1
|
Messinis A, Panteli E, Paraskevopoulou A, Zymarikopoulou AK, Filiou MD. Altered lipidomics biosignatures in schizophrenia: A systematic review. Schizophr Res 2024; 271:380-390. [PMID: 39142015 DOI: 10.1016/j.schres.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 08/16/2024]
Abstract
Multiomics approaches have significantly aided the identification of molecular signatures in complex neuropsychiatric disorders. Lipidomics, one of the newest additions in the -omics family, sheds light on lipid profiles and is an emerging methodological tool to study schizophrenia pathobiology, as lipid dysregulation has been repeatedly observed in schizophrenia. In this review, we performed a detailed literature search for lipidomics studies in schizophrenia. Following elaborate inclusion/exclusion criteria, we focused on human studies in schizophrenia and schizophrenia-related diagnoses in brain and blood specimens, including serum plasma, platelets and red blood cells. Eighteen studies fulfilled our inclusion criteria, of which five were conducted in the brain, 12 in peripheral material and one in both. Here, we first provide background on lipidomics and the main lipid categories addressed, review in detail the included literature and look for common lipidomics patterns in brain and the periphery that emerge from these studies. Furthermore, we highlight current limitations in schizophrenia lipidomics research and underline the need for following up on lipidomics results with complementary molecular approaches.
Collapse
Affiliation(s)
- Alexandros Messinis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Panteli
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Aristea Paraskevopoulou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | | | - Michaela D Filiou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece; Institute of Biosciences, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
2
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
3
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
4
|
Shared Biological Pathways between Antipsychotics and Omega-3 Fatty Acids: A Key Feature for Schizophrenia Preventive Treatment? Int J Mol Sci 2021; 22:ijms22136881. [PMID: 34206945 PMCID: PMC8269187 DOI: 10.3390/ijms22136881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.
Collapse
|
5
|
Wang D, Sun X, Maziade M, Mao W, Zhang C, Wang J, Cao B. Characterising phospholipids and free fatty acids in patients with schizophrenia: A case-control study. World J Biol Psychiatry 2021; 22:161-174. [PMID: 32677491 DOI: 10.1080/15622975.2020.1769188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Previous studies have indicated that schizophrenia (SCZ) is linked to abnormal phospholipid and fatty acid metabolism. However, comprehensive analysis of phospholipids and free fatty acids (FFAs) for SCZ is very limited. Herein, we sought to compare serum levels of phospholipids and FFAs between patients with SCZ and healthy controls (HCs). METHODS One hundred and nineteen SCZ patients and 109 HCs were enrolled in the study. The levels of 177 phospholipids and FFAs were measured in serum samples using a targeted liquid chromatography-mass spectrometry (LC-MS)-based platform. RESULTS One hundred and ten metabolites, including 16 FFAs, 25 phosphatidylcholines, 23 lysophosphatidylcholines, 11 phosphatidylcholine plasmalogens, 7 phosphatidylethanolamines, 9 lysophosphatidylethanolamines, 6 phosphatidylethanolamine plasmalogens, and 13 sphingomyelins, were observed to be significantly altered in SCZ patients compared to HCs. These disturbances may represent underlying pathophysiology, including but not limited to altered activity of phospholipases and acyltransferases, increased oxidative stress, dysfunctional oligodendrocyte glycosynapses, and elevated lipid mobilisation and β-oxidation. CONCLUSIONS Our findings suggest that complex lipid profile abnormalities are associated with SCZ. This study may contribute to investigating the role of phospholipid and FFA alterations in the pathoetiology of SCZ.
Collapse
Affiliation(s)
- Dongfang Wang
- Institute of Blood Transfusion, Chongqing Blood Center, Chongqing, P. R. China.,Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | - Michel Maziade
- Centre de recherche CERVO, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale-Nationale, Québec, Canada.,Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Wei Mao
- Institute of Blood Transfusion, Chongqing Blood Center, Chongqing, P. R. China
| | - Chuanbo Zhang
- Psychiatric Department, Weifang Mental Health Center, Weifang, P. R. China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, P. R. China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, P. R. China
| |
Collapse
|
6
|
Kathuria A, Lopez-Lengowski K, Jagtap SS, McPhie D, Perlis RH, Cohen BM, Karmacharya R. Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell-Derived Cerebral Organoids in Schizophrenia. JAMA Psychiatry 2020; 77:745-754. [PMID: 32186681 PMCID: PMC7081156 DOI: 10.1001/jamapsychiatry.2020.0196] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Three-dimensional cerebral organoids generated from patient-derived induced pluripotent stem cells (iPSCs) may be used to interrogate cellular-molecular underpinnings of schizophrenia. OBJECTIVE To determine transcriptomic profiles and functional characteristics of cerebral organoids from patients with schizophrenia using gene expression studies, complemented with investigations of mitochondrial function through measurement of real-time oxygen consumption rate, and functional studies of neuronal firing with microelectrode arrays. DESIGN, SETTING, AND PARTICIPANTS This case-control study was conducted at Massachusetts General Hospital between 2017 and 2019. Transcriptomic profiling of iPSC-derived cerebral organoids from 8 patients with schizophrenia and 8 healthy control individuals was undertaken to identify cellular pathways that are aberrant in schizophrenia. Induced pluripotent stem cells and cerebral organoids were generated from patients who had been diagnosed as having schizophrenia and from heathy control individuals. MAIN OUTCOMES AND MEASURES Transcriptomic analysis of iPSC-derived cerebral organoids from patients with schizophrenia show differences in expression of genes involved in synaptic biology and neurodevelopment and are enriched for genes implicated in schizophrenia genome-wide association studies (GWAS). RESULTS The study included iPSC lines generated from 11 male and 5 female white participants, with a mean age of 38.8 years. RNA sequencing data from iPSC-derived cerebral organoids in schizophrenia showed differential expression of genes involved in synapses, in nervous system development, and in antigen processing. The differentially expressed genes were enriched for genes implicated in schizophrenia, with 23% of GWAS genes showing differential expression in schizophrenia and control organoids: 10 GWAS genes were upregulated in schizophrenia organoids while 15 GWAS genes were downregulated. Analysis of the gene expression profiles suggested dysregulation of genes involved in mitochondrial function and those involved in modulation of excitatory and inhibitory pathways. Studies of mitochondrial respiration showed lower basal consumption rate, adenosine triphosphate production, proton leak, and nonmitochondrial oxygen consumption in schizophrenia cerebral organoids, without any differences in the extracellular acidification rate. Microelectrode array studies of cerebral organoids showed no differences in baseline electrical activity in schizophrenia but revealed a diminished response to stimulation and depolarization. CONCLUSIONS AND RELEVANCE Investigations of patient-derived cerebral organoids in schizophrenia revealed gene expression patterns suggesting dysregulation of a number of pathways in schizophrenia, delineated differences in mitochondrial function, and showed deficits in response to stimulation and depolarization in schizophrenia.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge
| | - Smita S. Jagtap
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts
| | - Roy H. Perlis
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts
General Hospital, Boston,Chemical Biology Program, Broad Institute of
Massachusetts Institute of Technology and Harvard, Cambridge,Department of Psychiatry, Harvard Medical
School, Boston, Massachusetts,Schizophrenia and Bipolar Disorder Program,
McLean Hospital, Belmont, Massachusetts,Program in Neuroscience, Harvard University,
Cambridge, Massachusetts,Program in Chemical Biology, Harvard University,
Cambridge, Massachusetts,Harvard Stem Cell Institute, Cambridge,
Massachusetts
| |
Collapse
|
7
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
8
|
Frajerman A, Kebir O, Chaumette B, Tessier C, Lamazière A, Nuss P, Krebs MO. [Membrane lipids in schizophrenia and early phases of psychosis: Potential biomarkers and therapeutic targets?]. Encephale 2020; 46:209-216. [PMID: 32151446 DOI: 10.1016/j.encep.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023]
Abstract
The various roles of membrane lipids in human health has urged researchers to study their impact in neuropsychiatric diseases, especially in schizophrenia spectrum disorders and more recently in early stages of psychosis. The progress in mass spectrometry technologies now allows a more comprehensive analysis of phospholipids (PL) and their fatty acid (FA) molecular species. FA are defined by a carbon chain of variable length and are said to be unsaturated when their chain has one or more carbon-carbon double bonds. The PL are composed of a hydrophilic polar head with a phosphoric acid group and an hydrophobic part with FAs; they encompass glycerophospholipids and sphingolipids. The plasma membrane is a complex and dynamic structure consisting of a lipid bilayer composed of an outer layer and an inner layer of specific lipid composition. The permanent remodeling of membrane lipids involves phospholipases especially the phospholipase A2. Seventy percent of the brain consists of lipids from different classes and molecular species. Most of the brain lipids are composed of polyunsaturated fatty acid (PUFA)-enriched diacyl classes where omega-3 and omega-6 molecular species predominate. The balance between omega-3 and omega-6 is important for the neurodevelopment. PUFA are also involved in neurogenesis and neurotransmission. Sphingomyelin (SM) is a sphingolipid that influences inflammation, cell proliferation and lipid rafts formation. It is an important component of myelin sheaths of white matter and therefore is involved in cerebral connectivity. In rat models, deficiency in omega-3 causes abnormalities in dopaminergic neurotransmission, impacts on the functioning of some receptors (including cannabinoids CB1, glutamatergic N-methyl-D-aspartate receptor, NMDA), and increases sensitivity to hallucinogens. In contrast, omega-3 supplementation improves cognitive function and prevents psychotic-like behavior in some animal models for schizophrenia. It also reduces oxidative stress and prevents demyelination. The historical membrane hypothesis of schizophrenia has led to explore the lipids abnormality in this disorder. This hypothesis was initially based on the observation of an abnormal membrane prostaglandin production in schizophrenia caused by a membrane arachidonic acid deficiency. It has evolved emphasizing the various PUFA membrane's roles in particular regarding oxidative stress, inflammation and regulation of the NMDA receptors. In patients with mental disorders, low omega-3 index is more frequent than in the general population. This lipid abnormality could lead to myelination abnormalities and cognitive deficits observed in patients. It could also participate in oxidative stress abnormalities and inflammation reported in schizophrenia. On the other hand, low omega-3 index deficit was reported to be associated with an increased cardiovascular risk, and omega-3 supplementation may also have a positive cardiovascular impact in psychiatric patients, even more than in the general population. The presence of membrane lipid abnormalities is also found in patients during the first psychotic episode (FEP). The omega-3 supplementation improved the recovery rate and prevented the loss of gray matter in FEP. In patients at ultra-high risk to develop a psychotic disorder (UHR), omega-3 supplementation has been associated with a reduction of the rate of conversion to psychosis and with metabolic changes, such as decreased activity of phospholipase A2. However, this study has not as yet been replicated. Not all patients exhibit lipid abnormalities. Several studies, including studies from our team, have found a bimodal distribution of lipids in patients with schizophrenia. But some studies have found differences (in PUFA) in the acute phase whereas our studies (on phospholipids) are in chronic phases. It will be interesting to study in more depth the links between these two parameters. Furthermore, we identified a subgroup which was identified with a deficit in sphingomyelin and PUFA whereas others have found an increase of sphingomyelin. Individuals with this abnormal lipid cluster had more cognitive impairments and more severe clinical symptoms. Because the niacin test is an indirect reflection of arachidonic acid levels, it has been proposed to identify a subset of patients with membrane lipids anomalies. Niacin test response is influenced by several factors related to lipid metabolism, including cannabis use and phospholipase A2 activity. Despite progress, the function and impact of membrane lipids are still poorly understood in schizophrenia. They could serve as biomarkers for identifying biological subgroups among patients with schizophrenia. In UHR patients, their predictive value on the conversion to psychosis should be tested. Omega-3 supplementation could be a promising treatment thanks to its good tolerance and acceptability. It could be more appropriate for patients with PUFA anomalies in a more personalized medical approach.
Collapse
Affiliation(s)
- A Frajerman
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France.
| | - O Kebir
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France
| | - B Chaumette
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France; Université Paris Descartes, Université de Paris, Paris, France
| | - C Tessier
- ERL 1157, laboratoire de spectrométrie de masse, CHU de Saint-Antoine, Paris, France
| | - A Lamazière
- Inserm UMR_S 938, département METOMICS, centre de recherche Saint-Antoine, Sorbonne Université, AP-HP, Paris, France
| | - P Nuss
- Inserm UMR_S 938, département METOMICS, centre de recherche Saint-Antoine, Sorbonne Université, AP-HP, Paris, France; Service de psychiatrie et de psychologie médicale, Hôpital Saint-Antoine, Sorbonne Université, AP-HP, Paris, France
| | - M-O Krebs
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France; Université Paris Descartes, Université de Paris, Paris, France
| |
Collapse
|
9
|
Ogawa S, Hattori K, Ota M, Hidese S, Miyakawa T, Matsumura R, Yokota Y, Ishida I, Matsuo J, Yoshida S, Yamazaki Y, Goodenowe D, Kunugi H. Altered ethanolamine plasmalogen and phosphatidylethanolamine levels in blood plasma of patients with bipolar disorder. Psychiatry Clin Neurosci 2020; 74:204-210. [PMID: 31841251 DOI: 10.1111/pcn.12967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
AIM Ethanolamine-containing phospholipids are synthesized in endoplasmic reticulum (ER) and mitochondria. ER stress and mitochondrial dysfunction have been implicated in bipolar disorder (BP). In this study, we aimed to examine the relationship of ethanolamine plasmalogen (PLE) and phosphatidylethanolamine (PTE) levels in blood plasma with BP. METHODS Plasma PLE and PTE levels were compared between 34 patients with BP (DSM-IV) and 38 healthy control participants matched for age, sex, and ethnicity (Japanese). Furthermore, the relationships of plasma PLE and PTE levels with clinical variables were explored. RESULTS Plasma PLE levels were significantly lower in patients with BP than in healthy controls (P = 0.0033). In subgroup analyses, plasma PLE levels were significantly lower in patients with BP type I (BP I) than in healthy controls (P = 0.0047); furthermore, plasma PTE levels were significantly lower in patients with BP I than in controls (P = 0.016) and patients with BP type II (BP II) (P = 0.010). Receiver-operating characteristic curve analysis revealed that the discriminatory power of plasma PTE levels for distinguishing between BP I and II was fair (area under the curve = 0.78; P = 0.0095). There were no significant correlations of plasma PLE or PTE levels with depression or manic symptoms in patients. CONCLUSIONS Plasma PLE and PTE levels were associated with BP I, but not with BP II. Moreover, plasma PTE levels differed between patients with BP I and II. Our findings highlight the importance of ethanolamine phospholipids in the pathophysiology of BP, especially BP I.
Collapse
Affiliation(s)
- Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
10
|
Wood PL. Targeted lipidomics and metabolomics evaluations of cortical neuronal stress in schizophrenia. Schizophr Res 2019; 212:107-112. [PMID: 31434624 DOI: 10.1016/j.schres.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cortical neuronal dysfunction has been proposed to underlie the psychopathology and cognitive dysfunction of schizophrenia. Previously we have reported altered sphingolipid and N-acylphosphatidylserine (NAPS) metabolism in the frontal cortex in schizophrenia. We continue to expand these investigations to define the biochemical basis for these critical neuropathologies. METHODS We undertook a targeted high resolution mass spectrometric analysis to validate our previous reports of elevated sphingolipids and NAPS in the frontal cortex of a new cohort of schizophrenia subjects. Furthermore we expanded these analyses to include ceramides, N-acylphosphatidylethanolamines (NAPE), and N-acylethanolamines (NAE). In the same tissue samples we examined N-acetylaspartylglutamate (NAAG), a modulator of excitatory amino acid transmission, hypothesized to be involved in the pathology of schizophrenia. RESULTS We repeated our observations of elevated sulfatides in the frontal cortex in schizophrenia. An in-depth analysis of other sphingolipids revealed decrements in ceramide levels and increased levels of lactosylceramides. NAPS also were found to be augmented in schizophrenia as we previously reported. In addition, levels of NAPES, established biomarkers of neuronal stress, were elevated while their metabolites, NAEs were decreased. With regard to excitatory amino acid neurotransmission, NAAG levels were decreased by 50% while the metabolic precursor, N-acetylaspartate was unaltered. CONCLUSIONS Our data support the concept of cortical neuronal dysfunction in schizophrenia as indicated by altered metabolism of structural sphingolipids and NAAG, a modulator of excitatory amino acid neurotransmission.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States of America.
| |
Collapse
|
11
|
Wang D, Cheng SL, Fei Q, Gu H, Raftery D, Cao B, Sun X, Yan J, Zhang C, Wang J. Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry Res 2019; 272:18-29. [PMID: 30579177 DOI: 10.1016/j.psychres.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SCZ) is a multifactorial psychiatric disorder. However, the molecular pathogenesis of SCZ remains largely unknown, and no reliable diagnostic test is currently available. Phospholipid metabolism is known to be disturbed during disease processes of SCZ. In this study, we used an untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling approach to measure lipid metabolites in serum samples from 119 SCZ patients and 109 healthy controls, to identify potential lipid biomarkers for the discrimination between SCZ patients and healthy controls. 51 lipid metabolites were identified to be significant for discriminating SCZ patients from healthy controls, including phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), phosphatidylethanolamines (PEs), lysophosphatidylethanolamines (LPEs) and sphingomyelins (SMs). Compared to healthy controls, most PCs and LPCs, as well as all PEs in patients were decreased, while most LPEs and all SMs were increased. A panel of six lipid metabolites could effectively discriminate SCZ patients from healthy controls with an area under the receiver-operating characteristic curve of 0.991 in the training samples and 0.980 in the test samples. These findings suggest that extensive disturbances of phospholipids may be involved in the development of SCZ. This LC-MS-based metabolic profiling approach shows potential for the identification of putative serum biomarkers for the diagnosis of SCZ.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Chongqing Blood Center, Chongqing 400015, PR China
| | - Sunny Lihua Cheng
- School of Public Health, University of Washington, Seattle, WA 98105, USA
| | - Qiang Fei
- Department of Chemistry, Jilin University, Changchun, Jilin Province 130061, PR China
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ 85259, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jingjing Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Chuanbo Zhang
- Weifang Mental Health Center, Weifang, Shandong Province 262400, PR China
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China.
| |
Collapse
|
12
|
Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience 2018; 384:214-223. [DOI: 10.1016/j.neuroscience.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
13
|
Trépanier MO, Hildebrand KD, Nyamoya SD, Amor S, Bazinet RP, Kipp M. Phosphatidylcholine 36:1 concentration decreases along with demyelination in the cuprizone animal model and in post-mortem multiple sclerosis brain tissue. J Neurochem 2018; 145:504-515. [DOI: 10.1111/jnc.14335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/27/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Kayla D. Hildebrand
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Stella D. Nyamoya
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| | - Sandra Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Richard P. Bazinet
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Markus Kipp
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| |
Collapse
|
14
|
Sethi S, Hayashi MA, Sussulini A, Tasic L, Brietzke E. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry 2017; 18:506-520. [PMID: 26555297 DOI: 10.3109/15622975.2015.1117656] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In this review, the authors discuss an overview of lipidomics followed by in-depth discussion of its application to the study of human diseases, including extraction methods of lipids, analytical techniques and clinical research in neuropsychiatric disorders. METHODS Lipidomics is a lipid-targeted metabolomics approach aiming at the comprehensive analysis of lipids in biological systems. Recent technological advancements in mass spectrometry and chromatography have greatly enhanced the development and applications of metabolic profiling of diverse lipids in complex biological samples. RESULTS An effective evaluation of the clinical course of diseases requires the application of very precise diagnostic and assessment approaches as early as possible. In order to achieve this, "omics" strategies offer new opportunities for biomarker identification and/or discovery in complex diseases and may provide pathological pathways understanding for diseases beyond traditional methodologies. CONCLUSIONS This review highlights the importance of lipidomics for the future perspectives as a tool for biomarker identification and discovery and its clinical application.
Collapse
Affiliation(s)
- Sumit Sethi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Mirian A Hayashi
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| | - Alessandra Sussulini
- b Department of Analytical Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Ljubica Tasic
- c Department of Organic Chemistry , Institute of Chemistry, Universidade Estadual De Campinas - UNICAMP , Campinas , SP , Brazil
| | - Elisa Brietzke
- a Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Department of Psychiatry , Universidade Federal De São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
15
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
16
|
Lipidomics, Biomarkers, and Schizophrenia: A Current Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:265-290. [PMID: 28132184 DOI: 10.1007/978-3-319-47656-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipidomics is a lipid-targeted metabolomics approach aiming at comprehensive analysis of lipids in biological systems. Recent technological progresses in mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatography have significantly enhanced the developments and applications of metabolic profiling of lipids in more complex biological samples. As many diseases reveal a notable change in lipid profiles compared with that of healthy people, lipidomics have also been broadly introduced to scientific research on diseases. Exploration of lipid biochemistry by lipidomics approach will not only provide insights into specific roles of lipid molecular species in health and disease, but it will also support the identification of potential biomarkers for establishing preventive or therapeutic approaches for human health. This chapter aims to illustrate how lipidomics can contribute for understanding the biological mechanisms inherent to schizophrenia and why lipids are relevant biomarkers of schizophrenia. The application of lipidomics in clinical studies has the potential to provide new insights into lipid profiling and pathophysiological mechanisms underlying schizophrenia. The future perspectives of lipidomics in mental disorders are also discussed herein.
Collapse
|
17
|
Huang JH, Park H, Iaconelli J, Berkovitch SS, Watmuff B, McPhie D, Öngür D, Cohen BM, Clish CB, Karmacharya R. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines. J Proteome Res 2016; 16:481-493. [DOI: 10.1021/acs.jproteome.6b00628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanne H. Huang
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Hyoungjun Park
- Institute
of Neuroinformatics, ETH Zurich and University of Zurich, CH-8057, Zurich, Switzerland
| | - Jonathan Iaconelli
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Shaunna S. Berkovitch
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Bradley Watmuff
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Donna McPhie
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Dost Öngür
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Bruce M. Cohen
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Clary B. Clish
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Rakesh Karmacharya
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| |
Collapse
|
18
|
Savushkina OK, Tereshkina EB, Prokhorova TA, Vorobyeva EА, Boksha IS, Burbaeva GS. [Creatine kinase isoform B distribution in the brain in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:62-68. [PMID: 27735901 DOI: 10.17116/jnevro20161169162-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare patterns of brain isoform creatine phosphokinase (CPK B) distributions in post-mortem brain from patients with schizophrenia (Sch) and patients with somatic diseases (controls). MATERIAL AND METHODS Extracts of readily soluble and membrane-associated proteins were prepared from post-mortem samples of prefrontal cortex (Brodmann area 10), anterior (area 24) and posterior (area 23) cingulate cortex, hippocampus and cerebellum cortex from patients with Sch and control group (the samples were matched by age and postmortem interval). CPK enzymatic activity was measured by determination of inorganic phosphate, amounts of immunoreative CPK В were estimated by ECL-Western blotting using monoclonal antibodies. RESULTS A significant decrease in CPK activity and amounts of immunoreative CPK В was observed in fractions of readily soluble proteins in all studied brain structures of patients with Sch compared to controls (p<0.01). Significant differences in CPK activity were found in membrane-associated protein fractions from the hippocampus (p<0.01), but not from the cingulate cortex (areas 23 and 24), of Sch patients compared with controls, whereas no difference between groups was found in levels of immunoreactive CPK B in membrane-associated protein fractions from the cingulate cortex (areas 23 and 24) and hippocampus. The decrease in the amount of CPK B in the frontal cortex of patients with Sch was confirmed by purification of CPK B active dimer from brain samples of patients with Sch and controls. CONCLUSION Changes in the levels of CPK brain isoform in the brain of patients with Sch (the decrease in CPK activity and amounts in various brain structures at different extents) lead to the substantial alteration of CPK distribution pattern among the brain areas studied, result in the disturbance of the brain energy metabolism and contribute to Sch pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - I S Boksha
- Mental Health Research Centre, Moscow, Russia
| | | |
Collapse
|
19
|
Hagenbeek FA, Kluft C, Hankemeier T, Bartels M, Draisma HHM, Middeldorp CM, Berger R, Noto A, Lussu M, Pool R, Fanos V, Boomsma DI. Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry. Am J Med Genet B Neuropsychiatr Genet 2016; 171:719-32. [PMID: 26913573 DOI: 10.1002/ajmg.b.32435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Abstract
Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published between 1990 and 2015) that reported statistically significant associations of biochemical biomarkers with aggression, DSM-IV disorders involving aggression, and their subtypes. The markers are of different types, including inflammation markers, neurotransmitters, lipoproteins, and hormones from various classes. Most studies focused on only a limited portfolio of biomarkers, frequently a specific class only. When integrating the data, it is clear that compounds from several biological pathways have been found to be associated with aggressive behavior, indicating complexity and the need for a broad approach. In the second part of the paper, using examples from the aggression literature and psychiatric metabolomics studies, we argue that a better understanding of aggression would benefit from a more holistic approach such as provided by metabolomics. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fiona A Hagenbeek
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands
| | | | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Harmen H M Draisma
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, GGZ inGeest/VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud Berger
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Antonio Noto
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericultura Institute and Neonatal Section, University of Cagliari, Cagliari, Italy
| | - Milena Lussu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - René Pool
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,BBMRINL: Infrastructure for the Application of Metabolomics Technology in Epidemiology, Leiden, The Netherlands
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericultura Institute and Neonatal Section, University of Cagliari, Cagliari, Italy
| | - Dorret I Boomsma
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|