1
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Strauss GP. Environmental factors contributing to negative symptoms in youth at clinical high risk for psychosis and outpatients with schizophrenia. Soc Psychiatry Psychiatr Epidemiol 2024; 59:1167-1175. [PMID: 37624464 DOI: 10.1007/s00127-023-02556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND A bioecosystem theory was recently proposed positing that negative symptoms of schizophrenia (SZ) are influenced by environmental factors. These environmental processes reflect sources of resource deprivation that manifest across multiple systems that impact individuals directly through microsystems and indirectly through the exosystem and macrosystem. As an initial test of this theory, the current study examined whether self-reported environmental resource deprivation was associated with anhedonia, avolition, and asociality. METHOD Two samples were collected: (1) outpatients with schizophrenia or schizoaffective disorder (SZ: n = 38) and matched psychiatrically heathy controls (CN: n = 31); (2) youth at clinical high risk for psychosis (CHR: n = 34) and matched CN (n = 30). Measures of negative symptoms and environmental factors influencing the frequency of recreational, goal-directed, and social activities were collected. RESULTS Negative symptoms were associated with environmental deprivation factors in the microsystem (number of social and activity settings) and exosystem (economy, mass media, politics/laws, neighborhood crime). These associations did not appear due to depression and were greater among those with SZ than CHR. CONCLUSIONS These findings provide preliminary support for the bioecosystem theory and highlight an under-recognized role for environmental factors underlying negative symptoms across phases of psychotic illness. Environmental systems-focused treatment approaches may offer a novel means of treating negative symptoms, which could be promising when coupled with person-level pharmacological and psychosocial treatments.
Collapse
Affiliation(s)
- Gregory P Strauss
- Department of Psychology, University of Georgia, 125 Baldwin St., Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
4
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
5
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
6
|
Frydecka D, Misiak B, Piotrowski P, Bielawski T, Pawlak E, Kłosińska E, Krefft M, Al Noaimy K, Rymaszewska J, Moustafa AA, Drapała J. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci 2021; 12:brainsci12010007. [PMID: 35053751 PMCID: PMC8774082 DOI: 10.3390/brainsci12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia spectrum disorders (SZ) are characterized by impairments in probabilistic reinforcement learning (RL), which is associated with dopaminergic circuitry encompassing the prefrontal cortex and basal ganglia. However, there are no studies examining dopaminergic genes with respect to probabilistic RL in SZ. Thus, the aim of our study was to examine the impact of dopaminergic genes on performance assessed by the Probabilistic Selection Task (PST) in patients with SZ in comparison to healthy control (HC) subjects. In our study, we included 138 SZ patients and 188 HC participants. Genetic analysis was performed with respect to the following genetic polymorphisms: rs4680 in COMT, rs907094 in DARP-32, rs2734839, rs936461, rs1800497, and rs6277 in DRD2, rs747302 and rs1800955 in DRD4 and rs28363170 and rs2975226 in DAT1 genes. The probabilistic RL task was completed by 59 SZ patients and 95 HC subjects. SZ patients performed significantly worse in acquiring reinforcement contingencies during the task in comparison to HCs. We found no significant association between genetic polymorphisms and RL among SZ patients; however, among HC participants with respect to the DAT1 rs28363170 polymorphism, individuals with 10-allele repeat genotypes performed better in comparison to 9-allele repeat carriers. The present study indicates the relevance of the DAT1 rs28363170 polymorphism in RL in HC participants.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
- Correspondence:
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigel Street 12, 53-114 Wroclaw, Poland;
| | - Ewa Kłosińska
- Day-Care Psychiatric Unit, University Clinical Hospital, Pasteur Street 10, 50-367 Wroclaw, Poland;
| | - Maja Krefft
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Kamila Al Noaimy
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Ahmed A. Moustafa
- School of Psychology, Marcs Institute for Brain and Behaviour, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wrocław, Poland;
| |
Collapse
|
7
|
Kokkinou M, Irvine EE, Bonsall DR, Natesan S, Wells LA, Smith M, Glegola J, Paul EJ, Tossell K, Veronese M, Khadayate S, Dedic N, Hopkins SC, Ungless MA, Withers DJ, Howes OD. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol Psychiatry 2021; 26:2562-2576. [PMID: 32382134 PMCID: PMC8440182 DOI: 10.1038/s41380-020-0740-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for treating major depression.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Elaine E Irvine
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - David R Bonsall
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Lisa A Wells
- Invicro, Burlington Danes, Hammersmith Hospital, London, W12 0NN, UK
| | - Mark Smith
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Justyna Glegola
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Nina Dedic
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Seth C Hopkins
- Sunovion Pharmaceuticals, 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Oliver D Howes
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Schizophrenia is a heterogeneous psychiatric disorder with a different, but not necessarily milder clinical presentation in women as compared to men. These sex differences have largely been attributed to the protective role of estrogens. This article reviews the current state of estrogen research in schizophrenia. RECENT FINDINGS Estrogens regulate important pathophysiological pathways in schizophrenia, including dopamine activity, mitochondrial function, and the stress system. Estrogen deficiency is common in both sexes and is associated with increases in psychotic symptoms. Hyperprolactinemia causes secondary estrogen deficiency and can be a reaction to stress, or secondary to prolactin-raising antipsychotics. Therefore, prolactin-sparing antipsychotics should be preferred especially in premenopausal women, who are more prone to hyperprolactinemia. Premenopausal women furthermore require lower doses of antipsychotics than men, since estrogens raise the availability and efficacy of antipsychotics. SUMMARY The past years have established the importance of estrogens in the pathophysiology of schizophrenia and have shown its relevance to clinical practice through its influence on antipsychotic drug efficacy. Future research should focus on the neurobiological and clinical effect of contraceptives in premenopausal women with schizophrenia. Furthermore, the potential of estrogen-like augmentation with raloxifene and phytoestrogens in schizophrenia should be established in the coming years.
Collapse
Affiliation(s)
- Bodyl A. Brand
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen
| | - Janna N. de Boer
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht (UMCU), Utrecht University, Utrecht, The Netherlands
| | - Iris E.C. Sommer
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen
| |
Collapse
|
9
|
Gupta R, Bigdeli TB, Buckley PF, Fanous AH. Genetics of Schizophrenia and Bipolar Disorder: Potential Clinical Applications. Psychiatr Ann 2021. [DOI: 10.3928/00485713-20210310-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Goode-Romero G, Winnberg U, Domínguez L, Ibarra IA, Vargas R, Winnberg E, Martínez A. New information of dopaminergic agents based on quantum chemistry calculations. Sci Rep 2020; 10:21581. [PMID: 33299000 PMCID: PMC7725812 DOI: 10.1038/s41598-020-78446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Dopamine is an important neurotransmitter that plays a key role in a wide range of both locomotive and cognitive functions in humans. Disturbances on the dopaminergic system cause, among others, psychosis, Parkinson's disease and Huntington's disease. Antipsychotics are drugs that interact primarily with the dopamine receptors and are thus important for the control of psychosis and related disorders. These drugs function as agonists or antagonists and are classified as such in the literature. However, there is still much to learn about the underlying mechanism of action of these drugs. The goal of this investigation is to analyze the intrinsic chemical reactivity, more specifically, the electron donor-acceptor capacity of 217 molecules used as dopaminergic substances, particularly focusing on drugs used to treat psychosis. We analyzed 86 molecules categorized as agonists and 131 molecules classified as antagonists, applying Density Functional Theory calculations. Results show that most of the agonists are electron donors, as is dopamine, whereas most of the antagonists are electron acceptors. Therefore, a new characterization based on the electron transfer capacity is proposed in this study. This new classification can guide the clinical decision-making process based on the physiopathological knowledge of the dopaminergic diseases.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico.
| | - Ulrika Winnberg
- Departamento Académico de Ingeniería Industrial y Operaciones, Instituto Tecnológico Autónomo de México, Río, Hondo 1, Altavista, Álvaro Obregón, CP 01080, Ciudad de México, CDMX, Mexico
| | - Laura Domínguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, AP Postal 55-534, CP 09340, Ciudad de México, CDMX, Mexico
| | - Elisabeth Winnberg
- Department of Health Care Sciences, Ersta Sköndal Bräcke University College, Stigbergsgatan 30, 116 28, Stockholm, Sweden
| | - Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, CP 04510, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
11
|
Coyle JT, Ruzicka WB, Balu DT. Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse. Am J Psychiatry 2020; 177:1119-1128. [PMID: 33256439 PMCID: PMC8011846 DOI: 10.1176/appi.ajp.2020.20101481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Frydecka D, Kotowicz K, Gawęda Ł, Prochwicz K, Kłosowska J, Rymaszewska J, Samochowiec A, Samochowiec J, Podwalski P, Pawlak-Adamska E, Szmida E, Cechnicki A, Misiak B. Effects of interactions between variation in dopaminergic genes, traumatic life events, and anomalous self-experiences on psychosis proneness: Results from a cross-sectional study in a nonclinical sample. Eur Psychiatry 2020; 63:e104. [PMID: 33213551 PMCID: PMC8057383 DOI: 10.1192/j.eurpsy.2020.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background There is a growing number of studies showing interactions between genetic polymorphisms associated with dopaminergic neurotransmission and traumatic life events (TLEs) on a risk of psychotic-like experiences (PLEs). Anomalous self-experiences (ASEs) have been associated both with TLEs as well as with PLEs. However, it remains unknown what is the role of ASEs in the complexity of gene–environment interactions on the emergence of PLEs. Patients and methods We included 445 young adults—university students from three big cities in Poland. We used the Traumatic Events Checklist to assess TLEs, the Inventory of Psychotic-Like anomalous self-experiences in order to measure ASEs, and the Prodromal Questionnaire (PQ16) to record the level of PLEs. The following gene polymorphisms, related to dopaminergic neurotransmission, were determined: the catechol-O-methyltransferase (COMT) rs4680 polymorphism, the dopamine D2 receptor (DRD2) rs6277 polymorphism, and the dopamine transporter 1 (DAT1) rs28363170 polymorphism. Results There was a significant effect of the interaction between the DAT1 polymorphism, a severity of ASEs, and a history of TLEs on the level of PLEs. Among the DAT1 10R/10R homozygotes with low level of ASEs, a severity of PLEs was significantly higher in individuals with a history of any TLEs. Higher scores of the PQ16 were associated with a greater severity of ASEs both in the DAT1 9R allele carriers and the DAT1 10R/10R homozygotes. Conclusion Our findings imply that genetic liability related to aberrant dopamine transport might impact the association between TLEs and PLEs in subjects with high levels of ASEs.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Kłosowska
- Institute of Psychology, Jagiellonian University, 30-060Krakow, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367Wroclaw, Poland
| | - Agnieszka Samochowiec
- Institute of Psychology, Department of Clinical Psychology, University of Szczecin, 71-017Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460Szczecin, Poland
| | - Edyta Pawlak-Adamska
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 51-114Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, 50-368Wroclaw, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Chair of Psychiatry, Medical College Jagiellonian University, Krakow, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, 50-368Wroclaw, Poland
| |
Collapse
|
13
|
Fatjó-Vilas M, Soler J, Ibáñez MI, Moya-Higueras J, Ortet G, Guardiola-Ripoll M, Fañanás L, Arias B. The effect of the AKT1 gene and cannabis use on cognitive performance in healthy subjects. J Psychopharmacol 2020; 34:990-998. [PMID: 32536252 DOI: 10.1177/0269881120928179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Evidence suggests that the AKT1 gene may modulate the degree to which cannabis use induces cognitive alterations in patients with a psychotic disorder. AIM To examine the interplay between AKT1 and cannabis use in terms of the cognitive performance of the general population. METHODS Our sample consisted of 389 Spanish university students. Sustained attention was measured via the Continuous Performance Test-Identical Pairs, immediate and delayed verbal memory with the Logical Memory subtest of the Wechsler Memory Scale, and working memory with the Wisconsin Card Sorting Test. Lifetime cannabis use frequency was assessed and individuals were classified as cannabis users or non-users. Two single nucleotide polymorphisms of the AKT1 gene were genotyped and, according to previous studies, each subject was defined as a carrier of two, one or no copies of the haplotype (rs2494732(C)-rs1130233(A)). Multiple linear regressions were conducted to test the effect of the genetic variability and cannabis use (and their interaction) on cognitive performance. RESULTS An effect of the AKT1 haplotype was found on attention scores: individuals with two copies of the haplotype performed better (β=0.18, p<0.001 (adjusted for false discovery rate)), while neither cannabis nor the AKT1-cannabis interaction was associated with attention. No effect of AKT1, cannabis or the AKT1-cannabis interaction was found on verbal memory or working memory. CONCLUSIONS Our study provides additional evidence that AKT1 modulates cognitive performance. However, in our non-clinical sample, the previously reported interaction between cannabis use and the AKT1 gene was not replicated.
Collapse
Affiliation(s)
- M Fatjó-Vilas
- FIDMAG Sisters Hospitallers Research Foundation, Barcelona, Spain.,Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain.,Biomedicine Institute of the University of Barcelona (IBUB), Spain.,Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - J Soler
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain.,Biomedicine Institute of the University of Barcelona (IBUB), Spain
| | - M I Ibáñez
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - J Moya-Higueras
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Psychology, Faculty of Education, Psychology and Social Work, University of Lleida, Lleida, Spain
| | - G Ortet
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.,Department of Basic and Clinical Psychology and Psychobiology, University Jaume I, Castelló, Spain
| | - M Guardiola-Ripoll
- FIDMAG Sisters Hospitallers Research Foundation, Barcelona, Spain.,Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - L Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain.,Biomedicine Institute of the University of Barcelona (IBUB), Spain.,Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - B Arias
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain.,Biomedicine Institute of the University of Barcelona (IBUB), Spain.,Mental Health Networking Biomedical Research Centre (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Areal LB, Blakely RD. Neurobehavioral changes arising from early life dopamine signaling perturbations. Neurochem Int 2020; 137:104747. [PMID: 32325191 PMCID: PMC7261509 DOI: 10.1016/j.neuint.2020.104747] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) signaling is critical to the modulation of multiple brain functions including locomotion, reinforcement, attention and cognition. The literature provides strong evidence that altered DA availability and actions can impact normal neurodevelopment, with both early and enduring consequences on anatomy, physiology and behavior. An appreciation for the developmental contributions of DA signaling to brain development is needed to guide efforts to preclude and remedy neurobehavioral disorders, such as attention-deficit/hyperactivity disorder, addiction, bipolar disorder, schizophrenia and autism spectrum disorder, each of which exhibits links to DA via genetic, cellular and/or pharmacological findings. In this review, we highlight research pursued in preclinical models that use genetic and pharmacological approaches to manipulate DA signaling at sensitive developmental stages, leading to changes at molecular, circuit and/or behavioral levels. We discuss how these alterations can be aligned with traits displayed by neuropsychiatric diseases. Lastly, we review human studies that evaluate contributions of developmental perturbations of DA systems to increased risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA; Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
15
|
Avram M, Brandl F, Cabello J, Leucht C, Scherr M, Mustafa M, Leucht S, Ziegler S, Sorg C. Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 2020; 142:1813-1826. [PMID: 31135051 DOI: 10.1093/brain/awz093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
While there is consistent evidence for increased presynaptic dopamine synthesis capacity in the striatum of patients with schizophrenia during psychosis, it is unclear whether this also holds for patients during psychotic remission. This study investigates whether striatal dopamine synthesis capacity is altered in patients with schizophrenia during symptomatic remission of positive symptoms, and whether potential alterations relate to symptoms other than positive, such as cognitive difficulties. Twenty-three patients with schizophrenia in symptomatic remission of positive symptoms according to Andreasen, and 24 healthy controls underwent 18F-DOPA-PET and behavioural-cognitive assessment. Imaging data were analysed with voxel-wise Patlak modelling with cerebellum as reference region, resulting in the influx constant kicer reflecting dopamine synthesis capacity. For the whole striatum and its subdivisions (i.e. limbic, associative, and sensorimotor), averaged regional kicer values were calculated, compared across groups, and correlated with behavioural-cognitive scores, including a mediation analysis. Patients had negative symptoms (Positive and Negative Syndrome Scale-negative 14.13 ± 5.91) and cognitive difficulties, i.e. they performed worse than controls in Trail-Making-Test-B (TMT-B; P = 0.01). Furthermore, kicer was reduced in patients for whole striatum (P = 0.004) and associative (P = 0.002) and sensorimotor subdivisions (P = 0.007). In patients, whole striatum kicer was negatively correlated with TMT-B (rho = -0.42, P = 0.04; i.e. the lower striatal kicer, the worse the cognitive performance). Mediation analysis showed that striatal kicer mediated the group difference in TMT-B. Results demonstrate that patients with schizophrenia in symptomatic remission of positive symptoms have decreased striatal dopamine synthesis capacity, which mediates the disorder's impact on cognitive difficulties. Data suggest that striatal dopamine dysfunction contributes to cognitive difficulties in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychosis Studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
17
|
Association between DRD2 and ANKK1 polymorphisms with the deficit syndrome in schizophrenia. Ann Gen Psychiatry 2020; 19:39. [PMID: 32565876 PMCID: PMC7302002 DOI: 10.1186/s12991-020-00289-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The clinical course of schizophrenia varies among patients and is difficult to predict. Some patient populations present persistent negative symptoms, referred to as the deficit syndrome. Compared to relatives of non-deficit schizophrenia patients, family members of this patient population are at an increased risk of developing schizophrenia. Therefore, the aim of this study was to search for genetic underpinnings of the deficit syndrome in schizophrenia. METHODS Three SNPs, i.e., rs1799732 and rs6276 located within DRD2, and rs1800497 within ANKK1, were identified in the DNA samples of 198 schizophrenia probands, including 103 patients with deficit (DS) and 95 patients with non-deficit schizophrenia (NDS). Results: No significant differences concerning any of the analyzed polymorphisms were found between DS and NDS patients. However, significant links were observed between family history of schizophrenia and the deficit syndrome, G/G genotype and rs6276 G allele. In a separate analysis, we identified significant differences in frequencies of rs6276 G allele between DS and NDS patients with family history of schizophrenia. No significant associations were found between DRD2 and ANKK1 SNPs and the age of onset or schizophrenia symptom severity. CONCLUSIONS The results of our preliminary study fail to provide evidence of associations between DRD2 and ANKK1 polymorphisms with the deficit syndrome or schizophrenia symptom severity, but suggest potential links between rs6276 in DRD2 and the deficit syndrome in patients with hereditary susceptibility to schizophrenia. However, further studies are necessary to confirm this observation.
Collapse
|
18
|
Polygenic Risk Scores for Psychiatric Disorders Reveal Novel Clues About the Genetics of Disordered Gambling. Twin Res Hum Genet 2019; 22:283-289. [PMID: 31608857 DOI: 10.1017/thg.2019.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disordered gambling (DG) is a rare but serious condition that results in considerable financial and interpersonal harms. Twin studies indicate that DG is heritable but are silent with respect to specific genes or pathways involved. Existing genomewide association studies (GWAS) of DG have been substantially underpowered. Larger GWAS of other psychiatric disorders now permit calculation of polygenic risk scores (PRSs) that reflect the aggregated effects of common genetic variants contributing risk for the target condition. The current study investigated whether gambling and DG are associated with PRSs for four psychiatric conditions found to be comorbid with DG in epidemiologic surveys: major depressive disorder (MDD), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD) and schizophrenia (SCZ). Genotype data and survey responses were analyzed from the Wave IV assessment (conducted in 2008) of the National Longitudinal Study of Adolescent to Adult Health, a representative sample of adolescents recruited in 1994-1995 and followed into adulthood. Among participants classified as having European ancestry based on genetic analysis (N = 5215), 78.4% reported ever having gambled, and 1.3% reported lifetime DG. Polygenic risk for BD was associated with decreased odds of lifetime gambling, OR = 0.93 [0.87, 0.99], p = .045, pseudo-R2(%) = .12. The SCZ PRS was associated with increased odds of DG, OR = 1.54 [1.07, 2.21], p = .02, pseudo-R2(%) = .85. Polygenic risk scores for MDD and ADHD were not related to either gambling outcome. Investigating features common to both SCZ and DG might generate valuable clues about the genetically influenced liabilities to DG.
Collapse
|
19
|
Abstract
The search for the causes of medical and psychiatric disorders has gone through 3 historical phases. First, up until the mid-19th century, causes of illness were anecdotally recorded from individual cases, resulting in long and diverse lists for all disorders. Second, in the latter half of the 19th century, with the use of microbiological methods, single causes were found for many infectious diseases that led to specific diagnostic tests, effective preventions, and, in some cases, treatments. Causal thinking in medicine shifted from the earlier multicausal approaches to monocausal theories of etiology. Indeed, proving monocausal etiology became a way to establish the legitimacy of a disorder. Through the writings of Kahlbaum and Hecker, psychiatry was deeply influenced by this monocausal perspective, the importance of which was substantially amplified by a twist of fate: the increasing clinical importance of general paresis of the insane throughout the 19th century and the eventual proof that it too was a monocausal condition. However, in the mid-20th century, the third phase began. With decreasing deaths from infectious diseases, epidemiology and clinical medicine shifted to a chronic disease model in which paradigmatic disorders, such as cancer and cardiovascular disease, were shown to be highly multicausal. Biostatistics evolved from deterministic to probabilistic models of disease risk factors. Paradoxically, at this time, biological psychiatry, then rising to dominance in American psychiatry, vigorously pursued monocausal theories, first of neurochemical origin and then of genetic origin. We were trying to establish the legitimacy of our field by pursuing an outmoded model-that "real" diseases are monocausal. Despite ample evidence to the contrary, monocausal thinking continues to influence our field, for example, in the popular but improbable view that we can, with a few key advances, move easily from descriptive to etiologically based diagnoses.
Collapse
Affiliation(s)
- Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond
| |
Collapse
|
20
|
Torrey EF, Yolken RH. Schizophrenia as a pseudogenetic disease: A call for more gene-environmental studies. Psychiatry Res 2019; 278:146-150. [PMID: 31200193 DOI: 10.1016/j.psychres.2019.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
In recent years schizophrenia has been assumed to be largely a genetic disease with heritability estimates, derived primarily from family and twin studies, of 80%-85%. However, the results of genetic research on schizophrenia have not yielded results consistent with that estimate of heritability. In particular, extensive genetic studies have not led to new methods for diagnosis and treatment. An examination of the twin studies on which heritability is based shows why such studies exaggerate the genetic component of schizophrenia. In addition, the effects of infectious agents such as Toxoplasma gondii and the composition of the microbiome can produce a clinical picture that would also appear to be largely genetic due to familial aggregation and a role for a partial genetic contribution to the immune system. It is concluded that the genetic component of schizophrenia may have been overestimated and an increased focus on gene-environmental interactions is likely to accelerate research progress on this disease.
Collapse
Affiliation(s)
- E Fuller Torrey
- Stanley Medical Research Institute, 301-571-2078, 10605 Concord St, Suite 206, Kensington, MD20895, USA.
| | - Robert H Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, USA
| |
Collapse
|
21
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
The role of estradiol in schizophrenia diagnosis and symptoms in postmenopausal women. Schizophr Res 2018; 196:35-38. [PMID: 28587815 DOI: 10.1016/j.schres.2017.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Schizophrenia is one of the most common mental illnesses in our society, affecting up to 1% of the population. There has been an increase in the number of people who are living longer with schizophrenia and people are being diagnosed later in life, with the majority of those later diagnoses being in women. In addition, there is a spike in diagnoses after women go through menopause, suggesting an important role for gonadal steroids in the disease. This paper examined aspects of aging and schizophrenia in the context of hormonal changes in women. With the rising prevalence rate of schizophrenia and the unique challenges that women face while aging with this disease, the idea of estrogen as a therapeutic agent to reduce symptom severity in postmenopausal women should be considered. In addition, we reviewed literature that suggests that estrogen interacts with the dopaminergic system to affect cognition and this should be studied further in older women with schizophrenia. Positive results in these studies have the potential to drastically improve the aging process for postmenopausal women with schizophrenia.
Collapse
|
23
|
Is psychosis caused by defective dissociation? An artificial life model for schizophrenia. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2018. [DOI: 10.1016/j.ejtd.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Assessing the interplay between multigenic and environmental influences on adolescent to adult pathways of antisocial behaviors. Dev Psychopathol 2017; 29:1947-1967. [DOI: 10.1017/s0954579417001511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe current investigation utilized a developmental psychopathology approach to test the hypothesis that multigenic (i.e., dopaminergic and serotonergic genes) and multienvironmental factors interactively contribute to developmental pathways of antisocial behavior (ASB). A sample of 8,834 Caucasian individuals from the National Longitudinal Study of Adolescent to Adult Health (Add Health) were used to (a) examine the developmental pathways of ASB from age 13 to 32 using growth mixture modeling, (b) compute weighted multigenic risk scores (Add Health MRS) for ASB from six well-characterized polymorphisms in dopamine and serotonin genes, and (c) test the interaction between the Add Health MRS and a measures of support (incorporating indicators of both positive and negative support from parents and schools). Four pathways of adolescent to adult ASB emerged from the growth mixture models: low, adolescence-peaked, high decline, and persistent. Add Health MRS predicted the persistent ASB pathway, but not other ASB pathways. Males with high Add Health MRS, but not low MRS, had significantly greater odds of being in the adolescence-peaked pathway relative to the low pathway at low levels of school connectedness. Nonfamilial environmental influences during adolescence may have a cumulative impact on the development of ASB, particularly among males with greater underlying genetic risks.
Collapse
|
25
|
New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci 2017; 18:ijms18081689. [PMID: 28771182 PMCID: PMC5578079 DOI: 10.3390/ijms18081689] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA) signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.
Collapse
|
26
|
Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81:9-20. [PMID: 27720198 PMCID: PMC5675052 DOI: 10.1016/j.biopsych.2016.07.014] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom.
| | - Robert McCutcheon
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Robin M Murray
- Psychosis Studies, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics 2016; 9:68. [PMID: 28117656 PMCID: PMC5260790 DOI: 10.1186/s12920-016-0229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness. Results We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia. Conclusions The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng-An Lee
- Department of Information Management, Kainan University, Taoyuan, Taiwan
| | - Kuo-Chuan Huang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan.
| |
Collapse
|