1
|
Wang Y, Cao M, Zhang Y, Chen Q, Chen Z, Jia J. The CB2-PKC pathway is involved in esketamine-induced anti-inflammation in BV-2 microglial cells exposed to lipopolysaccharides. Am J Transl Res 2024; 16:4466-4478. [PMID: 39398580 PMCID: PMC11470345 DOI: 10.62347/rrzf5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Esketamine (ESK), an intravenous anesthetic, exerts antidepressant effects; however, the antidepression mechanism is not clear. The aim of this study was to explore whether microglial cannabinoid type 2 (CB2) receptor and protein kinase C (PKC) are involved in the antidepressant effects of ESK. METHODS In this investigation, lipopolysaccharide (LPS) was used to stimulate BV-2 microglia to mimic neuroinflammation. An enzyme-linked immunosorbent assay (ELISA) and Griess reagent kits were used to determine cytokine and nitrite concentrations in the medium. CB2, inducible nitric oxide synthase (iNOS) and nuclear factor (NF)-κB (p65) protein expression were evaluated by immunocytochemistry and western blot analysis. RESULTS Compared with the control, LPS enhanced proinflammatory factor and nitrite concentration in the medium, upregulated iNOS and NF-κB (p65) expressions, and coadministration of ESK decreased proinflammatory cytokine and nitrite levels, and downregulated iNOS and NF-κB (p65) expression. Moreover, ESK exposure enhanced CB2 receptor expression; coadministration of the CB2 receptor antagonist AM630 or the PKC inhibitor chelerythrine (Che), however, markedly blocked the anti-inflammatory effect of ESK in reducing cytokine and nitrite concentration, and downregulating iNOS and NF-κB (p65) expression. CONCLUSIONS These observations demonstrated that the microglial CB2-PKC pathway mediates ESK-induced anti-inflammation in LPS-stimulated microglial cells.
Collapse
Affiliation(s)
- Yuqing Wang
- The Fourth Resident Outpatient Department, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| | - Ming Cao
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| | - Yuanyuan Zhang
- Department of Geriatrics, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| | - Qian Chen
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| | - Zhaojie Chen
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| | - Ji Jia
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLAGuangzhou 510501, Guangdong, China
| |
Collapse
|
2
|
DelaCuesta-Barrutia J, Martínez-Peula O, Rivero G, Santas-Martín JA, Munarriz-Cuezva E, Brocos-Mosquera I, Miranda-Azpiazu P, Diez-Alarcia R, Morentin B, Honer WG, Callado LF, Erdozain AM, Ramos-Miguel A. Effect of antipsychotic drugs on group II metabotropic glutamate receptor expression and epigenetic control in postmortem brains of schizophrenia subjects. Transl Psychiatry 2024; 14:113. [PMID: 38396013 PMCID: PMC10891050 DOI: 10.1038/s41398-024-02832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Antipsychotic-induced low availability of group II metabotropic glutamate receptors (including mGlu2R and mGlu3R) in brains of schizophrenia patients may explain the limited efficacy of mGlu2/3R ligands in clinical trials. Studies evaluating mGlu2/3R levels in well-designed, large postmortem brain cohorts are needed to address this issue. Postmortem samples from the dorsolateral prefrontal cortex of 96 schizophrenia subjects and matched controls were collected. Toxicological analyses identified cases who were (AP+) or were not (AP-) receiving antipsychotic treatment near the time of death. Protein and mRNA levels of mGlu2R and mGlu3R, as well as GRM2 and GRM3 promoter-attached histone posttranslational modifications, were quantified. Experimental animal models were used to compare with data obtained in human tissues. Compared to matched controls, schizophrenia cortical samples had lower mGlu2R protein amounts, regardless of antipsychotic medication. Downregulation of mGlu3R was observed in AP- schizophrenia subjects only. Greater predicted occupancy values of dopamine D2 and serotonin 5HT2A receptors correlated with higher density of mGlu3R, but not mGlu2R. Clozapine treatment and maternal immune activation in rodents mimicked the mGlu2R, but not mGlu3R regulation observed in schizophrenia brains. mGlu2R and mGlu3R mRNA levels, and the epigenetic control mechanisms did not parallel the alterations at the protein level, and in some groups correlated inversely. Insufficient cortical availability of mGlu2R and mGlu3R may be associated with schizophrenia. Antipsychotic treatment may normalize mGlu3R, but not mGlu2R protein levels. A model in which epigenetic feedback mechanisms controlling mGlu3R expression are activated to counterbalance mGluR loss of function is described.
Collapse
Affiliation(s)
| | | | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Jon A Santas-Martín
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Eva Munarriz-Cuezva
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | | | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Basque Institute of Legal Medicine, Bilbao, Spain
| | - William G Honer
- Department Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain.
| |
Collapse
|
3
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
4
|
Wei X, Zhao C, Jia X, Zhao B, Liu Y. Expression of group II metabotropic glutamate receptors in rat superior cervical ganglion. Auton Neurosci 2023; 244:103053. [PMID: 36463578 DOI: 10.1016/j.autneu.2022.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The superior cervical ganglion (SCG) plays critical roles in the regulation of blood pressure and cardiac output. Metabotropic glutamate receptors (mGluRs) in the SCG are not clearly elucidated yet. Most studies on the expression and functions of mGluRs in the SCG focused on the cultured SCG neurons, and yet little information has been reported in the SCG tissue. Chronic intermittent hypoxia (CIH), one of the major clinical features of obstructive sleep apnea (OSA) patients, is a critical pathological cause of secondary hypertension in OSA patients, but its impact on the level of mGluRs in the SCG is unknown. OBJECTIVE To explore the expression and localization of mGluR2/3 and the effect of CIH on mGluR2/3 level in rat SCG tissue. METHODS RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of mGluR2/3 in rat SCG. Immunofluorescence staining was conducted to examine the distribution of mGluR2/3. Rats were divided into control and CIH group which the rats were exposed to CIH for 6 weeks. Western blots were performed to examine the level of mGluR2/3 in rat SCG. RESULTS mRNAs of mGluR2/3 expressed in rat SCG. mGluR2 distributed in principal neurons and small intensely fluorescent cells but not in satellite glial cells, nerve fibers, and vascular endothelial cells; mGluR3 was detected in nerve fibers rather than in the cells mentioned above. CIH exposure reduced the protein level of mGluR2/3 in rat SCG. CONCLUSION mGluR2/3 exists in rat SCG with diverse distribution patterns, and may be involved in CIH-induced hypertension.
Collapse
Affiliation(s)
- Xixi Wei
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Xinyun Jia
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China.
| |
Collapse
|
5
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Defining Specific Cell States of MPTP-Induced Parkinson's Disease by Single-Nucleus RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810774. [PMID: 36142685 PMCID: PMC9504791 DOI: 10.3390/ijms231810774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.
Collapse
|
7
|
Lai B, Qian S, Zhang H, Zhang S, Kozlova A, Duan J, Xu J, He X. Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning. PLoS Comput Biol 2022; 18:e1010011. [PMID: 35576194 PMCID: PMC9135341 DOI: 10.1371/journal.pcbi.1010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/26/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Genomewide association studies (GWAS) have identified a large number of loci associated with neuropsychiatric traits, however, understanding the molecular mechanisms underlying these loci remains difficult. To help prioritize causal variants and interpret their functions, computational methods have been developed to predict regulatory effects of non-coding variants. An emerging approach to variant annotation is deep learning models that predict regulatory functions from DNA sequences alone. While such models have been trained on large publicly available dataset such as ENCODE, neuropsychiatric trait-related cell types are under-represented in these datasets, thus there is an urgent need of better tools and resources to annotate variant functions in such cellular contexts. To fill this gap, we collected a large collection of neurodevelopment-related cell/tissue types, and trained deep Convolutional Neural Networks (ResNet) using such data. Furthermore, our model, called MetaChrom, borrows information from public epigenomic consortium to improve the accuracy via transfer learning. We show that MetaChrom is substantially better in predicting experimentally determined chromatin accessibility variants than popular variant annotation tools such as CADD and delta-SVM. By combining GWAS data with MetaChrom predictions, we prioritized 31 SNPs for Schizophrenia, suggesting potential risk genes and the biological contexts where they act. In summary, MetaChrom provides functional annotations of any DNA variants in the neuro-development context and the general method of MetaChrom can also be extended to other disease-related cell or tissue types.
Collapse
Affiliation(s)
- Boqiao Lai
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Sheng Qian
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Hanwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Turati J, Rudi J, Beauquis J, Carniglia L, López Couselo F, Saba J, Caruso C, Saravia F, Lasaga M, Durand D. A metabotropic glutamate receptor 3 (mGlu3R) isoform playing neurodegenerative roles in astrocytes is prematurely up-regulated in an Alzheimer's model. J Neurochem 2022; 161:366-382. [PMID: 35411603 DOI: 10.1111/jnc.15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Subtype 3 metabotropic glutamate receptor (mGlu3R) displays a broad range of neuroprotective effects. We previously demonstrated that mGlu3R activation in astrocytes protects hippocampal neurons from Aβ neurotoxicity through stimulation of both neurotrophin release and Aβ uptake. Alternative-spliced variants of mGlu3R were found in human brains. The most prevalent variant, mGlu3Δ4, lacks exon 4 encoding the transmembrane domain and can inhibit ligand binding to mGlu3R. To date, neither its role in neurodegenerative disorders nor its endogenous expression in CNS cells has been addressed. The present paper describes for the first time an association between altered hippocampal expression of mGlu3Δ4 and Alzheimer's disease (AD) in the preclinical murine model PDAPP-J20, as well as a deleterious effect of mGlu3Δ4 in astrocytes. As assessed by western blot, hippocampal mGlu3R levels progressively decreased with age in PDAPP-J20 mice. On the contrary, mGlu3Δ4 levels were drastically increased with aging in nontransgenic mice, but prematurely over-expressed in 5-month-old PDAPP-J20-derived hippocampi, prior to massive senile plaque deposition. Also, we found that mGlu3Δ4 co-precipitated with mGlu3R mainly in 5-month-old PDAPP-J20 mice. We further showed by western blot that primary cultured astrocytes and neurons expressed mGlu3Δ4, whose levels were reduced by Aβ, thereby discouraging a causal effect of Aβ on mGlu3Δ4 induction. However, heterologous expression of mGlu3Δ4 in astrocytes induced cell death, inhibited mGlu3R expression, and prevented mGlu3R-dependent Aβ glial uptake. Indeed, mGlu3Δ4 promoted neurodegeneration in neuron-glia co-cultures. These results provide evidence of an inhibitory role of mGlu3Δ4 in mGlu3R-mediated glial neuroprotective pathways, which may lie behind AD onset.
Collapse
Affiliation(s)
- Juan Turati
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Rudi
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,IATIMET Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico López Couselo
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Saba
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Caruso
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología del Envejecimiento, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Durand
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
SOCS1 Mediates Berberine-Induced Amelioration of Microglial Activated States in N9 Microglia Exposed to β Amyloid. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9311855. [PMID: 34778460 PMCID: PMC8589517 DOI: 10.1155/2021/9311855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/26/2023]
Abstract
Attenuating β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Berberine (BBR) can reduce microglial activation in Aβ-treated microglial cells; the mechanism, however, is still illusive. Silencing of cytokine signaling factor 1 (SOCS1) is the primary regulator of many cytokines involved in immune reactions, whose upregulation can reverse the activation of microglial cells. Microglia could be activated into two different statuses, classic activated state (M1 state) and alternative activated state (M2 state), and M1 state is harmful, but M2 is beneficial. In the present study, N9 microglial cells were exposed to Aβ to imitate microglial activation in AD. And Western blot and immunocytochemistry were taken to observe inducible nitric oxide synthase (iNOS), Arginase-1 (Arg-1), and SOCS1 expressions, and the enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory and neurotrophic factor release. Compared with the normal cultured control cells, Aβ exposure markedly increased the level of microglial M1 state markers (P < 0.05), including iNOS protein expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and BBR administration upregulated SOSC1 expression and the level of microglial M2 state markers (P < 0.05), such as Arg-1 expression, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases, downregulating the SOCS1 expression by using siRNA, however, significantly reversed the BBR-induced effects on microglial M1 and M2 state markers and SOCS1 expression (P < 0.05). These findings indicated that BBR can inhibit Aβ-induced microglial activation via modulating the microglial M1/M2 activated state, and SOCS1 mediates the process.
Collapse
|
10
|
Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: An evolutionary perspective. Am J Primatol 2021; 83:e23254. [PMID: 33960505 PMCID: PMC8550995 DOI: 10.1002/ajp.23254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Todd M. Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
11
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
12
|
Turati J, Ramírez D, Carniglia L, Saba J, Caruso C, Quarleri J, Durand D, Lasaga M. Antioxidant and neuroprotective effects of mGlu3 receptor activation on astrocytes aged in vitro. Neurochem Int 2020; 140:104837. [PMID: 32858088 DOI: 10.1016/j.neuint.2020.104837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Astrocytes play a key role by providing antioxidant support to nearby neurons under oxidative stress. We have previously demonstrated that in vitro astroglial subtype 3 metabotropic glutamate receptor (mGlu3R) is neuroprotective. However, its role during aging has been poorly explored. Our study aimed to determine whether LY379268, an mGlu3R agonist, exerts an antioxidant effect on aged cultured rat astrocytes. Aged cultured astrocytes obtained after 9-weeks (9w) in vitro were positive for β-galactosidase stain, showed decreased mGlu3R and glutathione (GSH) levels and superoxide dismutase (SOD) activity, while nuclear erythroid factor 2 (Nrf2) protein levels, reactive oxygen species (ROS) production and apoptosis were increased. Treatment of 9w astrocytes with LY379268 resulted in an increase in mGlu3R and Nrf2 protein levels and SOD activity, and decreased mitochondrial ROS levels and apoptosis. mGlu3R activation in aged astrocytes also prevented hippocampal neuronal death induced by Aβ1-42 in co-culture assays. We conclude that activation of mGlu3R in aged astrocytes had an anti-oxidant effect and protected hippocampal neurons against Aβ-induced neurotoxicity. The present study suggests mGlu3R activation in aging astrocytes as a therapeutic strategy to slow down age-associated neurodegeneration.
Collapse
Affiliation(s)
- Juan Turati
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Delia Ramírez
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julieta Saba
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- INBIRS - Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Changes in levels of cortical metabotropic glutamate 2 receptors with gender and suicide but not psychiatric diagnoses. J Affect Disord 2019; 244:80-84. [PMID: 30326345 DOI: 10.1016/j.jad.2018.10.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND We previously reported that, compared to controls, there are lower levels of [3H]LY341495 binding to metabotropic 2/3 receptors (GRM2/3) in Brodmann's area (BA) 24, but not 17 or 46, from subjects with major depressive disorders (MDD) but not bipolar disorders (BD) or schizophrenia. To be able to better interpret these data we have now measured levels of GRM2 in two of these cortical regions. METHODS Using a rabbit anti-metabotropic GRM2 monoclonal antibody with Western blotting we measured levels of GRM2 in BA 24 and 46 from subjects with MDD, BD, schizophrenia and controls (n = 15 per group). RESULTS Compared to controls, levels of GRM2, normalised to β-actin, did not differ in BA 24 or 46 from subjects with MDD, BD or schizophrenia (p from 0.36 to 0.79). Levels of GRM2 in BA 46, but not BA 24, were significantly higher in males compared to females (p < 0.01) and in suicide completers (p < 0.01) compare to death by other causes. LIMITATIONS Our cohort sizes, whilst being comparable to many postmortem CNS studies, are relatively low. CONCLUSIONS Our data suggests levels of GRM2 are not altered in two cortical regions from subjects with mood disorders or schizophrenia. Given we have found lower levels of [3H]LY341495 binding to GRM2/3 in BA 24 from subjects with MDD, our new data argues the lower levels of radioligand binding was due to lower levels of GRM3. Our data also suggests that glutamatergic activity through GRM2 in BA 46 may differ with gender and suicide ideation.
Collapse
|
14
|
Sheahan TD, Valtcheva MV, McIlvried LA, Pullen MY, Baranger DA, Gereau RW. Metabotropic Glutamate Receptor 2/3 (mGluR2/3) Activation Suppresses TRPV1 Sensitization in Mouse, But Not Human, Sensory Neurons. eNeuro 2018; 5:ENEURO.0412-17.2018. [PMID: 29662945 PMCID: PMC5898698 DOI: 10.1523/eneuro.0412-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
The use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2 (PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority of Trpv1+ mouse and human sensory neurons expressed Grm2 and/or Grm3, and in both mice and humans, Grm2 was expressed in a greater percentage of sensory neurons than Grm3. Although we demonstrated a functional difference in the modulation of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference. Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or positive allosteric modulators.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manouela V. Valtcheva
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David A.A. Baranger
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
- BRAIN Laboratory, Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Weickert CS, Rothmond DA, Purves-Tyson TD. Considerations for optimal use of postmortem human brains for molecular psychiatry: lessons from schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:221-235. [PMID: 29496143 DOI: 10.1016/b978-0-444-63639-3.00016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a disabling disease impacting millions of people around the world, for which there is no known cure. Current antipsychotic treatments for schizophrenia mainly target psychotic symptoms, do little to ameliorate social or cognitive deficits, have side-effects that cause weight gain, and diabetes and 30% of people do not respond. Thus, better therapeutics for schizophrenia aimed at the route biologic changes are needed and discovering the underlying neurobiology is key to this quest. Postmortem brain studies provide the most direct and detailed way to determine the pathophysiology of schizophrenia. This chapter outlines steps that can be taken to ensure the best-quality molecular data from postmortem brain tissue are obtained. In this chapter, we also discuss targeted and high-throughput methods for examining gene and protein expression and some of the strengths and limitations of each method. We briefly consider why gene and protein expression changes may not always concur within brain tissue. We conclude that postmortem brain research that investigates gene and protein expression in well-characterized and matched brain cohorts provides an important foundation to be considered when interpreting data obtained from studies of living schizophrenia patients.
Collapse
Affiliation(s)
- Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia.
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Tertia D Purves-Tyson
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
16
|
García-Bea A, Bermudez I, Harrison PJ, Lane TA. A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding. J Psychopharmacol 2017; 31:1519-1526. [PMID: 28655286 PMCID: PMC5714154 DOI: 10.1177/0269881117715597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As well as being expressed as a full-length transcript, the group II metabotropic glutamate receptor 3 (GRM3, mGlu3) gene is expressed as an mRNA isoform which lacks exon 4 (GRM3Δ4) and which is predicted to encode a protein with a novel C terminus (called mGlu3Δ4). This variant may contribute to the mechanism by which GRM3 acts as a schizophrenia risk gene. However, little is known about the properties or function of mGlu3Δ4. Here, using transiently transfected HEK293T/17 cells, we confirm that GRM3Δ4 cDNA is translated, with mGlu3Δ4 existing as a homodimer as well as a monomer, and localizing primarily to cell membranes including the plasma membrane. Co-immunoprecipitation shows that mGlu3Δ4 interacts with canonical mGlu3. mGlu3Δ4 does not bind the mGlu2/3 antagonist [3H]LY341495, but the presence of mGlu3Δ4 reduces binding of [3H]LY341495 to mGlu3, paralleled by a decrease in the abundance of membrane-associated mGlu3. These experiments indicate that mGlu3Δ4 may negatively modulate mGlu3, and thereby impact on the roles of GRM3/mGlu3 in schizophrenia and as a therapeutic target.
Collapse
Affiliation(s)
| | | | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, UK,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK,Paul J Harrison, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Warneford Hospital, UK
| |
Collapse
|