1
|
Babu H, Rachel G, Neogi U, Palaniappan AN, Narayanan A, Ponnuraja C, Sundaraj V, Viswanathan VK, Kumar CPG, Tripathy SP, Hanna LE. Accelerated cognitive aging in chronically infected HIV-1 positive individuals despite effective long-term antiretroviral therapy. Metab Brain Dis 2024; 40:32. [PMID: 39570517 DOI: 10.1007/s11011-024-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
People living with HIV (PLHIV) are known to be at a higher risk of developing an array of aging-related diseases despite well-adhered combined antiretroviral therapy (cART). The present study aimed to investigate the impact of chronic HIV infection on neurocognitive function in virally suppressed PLHIV. We enrolled HIV-positive individuals randomly from an ART Center in Chennai, South India. A similar number of HIV-uninfected individuals matched for age and gender with the HIV-infected individuals served as controls. All individuals provided a detailed clinical history and underwent neuropsychological assessment using the International HIV Dementia Scale (IHDS). Plasma proteome analysis was performed using the Proximity extension assay (PEA) with the Olink® neuroexploratory panel, and untargeted metabolomics was performed using Ultra-High-Performance Liquid Chromatography/Mass Spectrometry/Mass Spectrometry. Despite a median duration of 9 years on first-line cART and suppressed viremia, a significant proportion of PLHIV registered significant levels of asymptomatic neurocognitive impairment, with 71% of these individuals scoring ≤ 10 in the IHDS test. We also observed significant alterations in a number of proteins and metabolites that are known to be associated with neuroinflammation, neurodegeneration, cognitive impairment, and gastrointestinal cancers, in the PLHIV group. Thus the study provides clinical as well as laboratory evidence to substantiate the presence of asymptomatic neurocognitive impairment in a large proportion of PLHIV, despite adequate cART and undetectable viremia, thereby supporting the view that HIV infection potentiates the risk for accelerated and accentuated neurological aging. This observation highlights the need to devise and implement appropriate intervention strategies for better long term management of HIV-infected persons.
Collapse
Affiliation(s)
- Hemalatha Babu
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Gladys Rachel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | | | - Aswathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | - Chinnaiyan Ponnuraja
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Vijila Sundaraj
- Government Hospital of Thoracic Medicine, Tambaram Sanatorium, Chennai, 600047, India
| | | | - C P Girish Kumar
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Srikanth P Tripathy
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India.
| |
Collapse
|
2
|
Wu X, Ao H, Wu X, Cao Y. Sulfur-containing amino acids and risk of schizophrenia. Schizophr Res 2023; 262:8-17. [PMID: 37918291 DOI: 10.1016/j.schres.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/10/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Schizophrenia is a chronic and complex severe psychiatric disorder. Male and female are different in their risks for schizophrenia for the biologic and sociocultural reasons. Homocysteine (Hcy), Cysteine (Cys), and methionine (Met) play important roles in metabolism, and the three amino acids may also be involved in pathogenesis of schizophrenia. OBJECTIVE This study aimed to test the associations between sulfur-containing amino acid blood levels and risk of schizophrenia, evaluating the different risk in male and female. METHODS We organized a case-control study on 876 individuals with schizophrenia and 913 age- and sex-matched healthy subjects as control group. The concentrations of Hcy, Cys and Met were measured by liquid chromatography-tandem mass spectrometry technology. Subsequently, restricted cubic spline was applied to explore full-range associations of these amino acids with schizophrenia. Interactions between levels of the three amino acids and sex on additive scale were also tested. RESULTS Hcy levels at ≤29 μmol/L were associated with sharply increased risk of schizophrenia, inversely, Met was associated with sharply decreased risk of schizophrenia at levels ≤22 μmol/L. Increased Cys levels were associated with decreased risk of schizophrenia. Almost inverse associations were observed between Cys/Hcy and Met/Hcy ratios and schizophrenia. Significant synergistic interactions between levels of all the three amino acids and sex were discovered on an additive scale. CONCLUSIONS Our study suggests a close association between sulfur-containing amino acids and schizophrenia with different risk in male and female. Future studies are demanded to clarify the pathogenic role of Hcy, Cys and Met in schizophrenia.
Collapse
Affiliation(s)
- Xue Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Huaixuan Ao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Xiaoyong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China.
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
3
|
Yuan X, Mi X, Liu C, Zhang Z, Wei X, Wang D, Tan X, Xiang R, Xie W, Zhang Y. Ultrasensitive iodide detection in biofluids based on hot electron-induced reduction of p-Nitrothiophenol on Au@Ag core-shell nanoparticles. Biosens Bioelectron 2023; 235:115365. [PMID: 37196434 DOI: 10.1016/j.bios.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Surveillance of iodine intake is important because either inadequate or excessive amount of iodine may lead to thyroid malfunctions. Herein, we report a method for fast iodide quantification based on a plasmonic hot electron-driven chemical reaction, which occurs on Au@Ag core-shell nanoparticles (NPs) coated with p-nitrothiophenol (PNTP) molecules. Upon resonant light illumination, hot electron-hole pairs are generated in the NPs. The hot holes capture iodide ions (I-) and form AgI which decomposes under light; while the hot electrons are shifted to the electron orbital (LUMO) of PNTP and trigger its reduction to p-aminothiophenol (PATP). By measuring characteristic surface-enhanced Raman spectroscopic (SERS) peaks of PNTP and PATP, the concentration of I- in water can be quantitatively determined, with a linear response in the 0.5-20 μM range and a detection limit of 0.30 μM. The Au@Ag nanosensor was then applied for I- detection in various biofluids including urine, serum and saliva, exhibiting superior detection sensitivity and high selectivity. This sensing assay requires a small sample volume of ∼10 μL and completes the entire detection process in ∼2 min, and therefore holds significant potential for application in point-of-care settings.
Collapse
Affiliation(s)
- Xinxin Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zedong Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xianfeng Wei
- Department of Otolaryngology Head and Neck, Tianjin First Central Hospital, Tianjin Institute of Otolaryngology, Tianjin, 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Yang KC, Chen YY, Liu MN, Yang BH, Chou YH. Interactions between dopamine transporter and N-methyl-d-aspartate receptor-related amino acids on cognitive impairments in schizophrenia. Schizophr Res 2022; 248:263-270. [PMID: 36115191 DOI: 10.1016/j.schres.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cognitive impairments, the main determinants of functional outcomes in schizophrenia, had limited treatment responses and need a better understanding of the mechanisms. Dysfunctions of the dopamine system and N-methyl-d-aspartate receptor (NMDAR), the primary pathophysiologies of schizophrenia, may impair cognition. This study explored the effects and interactions of striatal dopamine transporter (DAT) and plasma NMDAR-related amino acids on cognitive impairments in schizophrenia. METHODS We recruited 36 schizophrenia patients and 36 age- and sex-matched healthy controls (HC). All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT and ultra-performance liquid chromatography were applied to determine DAT availability and plasma concentrations of eight amino acids, respectively. RESULTS Compared with HC, schizophrenia patients had lower cognitive performance, higher methionine concentrations, decreased concentrations of glutamic acid, cysteine, aspartic acid, arginine, the ratio of glutamic acid to gamma-aminobutyric acid (Glu/GABA), and DAT availability in the left caudate nucleus (CN) and putamen. Regarding memory scores, Glu/GABA and the DAT availability in left CN and putamen exhibited positive relationships, while methionine concentrations showed negative associations in all participants. The DAT availability in left CN mediated the methionine-memory relationship. An exploratory backward stepwise regression analysis for the four biological markers associated with memory indicated that DAT availability in left CN and Glu/GABA remained in the final model. CONCLUSIONS This study demonstrated the interactions of striatal DAT and NMDAR-related amino acids on cognitive impairments in schizophrenia. Future studies to comprehensively evaluate their complex interactions and treatment implications are warranted.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Yu Chen
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
A simple colorimetric assay to determine the concentration and proportion of human mercaptalbumin. Pract Lab Med 2022; 31:e00281. [PMID: 35711386 PMCID: PMC9192801 DOI: 10.1016/j.plabm.2022.e00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Design and methods Results Conclusions Concentrations of the reduced form of human serum albumin (human mercaptalbumin) were measured by a colorimetric assay using Michler's Hydrol. The assay uses the total thiol concentration to approximate the human mercaptalbumin concentration. Accuracy was improved by alkylating part of the samples and canceling the contribution of the non-thiol component to the colorimetric changes. Combining Michler's Hydrol assay with bromocresol purple assay enabled us to obtain the proportions of mercaptalbumin and non-mercaptalbumin, which correlated with HPLC as a reference method.
Collapse
|
6
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
7
|
Metabolites Associated with Memory and Gait: A Systematic Review. Metabolites 2022; 12:metabo12040356. [PMID: 35448544 PMCID: PMC9024701 DOI: 10.3390/metabo12040356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
Collapse
|
8
|
Li Z, Liu M, Chen C, Pan Y, Cui X, Sun J, Zhao F, Cao Y. Simultaneous determination of serum homocysteine, cysteine and methionine in patients with schizophrenia by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2022; 36:e5366. [PMID: 35274340 DOI: 10.1002/bmc.5366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a debilitating psychiatric disorder affecting approximately 1% of the population worldwide. Disturbances of the homocysteine metabolism are important factors in the pathophysiology of schizophrenia. In this research, a novel validated LC-MS/MS quantification procedure was developed to investigate three significant compounds of homocysteine metabolism, homocysteine, cysteine and methionine in patients with schizophrenia and healthy controls. Sample preparation involved a reduction with dithiothreitol followed by protein precipitation, and the chromatographic runtime was 2 min. The LC-MS/MS method was validated according to CLSI C62-A and Chinese Guidance for Liquid Chromatography and Mass Spectrometry Clinical Application. The performance of the method was excellent with a coefficient of variation for precision in the range 0.5%-6.9%, an accuracy from 90.4% to 101.6%. In addition, the practical applicability of the method was demonstrated by applying it in the routine sample analysis for the schizophrenic patient. Increased homocysteine levels and decreased cysteine levels were observed in the patient with schizophrenia. These results indicate that the activity of transsulfuration pathway may play a key role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Zhenguo Li
- The Second Hospital of Dalian Medical University, Dalian, P. R. China
| | - Mingli Liu
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Chunwu Chen
- Shenyang Mental Health Center, Shenyang, P. R. China
| | - Yongqiang Pan
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Xueting Cui
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Jian Sun
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Furong Zhao
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P. R. China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P. R. China.,Dalian Institute of Chemical Physics. Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
9
|
Bahadoran A, Khoshnoudi Jabarabadi M, Hameed Mahmood Z, Bokov D, Jushi Janani B, Fakhri A. Quick and sensitive colorimetric detection of amino acid with functionalized-silver/copper nanoparticles in the presence of cross linker, and bacteria detection by using DNA-template nanoparticles as peroxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120636. [PMID: 34890872 DOI: 10.1016/j.saa.2021.120636] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In this project, poly (citric acid) (PCA) functionalized on nano Ag/Cu was synthesized by chemical analysis method. The nano probe was applied to detection of cysteine by using the magnesium (II) ions as a cross linker. The characterization of Ag/Cu/PCA nano probe was studied by using the UV-visible, morphological microscopy, dynamic light scattering, and zeta potential analyzer. The zeta potential and size of Ag/Cu/PCA were -38.0 mV and 18.0 nm, respectively. The prepared nano probe shows rapid response for detection of cysteine. The detection limit of Ag/Cu/PCA nano probe was 0.07 nM. Additional, the Ag/Cu/PCA nanoparticles was applied to cysteine detection from real samples in the presence of amino acids compounds. Rapidly and sensitive determination of Streptococcus pneumoniae is substantial for food safety and human health. The DNA-Ag/Cu/PCA were prepared as a template in chemical method and experimented as a bio-receptor for the cell bacteria detection as peroxidase-like catalytic process. The DNA-Ag/Cu/PCA nano probe shows a linear dynamic concertation range of Streptococcus pneumoniae via detection limit about 65 CFU/mL. The project presents that the DNA-Ag/Cu/PCA could detect the biological and bacterial samples via high accuracy.
Collapse
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | | | - Ali Fakhri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| |
Collapse
|
10
|
Menon V, Balasubramanian I, Rajkumar R. Association between markers of oxidative stress and cognitive functioning in schizophrenia. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_174_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Liu F, Zang S, Jing J, Zhang X. A fluorescent probe based on reversible Michael addition-elimination reaction for the cycle between cysteine and H 2O 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3797-3801. [PMID: 32716465 DOI: 10.1039/d0ay00904k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cysteine oxidation by H2O2, generating either cysteine sulfenic acid (CSOH) or disulfide (CSSC), is involved in redox homeostasis and signaling. Compared with quantification of the cysteine content, monitoring the cysteine dynamics in real-time, in particular, takes on even greater importance. However, existing fluorescent probes suffer from low specificity or irreversible recognition mechanisms. In the present work, we have successfully developed a reversible fluorescent probe for the cycle between cysteine and H2O2 based on the Michael addition-elimination reaction. This probe features a specific and quantitative response to cysteine. The reversible detection was realized repeatedly with the addition of cysteine and H2O2 in order. We also demonstrated its usage for monitoring exogenous and endogenous cysteine in living cells. Eventually, this probe was capable of imaging cysteine dynamically in real-time.
Collapse
Affiliation(s)
- Feiran Liu
- Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Analytical and Testing Centre, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | |
Collapse
|
12
|
Xiong JW, Zhan JQ, Luo T, Chen HB, Wan QG, Wang Y, Wei B, Yang YJ. Increased Plasma Level of Longevity Protein Klotho as a Potential Indicator of Cognitive Function Preservation in Patients With Schizophrenia. Front Neurosci 2020; 14:610. [PMID: 32612508 PMCID: PMC7308714 DOI: 10.3389/fnins.2020.00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairments are a core feature of schizophrenia. Klotho is an anti-aging protein with demonstrated cognitive-enhancing effects on the brain. The purpose of this study was to investigate the differences in levels of plasma klotho between patients with schizophrenia and healthy controls, as well as the relationship between klotho level and cognitive function in patients. Forty patients with schizophrenia and 40 gender- and age-matched healthy individuals were recruited. Positive and Negative Syndrome Scale (PANSS) was used to assess the psychopathology of patients. A neuropsychological battery was performed to evaluate the cognitive function of participants. Plasma klotho was measured using enzyme-linked immunosorbent assay. We show that patients with schizophrenia performed worse in the neurocognitive tests than the healthy controls. The levels of plasma klotho were significantly higher in schizophrenia patients than in healthy controls (p < 0.001). In patients, plasma klotho levels were positively correlated with cognitive function with regard to attention (p = 0.010), working memory (p < 0.001), verbal memory (p = 0.044), executive function (p < 0.001), and composite cognitive score (p < 0.001). Stepwise linear regression analysis shows that executive function had the highest correlation with plasma klotho levels (β = 0.896, t = 8.290, p < 0.001). Collectively, these results indicate that anti-aging protein klotho may be implicated in the pathogenesis of schizophrenia, and increased klotho may act as a compensatory factor for the preservation of cognitive function in schizophrenia. Further studies are needed to investigate the dynamic changes of klotho and the mechanisms by which klotho modulates cognition in schizophrenia.
Collapse
Affiliation(s)
- Jian-wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jin-qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Hai-bo Chen
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Qi-gen Wan
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yan Wang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-jian Yang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
14
|
Górny M, Wnuk A, Kamińska A, Kamińska K, Chwatko G, Bilska-Wilkosz A, Iciek M, Kajta M, Rogóż Z, Lorenc-Koci E. Glutathione Deficiency and Alterations in the Sulfur Amino Acid Homeostasis during Early Postnatal Development as Potential Triggering Factors for Schizophrenia-Like Behavior in Adult Rats. Molecules 2019; 24:molecules24234253. [PMID: 31766654 PMCID: PMC6930621 DOI: 10.3390/molecules24234253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Impaired glutathione (GSH) synthesis and dopaminergic transmission are important factors in the pathophysiology of schizophrenia. Our research aimed to assess the effects of l-buthionine-(S,R)-sulfoximine (BSO), a GSH synthesis inhibitor, and GBR 12909, a dopamine reuptake inhibitor, administered alone or in combination, to Sprague–Dawley rats during early postnatal development (p5–p16), on the levels of GSH, sulfur amino acids, global DNA methylation, and schizophrenia-like behavior. GSH, methionine (Met), homocysteine (Hcy), and cysteine (Cys) contents were determined in the liver, kidney, and in the prefrontal cortex (PFC) and hippocampus (HIP) of 16-day-old rats. DNA methylation in the PFC and HIP and schizophrenia-like behavior were assessed in adulthood (p90–p93). BSO caused the tissue-dependent decreases in GSH content and alterations in Met, Hcy, and Cys levels in the peripheral tissues and in the PFC and HIP. The changes in these parameters were accompanied by alterations in the global DNA methylation in the studied brain structures. Parallel to changes in the global DNA methylation, deficits in the social behaviors and cognitive functions were observed in adulthood. Only BSO + GBR 12909-treated rats exhibited behavioral alterations resembling positive symptoms in schizophrenia patients. Our results suggest the usefulness of this neurodevelopmental model for research on the pathomechanism of schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Adrianna Kamińska
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland; (A.K.); (G.C.)
| | - Kinga Kamińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland; (A.K.); (G.C.)
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, 31–034 Kraków, Poland; (M.G.); (A.B.-W.); (M.I.)
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
| | - Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31–343 Kraków, Poland; (A.W.); (K.K.); (M.K.); (Z.R.)
- Correspondence: ; Tel.: +48-126-623-272
| |
Collapse
|
15
|
La Fuente JM, Fernández A, Pepe-Cardoso AJ, Martínez-Salamanca JI, Louro N, Angulo J. L-cysteine/hydrogen sulfide pathway induces cGMP-dependent relaxation of corpus cavernosum and penile arteries from patients with erectile dysfunction and improves arterial vasodilation induced by PDE5 inhibition. Eur J Pharmacol 2019; 863:172675. [PMID: 31542487 DOI: 10.1016/j.ejphar.2019.172675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
The aim was to evaluate and characterize H2S-induced relaxation of human corpus cavernosum (HCC) and penile resistance arteries (HPRA) from patients with erectile dysfunction (ED). HCC and HPRA were obtained from men with ED at the time of penile prosthesis insertion. H2S-mediated relaxations were evaluated by exposing these tissues to the stable analogue, NaHS, and to the precursor of H2S, L-cysteine (CYS). The effects of NaHS and CYS were also evaluated on cGMP accumulation in HCC and on acetylcholine- and sildenafil-mediated relaxations in HCC and HPRA. NaHS consistently relaxed HPRA and HCC and more potently than human prostate and bladder. NaHS-induced relaxations in HCC and HPRA were unaffected by the ATP-sensitive K+-channel blocker, glibenclamide or the NO synthase inhibitor, L-NAME, slightly reduced by the Ca2+-activated K+-channel blocker, tetraethylammonium, and markedly inhibited by the soluble guanylyl cyclase inhibitor, ODQ. NaHS caused a cGMP increase in HCC that was inhibited by ODQ. CYS produced relaxations of HCC and HPRA that were sensitive to ODQ and to inhibition of the H2S synthesizing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CYS also increased cGMP in HCC. In contrast to NaHS, CYS-induced relaxations were prevented by endothelium removal in HPRA. Only in HPRA, treatment with CYS (30 μM) potentiated acetylcholine- and sildenafil-induced relaxations. This effect was prevented by CSE/CBS inhibition and by removing the endothelium. Exogenous and endogenous H2S relaxes HCC and HPRA from ED patients through cGMP accumulation and potentiates vasodilatory capacity of PDE5 inhibition, supporting the therapeutic potential of modulating H2S pathway.
Collapse
Affiliation(s)
| | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - Nuno Louro
- Serviço de Urologia, Hospital Santo Antonio, Porto, Portugal
| | - Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
16
|
Kim T, Hong JI. Photoluminescence and Electrochemiluminescence Dual-Signaling Sensors for Selective Detection of Cysteine Based on Iridium(III) Complexes. ACS OMEGA 2019; 4:12616-12625. [PMID: 31460382 PMCID: PMC6682121 DOI: 10.1021/acsomega.9b01501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/12/2019] [Indexed: 05/11/2023]
Abstract
Cysteine (Cys) is important in biosynthesis, detoxification, and metabolism. The selective detection of Cys over structurally similar homocysteine (Hcy) or glutathione (GSH) remains an immense challenge. Although there are many methods for detecting Cys, photoluminescence (PL) and electrochemiluminescence (ECL) techniques are well-suited for clinical diagnostics and analytical technology because of their high sensitivities. Herein, we report PL and ECL dual-channel sensors using cyclometalated iridium(III) complexes for the discrimination of Cys from Hcy and GSH. The sensors react with cysteine preferentially because of kinetic differences in intramolecular conjugate addition/cyclization, enabling phosphorescence enhancement and ECL decrease in the blue-shifted region. Sensor 1 shows ratiometric PL turn-on and ECL turn-off for Cys. In addition, unique ECL-enhancing behavior of sensor 1 toward GSH enables discrimination between Cys and GSH. Sensor 1 was successfully applied to the detection of Cys in human serum by the ECL method. We demonstrate the first case of a Cys-selective PL and ECL dual-channel chemodosimetric sensor based on cyclometalated iridium(III) complexes and expect that the rational design of efficient PL and ECL dual-channel sensors will be useful in diagnostic technology.
Collapse
|
17
|
Upthegrove R, Khandaker GM. Cytokines, Oxidative Stress and Cellular Markers of Inflammation in Schizophrenia. Curr Top Behav Neurosci 2019; 44:49-66. [PMID: 31115797 DOI: 10.1007/7854_2018_88] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this article, we review current evidence linking immune dysfunction in schizophrenia and related psychotic disorders focusing particularly on circulating cytokines, oxidative stress and cellular markers of inflammation in various stages on illness from drug-naïve first episode psychosis to chronic schizophrenia. Acute psychotic episode is associated with low-grade systemic inflammation in some patients, as reflected by increased concentrations of cytokines and other inflammatory markers in peripheral blood. Evidence from general population-based longitudinal cohort studies reporting an association between elevated inflammatory markers in childhood/adolescence and risk of schizophrenia and related psychosis subsequently in adulthood suggest that inflammation could be a causal risk factor for psychosis rather than simply be a consequence of illness. Mendelian randomization studies also suggest that associations between IL-6, CRP and schizophrenia are likely to be causal. In addition, we discuss evidence for disruptions in oxidative stress markers and CSF cytokine levels in schizophrenia, and potential reasons for reported trans-diagnostic associations for inflammatory cytokines including role of early-life adversity/maltreatment. We argue that low-grade inflammation is a clinically useful feature, because it is associated with poor response to antipsychotic medication in first episode psychosis. We discuss clinical implications for immunological understanding of schizophrenia including scope for clinical trials of anti-inflammatory agents and notable gaps in current knowledge, and offer suggestions for future research.
Collapse
Affiliation(s)
- Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK. .,Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Trust, Birmingham, UK.
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
18
|
Gai F, Li L, Yu Y, Han Z, Jin L, Ao Y, Liu Y, Huo Q. Multiple dye-doped silica cross-linked micellar nanoparticles for colour-tuneable sensing of cysteine in an aqueous media and living cells. J Colloid Interface Sci 2018; 529:531-537. [DOI: 10.1016/j.jcis.2018.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
|
19
|
Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 2018; 47:8842-8880. [DOI: 10.1039/c8cs00185e] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review recent advances in the design and application of excited-state intramolecular proton-transfer (ESIPT) based fluorescent probes. These sensors and imaging agents (probes) are important in biology, physiology, pharmacology, and environmental science.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Chemistry
| | - Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Materials and Life Sciences
| | | | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science & Technology (HKUST)
- Clear Water Bay
- Kowloon
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|