstrated incomplete cosegregation in most pedigrees. CONCLUSION Our data do not support the hypothesis that highly penetrant rare variants in VAX1 are a cause of NSCL/P. To determine whether VAX1 is the causative gene at 10q25.3 further research, in particular into the biologic function of its long isoform, is warranted. Birth Defects Research (Part A), 2012.
Collapse
Affiliation(s)
- Entessar Nasser
- Institute of Human Genetics, University of Bonn, Bonn, Germany; Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Etain B, Dumaine A, Bellivier F, Pagan C, Francelle L, Goubran-Botros H, Moreno S, Deshommes J, Moustafa K, Le Dudal K, Mathieu F, Henry C, Kahn JP, Launay JM, Mühleisen TW, Cichon S, Bourgeron T, Leboyer M, Jamain S. Genetic and functional abnormalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum Mol Genet 2012; 21:4030-7. [PMID: 22694957 DOI: 10.1093/hmg/dds227] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression. In this paper, we analysed rare and common variants of ASMT in patients with BD and unaffected control subjects and performed functional analysis of these variants by assaying the ASMT activity in their B-lymphoblastoid cell lines. We sequenced the coding and the regulatory regions of the gene in a discovery sample of 345 patients with BD and 220 controls. We performed an association study on this discovery sample using common variants located in the promoter region and showed that rs4446909 was significantly associated with BD (P= 0.01) and associated with a lower mRNA level (P< 10(-4)) and a lower enzymatic activity (P< 0.05) of ASMT. A replication study and a meta-analysis using 480 independent patients with BD and 672 controls confirmed the significant association between rs4446909 and BD (P= 0.002). These results correlate with the general lower ASMT enzymatic activity observed in patients with BD (P= 0.001) compared with controls. Finally, several deleterious ASMT mutations identified in patients were associated with low ASMT activity (P= 0.01). In this study, we determined how rare and common variations in ASMT might play a role in BD vulnerability and suggest a general role of melatonin as susceptibility factor for BD.
Collapse
Affiliation(s)
- Bruno Etain
- Psychiatrie Génétique, INSERM U 955, Créteil 94000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Hu Z, Xun G, Peng Y, Lu L, Xu X, Xiong Z, Xia L, Liu D, Li W, Zhao J, Xia K. Mutation analysis of the NRXN1 gene in a Chinese autism cohort. J Psychiatr Res 2012; 46:630-4. [PMID: 22405623 DOI: 10.1016/j.jpsychires.2011.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 10/28/2022]
Abstract
Autism is a brain developmental disorder characterized by impaired social interaction and communication, as well as restricted and repetitive behaviors. The neurexin-1(NRXN1) gene mapped on chromosome 2p16.3 encodes neurexin, a cell adhesion molecule and receptor in the vertebrate nervous system. Rare de novo alterations and copy number variations (CNVs) suggested neurexin-1 as a candidate gene for the pathogenesis of autism, but data on the gene mutation of neurexin-1 in Chinese Han population with autism are limited. By direct sequencing, we analyzed the entire coding regions and associated splice junctions of neurexin-1 in 313 Chinese autism patients. For exons in which non-synonymous variants were identified, sequencing was performed in 500 healthy controls. We identified 22 variants in the neurexin-1 coding regions, including 7 missense variants, 3 deletions, and 12 synonymous mutations. Among them, 3 missense and 3 synonymous variants were not reported in the dbSNP database and absent in 500 control subjects; whereas 4 missense variants, 3 deletions and 3 synonymous mutations were not reported in the dbSNP database but were identified in the control subjects. However, there is no significant association of these mutations with autism risk. Interestingly, there was a statistically significant association of neurexin-1 SNP P300P (rs2303298) with risk of autism (26.2% vs. 13.8%; χ(2) = 22.487; p = 3.45E-006; OR = 2.152 (1.559-2.970)). Our data suggest a possible association of neurexin-1 with autism risk in Chinese Han population, warranting further large-scale study on this gene.
Collapse
Affiliation(s)
- Yalan Liu
- School of Biological Science and Technology, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7:e32969. [PMID: 22412961 PMCID: PMC3296759 DOI: 10.1371/journal.pone.0032969] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 12/27/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.
Collapse
|
12
|
Vyas NS, Shamsi SA, Malhotra AK, Aitchison KJ, Kumari V. Can genetics inform the management of cognitive deficits in schizophrenia? J Psychopharmacol 2012; 26:334-48. [PMID: 22328662 DOI: 10.1177/0269881111434623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is no doubt that schizophrenia has a significant genetic component and a number of candidate genes have been identified for this debilitating disorder. Of note, several of these are implicated in cognition. Cognitive deficits constitute core symptoms of schizophrenia, and while current antipsychotic treatment strategies aim to help psychosis-related symptomatology, the cognitive symptom domain is largely inadequately treated. A number of other pharmacological approaches (e.g. using drugs that target specific neurotransmitter systems) have also been attempted for the amelioration of cognitive deficits in this population; however, these too have had limited success so far. Psychological interventions appear promising, though there has been speculation regarding whether or not these produce long-term functional improvements. Pharmacogenetic studies of the cognitive effects of currently available antipsychotics, although in relatively early stages, suggest that the treatment of cognitive deficits in schizophrenia may be advanced by focusing on genetic variants associated with specific cognitive dysfunctions in the general population and using this to match the most relevant pharmacological and/or psychological interventions with the genetic and cognitive profiles of the target population. Such a strategy would encourage bottom-up advances in drug development and provide a platform for individualised treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Nora S Vyas
- King's College London, Institute of Psychiatry, MRC SGDP Centre, London, UK.
| | | | | | | | | |
Collapse
|
13
|
Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, Rueckert D, Montana G. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage 2011; 60:700-16. [PMID: 22209813 DOI: 10.1016/j.neuroimage.2011.12.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/18/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022] Open
Abstract
Scanning the entire genome in search of variants related to imaging phenotypes holds great promise in elucidating the genetic etiology of neurodegenerative disorders. Here we discuss the application of a penalized multivariate model, sparse reduced-rank regression (sRRR), for the genome-wide detection of markers associated with voxel-wise longitudinal changes in the brain caused by Alzheimer's disease (AD). Using a sample from the Alzheimer's Disease Neuroimaging Initiative database, we performed three separate studies that each compared two groups of individuals to identify genes associated with disease development and progression. For each comparison we took a two-step approach: initially, using penalized linear discriminant analysis, we identified voxels that provide an imaging signature of the disease with high classification accuracy; then we used this multivariate biomarker as a phenotype in a genome-wide association study, carried out using sRRR. The genetic markers were ranked in order of importance of association to the phenotypes using a data re-sampling approach. Our findings confirmed the key role of the APOE and TOMM40 genes but also highlighted some novel potential associations with AD.
Collapse
Affiliation(s)
- Maria Vounou
- Statistics Section, Department of Mathematics, Imperial College London, UK
| | | | | | | | | | | | | |
Collapse
|