1
|
Bose A, Agarwal SM, Nawani H, Shivakumar V, Shenoy S, Sreeraj VS, Narayanaswamy JC, Kumar D, Venkatasubramanian G. Effect of add-on tDCS therapy for auditory hallucinations on frequency and duration deviant mismatch negativity in schizophrenia. Schizophr Res 2024; 269:93-95. [PMID: 38759355 DOI: 10.1016/j.schres.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Anushree Bose
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hema Nawani
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sonia Shenoy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Devvarta Kumar
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
2
|
Aksu S, Uslu A, İşçen P, Tülay EE, Barham H, Soyata AZ, Demirtas-Tatlidede A, Yıldız GB, Bilgiç B, Hanağası H, Woods AJ, Karamürsel S, Uyar FA. Does transcranial direct current stimulation enhance cognitive performance in Parkinson's disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol Sci 2022; 43:4029-4044. [PMID: 35322340 DOI: 10.1007/s10072-022-06020-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Parkinson's disease-mild cognitive impairment (PD-MCI) is garnering attention as a key interventional period for cognitive impairment. Currently, there are no approved treatments for PD-MCI and encouraging results of transcranial direct current stimulation (tDCS) combined with other interventions have been proposed, though the efficacy and neural mechanisms of tDCS alone have not been studied in PD-MCI yet. OBJECTIVES The present double-blind, randomized, sham-controlled study assessed the effects of tDCS over the dorsolateral prefrontal cortex on cognitive functions via neuropsychological and electrophysiological evaluations in individuals with PD-MCI for the first time. METHOD Twenty-six individuals with PD-MCI were administered 10 sessions of active (n = 13) or sham (n = 13) prefrontal tDCS twice a day, for 5 days. Changes were tested through a comprehensive neuropsychological battery and event-related potential recordings, which were performed before, immediately, and 1 month after the administrations. RESULTS Neuropsychological assessment showed an improvement in delayed recall and executive functions in the active group. N1 amplitudes in response to targets in the oddball test-likely indexing attention and discriminability and NoGo N2 amplitudes in the continuous performance test-likely indexing cognitive control and conflict monitoring increased in the active group. Active stimulation elicited higher benefits 1 month after the administrations. CONCLUSION The present findings substantiate the efficacy of tDCS on cognitive control and episodic memory, along with the neural underpinnings of cognitive control, highlighting its potential for therapeutic utility in PD-MCI. TRIAL REGISTRATION NCT 04,171,804. Date of registration: 21/11/2019.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar İşçen
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Emine Elif Tülay
- Department of Software Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Huzeyfe Barham
- Department of Psychiatry, Kırklareli Research and Training Hospital, Kırklareli, Turkey
| | | | | | | | - Başar Bilgiç
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, Cognitive Aging and Memory Clinical Translational Research Program, University of Florida, Gainesville, USA
| | - Sacit Karamürsel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fatma Aytül Uyar
- Department of Physiology, Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Klein HS, Vanneste S, Pinkham AE. The limited effect of neural stimulation on visual attention and social cognition in individuals with schizophrenia. Neuropsychologia 2021; 157:107880. [PMID: 33961863 DOI: 10.1016/j.neuropsychologia.2021.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Research demonstrates a relationship between faulty visual attention and poorer social cognition in schizophrenia. One potential explanatory model suggests abnormal neuromodulation in specific neural networks may result in reduced attention to socially important cues, leading to poorer understanding of another's emotional state or intentions. OBJECTIVE The current study experimentally manipulated neural networks using tDCS to examine this potential causal mechanism. The primary aim was to determine whether stimulation to the right temporoparietal junction (rTPJ) improves visual attention, and secondary aims were to determine whether 1) stimulation improves social cognitive performance and 2) visual attention moderates this improved performance. METHOD Using a double-blind crossover design, 69 individuals with schizophrenia underwent both active and sham stimulation to either the rTPJ of the ventral attention network (n = 36) or the dorsomedial prefrontal cortex of the social brain network (dmPFC; n = 33). Following stimulation, participants completed tasks assessing emotion recognition and mentalizing. Concurrent eye tracking assessed visual attention, measuring proportion of time spent attending to areas of interest. RESULTS For emotion recognition, stimulation failed to impact either visual attention or social cognitive task accuracy. Similarly, neurostimulation failed to affect visual attention on the mentalizing task. However, exploratory analyses demonstrated that mentalizing accuracy significantly improved after stimulation to the active comparator, dmPFC, with no improvement after stimulation to rTPJ. CONCLUSION Results demonstrate limited effect of a single stimulation session on visual attention and emotion recognition accuracy but provide initial support for an alternate neural mechanism for mentalizing, highlighting the importance of executive functions over visual attention.
Collapse
Affiliation(s)
- Hans S Klein
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| | - Sven Vanneste
- Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland
| | - Amy E Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX,, USA
| |
Collapse
|
5
|
Yang D, Shin YI, Hong KS. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front Neurosci 2021; 15:629323. [PMID: 33841079 PMCID: PMC8032955 DOI: 10.3389/fnins.2021.629323] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Brain disorders are gradually becoming the leading cause of death worldwide. However, the lack of knowledge of brain disease’s underlying mechanisms and ineffective neuropharmacological therapy have led to further exploration of optimal treatments and brain monitoring techniques. Objective This study aims to review the current state of brain disorders, which utilize transcranial electrical stimulation (tES) and daily usable noninvasive neuroimaging techniques. Furthermore, the second goal of this study is to highlight available gaps and provide a comprehensive guideline for further investigation. Method A systematic search was conducted of the PubMed and Web of Science databases from January 2000 to October 2020 using relevant keywords. Electroencephalography (EEG) and functional near-infrared spectroscopy were selected as noninvasive neuroimaging modalities. Nine brain disorders were investigated in this study, including Alzheimer’s disease, depression, autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, Parkinson’s disease, stroke, schizophrenia, and traumatic brain injury. Results Sixty-seven studies (1,385 participants) were included for quantitative analysis. Most of the articles (82.6%) employed transcranial direct current stimulation as an intervention method with modulation parameters of 1 mA intensity (47.2%) for 16–20 min (69.0%) duration of stimulation in a single session (36.8%). The frontal cortex (46.4%) and the cerebral cortex (47.8%) were used as a neuroimaging modality, with the power spectrum (45.7%) commonly extracted as a quantitative EEG feature. Conclusion An appropriate stimulation protocol applying tES as a therapy could be an effective treatment for cognitive and neurological brain disorders. However, the optimal tES criteria have not been defined; they vary across persons and disease types. Therefore, future work needs to investigate a closed-loop tES with monitoring by neuroimaging techniques to achieve personalized therapy for brain disorders.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Keum-Shik Hong
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|
6
|
Effects of Transcranial Direct Current Stimulation (tDCS) in the Normalization of Brain Activation in Patients with Neuropsychiatric Disorders: A Systematic Review of Neurophysiological and Neuroimaging Studies. Neural Plast 2020; 2020:8854412. [PMID: 33424961 PMCID: PMC7773462 DOI: 10.1155/2020/8854412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background People with neuropsychiatric disorders have been found to have abnormal brain activity, which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to normalize this pathological brain activity, although the results are inconsistent. Objective We explored whether tDCS alters and normalizes brain activity among patients with neuropsychiatric disorders. Moreover, we examined whether these changes in brain activity are clinically relevant, as evidenced by brain-behavior correlations. Methods A systematic review was conducted according to PRISMA guidelines. Randomized controlled trials that studied the effects of tDCS on brain activity by comparing experimental and sham control groups using either electrophysiological or neuroimaging methods were included. Results With convergent evidence from 16 neurophysiological/neuroimaging studies, active tDCS was shown to be able to induce changes in brain activation patterns in people with neuropsychiatric disorders. Importantly, anodal tDCS appeared to normalize aberrant brain activation in patients with schizophrenia and substance abuse, and the effect was selectively correlated with reaction times, task-specific accuracy performance, and some symptom severity measures. Limitations and Conclusions. Due to the inherent heterogeneity in brain activity measurements for tDCS studies among people with neuropsychiatric disorders, no meta-analysis was conducted. We recommend that future studies investigate the effect of repeated cathodal tDCS on brain activity. We suggest to clinicians that the prescription of 1-2 mA anodal stimulation for patients with schizophrenia may be a promising treatment to alleviate positive symptoms. This systematic review is registered with registration number CRD42020183608.
Collapse
|
7
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
8
|
Ciullo V, Spalletta G, Caltagirone C, Banaj N, Vecchio D, Piras F, Piras F. Transcranial Direct Current Stimulation and Cognition in Neuropsychiatric Disorders: Systematic Review of the Evidence and Future Directions. Neuroscientist 2020; 27:285-309. [PMID: 32644874 DOI: 10.1177/1073858420936167] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been implemented in neuropsychiatric disorders characterized by cognitive impairment. However, methodological heterogeneity challenges conclusive remarks. Through a critical analysis of previous conflicting findings and in the light of current neurobiological models of pathophysiology, we qualitatively assessed the effects of tDCS in neuropsychiatric disorders that share neurobiological underpinnings, as to evaluate whether stimulation can improve cognitive deficits in patients' cohorts. We performed a systematic review of tDCS studies targeting cognitive functions in mental disorders and pathological cognitive aging. Data from 41 studies, comprising patients with diagnosis of mood disorders, schizophrenia-spectrum disorders, Alzheimer's disease (AD), and mild cognitive impairment (MCI), were included. Results indicate that tDCS has the capacity to enhance processing speed, working memory, and executive functions in patients with mood and schizophrenia-spectrum disorders. The evidence of a positive effect on general cognitive functioning and memory is either inconclusive in AD, or weak in MCI. Future directions are discussed for developing standardized stimulation protocols and for translating the technique therapeutic potential into effective clinical practice.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
9
|
Kostova R, Cecere R, Thut G, Uhlhaas PJ. Targeting cognition in schizophrenia through transcranial direct current stimulation: A systematic review and perspective. Schizophr Res 2020; 220:300-310. [PMID: 32204971 DOI: 10.1016/j.schres.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Cognitive deficits are a fundamental feature of schizophrenia for which currently no effective treatments exist. This paper examines the possibility to use transcranial direct current stimulation (tDCS) to target cognitive deficits in schizophrenia as evidence from studies in healthy participants suggests that tDCS may improve cognitive functions and associated neural processes. We carried out a systematic review with the following search terms: 'tDCS', 'electric brain stimulation', 'schizophrenia', 'cognitive', 'cognition' until March 2019. 659 records were identified initially, 612 of which were excluded after abstract screening. The remaining 47 articles were assessed for eligibility based on our criteria and 26 studies were excluded. In addition, we compared several variables, such as online vs. offline-stimulation protocols, stimulation type and intensity on mediating positive vs. negative study outcomes. The majority of studies (n = 21) identified significant behavioural and neural effects on a range of cognitive functions (versus n = 11 with null results), including working memory, attention and social cognition. However, we could not identify tDCS parameters (electrode montage, stimulation protocol, type and intensity) that clearly mediated effects on cognitive deficits. There is preliminary evidence for the possibility that tDCS may improve cognitive deficits in schizophrenia. We discuss the rationale and strength of evidence for using tDCS for targeting cognitive deficits in schizophrenia as well as methodological issues and potential mechanisms of action.
Collapse
Affiliation(s)
- R Kostova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - R Cecere
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - G Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Department of Child and Adolescent Psychiatry, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Tang Y, Ying C, Wang J, Jiao X, Qian Z, Zhang T, Tong S, Sheng J, Sun J, Wang J. Precise theta burst transcranial magnetic stimulation selectively reduced duration-related mismatch negativity. Biol Psychol 2018; 137:125-132. [PMID: 30077768 DOI: 10.1016/j.biopsycho.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mismatch negativity (MMN) is a typical event-related potential component reflecting pre-attentive processing. MMN impairment, especially reduced duration-related MMN (dMMN), has been suggested as a potential predictive biomarker for the onset of schizophrenia. OBJECTIVE This study attempts to manipulate specific MMN activities using advanced neuroimaging-guided intermittent theta-burst stimulations (iTBS), which will be helpful to uncover the sources of MMN generation and contribute to the development of new clinical treatments. METHODS Twenty-four healthy volunteers were recruited and participated two-session modulations consisting of active and sham iTBS. ITBS was precisely delivered over individual right posterior superior temporal cortex (pSTG). Before and after each iTBS session, two MMN components evoked by duration and frequency deviants were quantified respectively. RESULTS A significant interaction of time and iTBS was observed on dMMN amplitudes, but not frequency-related MMN amplitudes. dMMN only decreased after active precise iTBS intervention, but did not after sham iTBS. The post effect of iTBS on dMMN was found in 16 of 20 subjects, suggesting a robust effect even at individual level. Furthermore, sLORETA analysis showed that the lateralization of STG activation was reversed after the active iTBS. CONCLUSIONS We applied a precise strategy for neuroimaging-guided iTBS modulation over the right pSTG, which is promising in selectively modulating MMN for specific deviants.
Collapse
Affiliation(s)
- Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Embedded System and Service Computing (Tongji University), Ministry of Education, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chunwei Ying
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Sheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Kantrowitz JT, Swerdlow NR, Dunn W, Vinogradov S. Auditory System Target Engagement During Plasticity-Based Interventions in Schizophrenia: A Focus on Modulation of N-Methyl-D-Aspartate-Type Glutamate Receptor Function. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:581-590. [PMID: 29656951 PMCID: PMC6062454 DOI: 10.1016/j.bpsc.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022]
Abstract
Cognitive deficits are predictive of long-term social and occupational functional deficits in schizophrenia but are currently without gold-standard treatments. In particular, augmentation of auditory cortical neuroplasticity may represent a rate-limiting first step before addressing higher-order cognitive deficits. We review the rationale for N-methyl-d-aspartate-type glutamate receptor (NMDAR) modulators as treatments for auditory plasticity deficits in schizophrenia, along with potential serum and electroencephalographic target engagement biomarkers for NMDAR function. Several recently published NMDAR-modulating treatment studies are covered, involving D-serine, memantine, and transcranial direct current stimulation. While all three interventions appear to modulate auditory plasticity, direct agonists (D-serine) appear to have the largest and most consistent effects on plasticity, at least acutely. We hypothesize that there may be synergistic effects of combining procognitive NMDAR-modulating approaches with auditory cortical neuroplasticity cognitive training interventions. Future studies should assess biomarkers for target engagement and patient stratification, along with head-to-head studies comparing putative interventions and potential long-term versus acute effects.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, New York.
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Walter Dunn
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
12
|
Rassovsky Y, Dunn W, Wynn JK, Wu AD, Iacoboni M, Hellemann G, Green MF. Single transcranial direct current stimulation in schizophrenia: Randomized, cross-over study of neurocognition, social cognition, ERPs, and side effects. PLoS One 2018; 13:e0197023. [PMID: 29734347 PMCID: PMC5937783 DOI: 10.1371/journal.pone.0197023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, the treatment of schizophrenia has shifted fundamentally from a focus on symptom reduction to a focus on recovery and improving aspects of functioning. In this study, we examined the effect of transcranial direct current stimulation (tDCS) on social cognitive and nonsocial neurocognitive functions, as well as on electroencephalogram (EEG) measures, in individuals with schizophrenia. Thirty-seven individuals with schizophrenia were administered one of three different tDCS conditions (cathodal, anodal, and sham) per visit over the course of three visits, with approximately one week between each visit. Order of conditions was randomized and counterbalanced across subjects. For the active conditions, the electrode was placed over the left dorsolateral prefrontal cortex with the reference electrode over right supraorbital cortex. Current intensity was 2 mA and was maintained for two 20-minute sessions, with a one hour break between the sessions. Assessments were conducted immediately following each session, in a counterbalanced order of administration. No systematic effects were found across the social and nonsocial cognitive domains, and no significant effects were detected on event-related potentials (ERPs). The very small effect sizes, further validated by post-hoc power analyses (large Critical Ns), demonstrated that these findings were not due to lack of statistical power. Except for mild local discomfort, no significant side effects were reported. Findings demonstrate the safety and ease of administration of this procedure, but suggest that a single dose of tDCS over these areas does not yield a therapeutic effect on cognition in schizophrenia. Trial registration: ClinicalTrials.gov NCT02539797.
Collapse
Affiliation(s)
- Yuri Rassovsky
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- * E-mail:
| | - Walter Dunn
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- Department of Veteran Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, United States of America
| | - Jonathan K. Wynn
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
- Department of Veteran Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, United States of America
| | - Allan D. Wu
- Department of Neurology, University of California, Los Angeles, California, United States of America
| | - Marco Iacoboni
- Department of Neurology, University of California, Los Angeles, California, United States of America
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, California, United States of America
| | - Gerhard Hellemann
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael F. Green
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Kim M, Kwak YB, Lee TY, Kwon JS. Modulation of Electrophysiology by Transcranial Direct Current Stimulation in Psychiatric Disorders: A Systematic Review. Psychiatry Investig 2018; 15:434-444. [PMID: 29695150 PMCID: PMC5976006 DOI: 10.30773/pi.2018.01.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique increasingly used to relieve symptoms of psychiatric disorders. Electrophysiologic markers, such as electroencephalography (EEG) and event-related potentials (ERP), have high temporal resolution sensitive to detect plastic changes of the brain associated with symptomatic improvement following tDCS application. METHODS We performed systematic review to identify electrophysiological markers that reflect tDCS effects on plastic brain changes in psychiatric disorders. A total of 638 studies were identified by searching PubMed, Embase, psychINFPO. Of these, 21 full-text articles were assessed eligible and included in the review. RESULTS Although the reviewed studies were heterogeneous in their choices of tDCS protocols, targeted electrophysiological markers, and disease entities, their results strongly support EEG/ERPs to sensitively reflect plastic brain changes and the associated symptomatic improvement following tDCS. CONCLUSION EEG/ERPs may serve a potent tool in revealing the mechanisms underlying psychiatric symptoms, as well as in localizing the brain area targeted for stimulation. Future studies in each disease entities employing consistent tDCS protocols and electrophysiological markers would be necessary in order to substantiate and further elaborate the findings of studies included in the present systematic review.
Collapse
Affiliation(s)
- Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Dunn W, Rassovsky Y, Wynn J, Wu AD, Iacoboni M, Hellemann G, Green MF. The effect of bilateral transcranial direct current stimulation on early auditory processing in schizophrenia: a preliminary study. J Neural Transm (Vienna) 2017; 124:1145-1149. [PMID: 28687908 DOI: 10.1007/s00702-017-1752-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
Transcranial direct current stimulation (tDCS) was applied bilaterally over the auditory cortex in 12 schizophrenia patients to modulate early auditory processing. Performance on a tone discrimination task (tone-matching task-TMT) and auditory mismatch negativity were assessed after counterbalanced anodal, cathodal, and sham tDCS. Cathodal stimulation improved TMT performance (p < 0.03) compared to sham condition. Post-hoc analyses revealed a stimulation condition by negative symptom interaction in which greater negative symptoms were associated with a better TMT performance after anodal tDCS.
Collapse
Affiliation(s)
- Walter Dunn
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA. .,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA. .,West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA.
| | - Yuri Rassovsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA.,Department of Psychology and Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Jonathan Wynn
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Allan D Wu
- Department of Neurology, University of California, Los Angeles, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA.,Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Michael F Green
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
15
|
Mervis JE, Capizzi RJ, Boroda E, MacDonald AW. Transcranial Direct Current Stimulation over the Dorsolateral Prefrontal Cortex in Schizophrenia: A Quantitative Review of Cognitive Outcomes. Front Hum Neurosci 2017; 11:44. [PMID: 28210217 PMCID: PMC5288642 DOI: 10.3389/fnhum.2017.00044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are a core and disabling feature of psychotic disorders, specifically schizophrenia. Current treatments for impaired cognition in schizophrenia remain insufficient. Recent research suggests transcranial direct current stimulation (tDCS) targeting the dorsolateral prefrontal cortex can potentiate cognitive improvements in healthy individuals and those with psychiatric conditions, such as schizophrenia. However, this burgeoning literature has not been quantitatively evaluated. Through a literature search and quantitative review, we identified 194 papers on tDCS, psychosis, and cognition. Selection criteria included pre/post design and sham control to achieve specific sham-adjusted effect sizes. The 6 retained studies all address schizophrenia populations and include single and repeated stimulation, as well as within and between subject designs. Small positive effects were found for anodal stimulation on behavioral measures of attention and working memory, with tentative findings for cognitive ability and memory. Cathodal stimulation yielded a small positive effect on behaviorally measured cognitive ability. Neurophysiological measures of attention showed a small to medium down-modulation effect for anodal stimulation. Implications of these findings and guidelines for future research are discussed. As revealed by this report, due to the paucity of data available, much remains unknown regarding the clinical efficacy of tDCS in schizophrenia.
Collapse
Affiliation(s)
- Joshua E Mervis
- Department of Psychology, University of Minnesota Minneapolis, MN, USA
| | - Riley J Capizzi
- Department of Psychology, University of Minnesota Minneapolis, MN, USA
| | - Elias Boroda
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Angus W MacDonald
- Department of Psychology, University of MinnesotaMinneapolis, MN, USA; Department of Psychiatry, University of Minnesota Medical SchoolMinneapolis, MN, USA
| |
Collapse
|
16
|
Jahshan C, Rassovsky Y, Green MF. Enhancing Neuroplasticity to Augment Cognitive Remediation in Schizophrenia. Front Psychiatry 2017; 8:191. [PMID: 29021765 PMCID: PMC5623668 DOI: 10.3389/fpsyt.2017.00191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
There is a burgeoning need for innovative treatment strategies to improve the cognitive deficits in schizophrenia. Cognitive remediation (CR) is effective at the group level, but the variability in treatment response is large. Given that CR may depend on intact neuroplasticity to produce cognitive gains, it is reasonable to combine it with strategies that harness patients' neuroplastic potential. In this review, we discuss two non-pharmacological approaches that can enhance neuroplasticity and possibly augment the effects of CR in schizophrenia: physical exercise and transcranial direct current stimulation (tDCS). Substantial body of evidence supports the beneficial effect of physical exercise on cognition, and a handful of studies in schizophrenia have shown that physical exercise in conjunction with CR has a larger impact on cognition than CR alone. Physical exercise is thought to stimulate neuroplasticity through the regulation of central growth factors, and current evidence points to brain-derived neurotrophic factor as the potential underlying mechanism through which physical exercise might enhance the effectiveness of CR. tDCS has emerged as a potential tool for cognitive enhancement and seems to affect the cellular mechanisms involved in long-term potentiation (LTP). A few reports have demonstrated the feasibility of integrating tDCS with CR in schizophrenia, but there are insufficient data to determine if this multimodal approach leads to incremental performance gain in patients. Larger randomized controlled trials are necessary to understand the mechanisms of the combined tDCS-CR intervention. Future research should take advantage of new developments in neuroplasticity paradigms to examine the effects of these interventions on LTP.
Collapse
Affiliation(s)
- Carol Jahshan
- VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuri Rassovsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael F Green
- VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
|