1
|
Vines L, Sotelo D, Giddens N, Manza P, Volkow ND, Wang GJ. Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review. Brain Sci 2023; 13:1480. [PMID: 37891847 PMCID: PMC10605099 DOI: 10.3390/brainsci13101480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants such as cocaine and methamphetamine are some of the most widely used substances among PLWH. Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD have poor health outcomes driven by complex interactions between biological, neurocognitive, and social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use on behavioral and neurological impairments using evidence from rodent models of HIV-associated neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a biopsychosocial perspective by discussing behavioral impairment in differentially impacted social groups and proposing interventions at both patient and population levels.
Collapse
Affiliation(s)
- Leah Vines
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Diana Sotelo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Natasha Giddens
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA;
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| |
Collapse
|
2
|
Carrillo-Ruiz JD, Carrillo-Márquez JR, Beltrán JQ, Jiménez-Ponce F, García-Muñoz L, Navarro-Olvera JL, Márquez-Franco R, Velasco F. Innovative perspectives in limbic surgery using deep brain stimulation. Front Neurosci 2023; 17:1167244. [PMID: 37274213 PMCID: PMC10233042 DOI: 10.3389/fnins.2023.1167244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Limbic surgery is one of the most attractive and retaken fields of functional neurosurgery in the last two decades. Psychiatric surgery emerged from the incipient work of Moniz and Lima lesioning the prefrontal cortex in agitated patients. Since the onset of stereotactic and functional neurosurgery with Spiegel and Wycis, the treatment of mental diseases gave attention to refractory illnesses mainly with the use of thalamotomies. Neurosis and some psychotic symptoms were treated by them. Several indications when lesioning the brain were included: obsessive-compulsive disorder, depression, and aggressiveness among others with a diversity of targets. The indiscriminately use of anatomical sites without enough scientific evidence, and uncertainly defined criteria for selecting patients merged with a deficiency in ethical aspects, brought a lack of procedures for a long time: only select clinics allowed this surgery around the world from 1950 to the 1990s. In 1999, Nuttin et al. began a new chapter in limbic surgery with the use of Deep Brain Stimulation, based on the experience of pain, Parkinson's disease, and epilepsy. The efforts were focused on different targets to treat depression and obsessive-compulsive disorders. Nevertheless, other diseases were added to use neuromodulation. The goal of this article is to show the new opportunities to treat neuropsychiatric diseases.
Collapse
Affiliation(s)
- José Damián Carrillo-Ruiz
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
- Research Direction, Mexico General Hospital, Mexico City, Mexico
- Neuroscience Coordination, Psychology Faculty, Anahuac University, Mexico City, Mexico
| | - José Rodrigo Carrillo-Márquez
- Faculty of Health Sciences, Anahuac University, Mexico City, Mexico
- Alpha Health Sciences Leadership Program, Anahuac University, Mexico City, Mexico
| | - Jesús Quetzalcóatl Beltrán
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Fiacro Jiménez-Ponce
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Luis García-Muñoz
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - José Luis Navarro-Olvera
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - René Márquez-Franco
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| | - Francisco Velasco
- Stereotactic, Functional & Radiosurgery Unit of Neurosurgery Service, Mexico General Hospital, Mexico City, Mexico
| |
Collapse
|
3
|
Liu J, Zheng L, Fang T, Li R, Ma X, Sun Y, Wang L, Tian H, Jiang D, Zhuo C. Exploration of the cortical pathophysiology underlying visual disturbances in schizophrenia comorbid with depressive disorder-An evidence from mouse model. Brain Behav 2021; 11:e02113. [PMID: 33729680 PMCID: PMC8119859 DOI: 10.1002/brb3.2113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/01/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Patients with schizophrenia frequently present with visual disturbances including hallucination, and this symptom is particularly prevalent in individuals with comorbid depressive disorders. Currently, little is known about the neurobiological mechanisms of such psychiatric symptoms, and few explanations for the co-occurrence of schizophrenia, depression, and visual disturbances are available. METHODS In this study, we generated a mouse schizophrenia model in which depressive symptoms were also induced. We adopted in vivo two-photon calcium imaging and ex vivo electrophysiological recording of the primary visual cortex to reveal the synaptic transmission and neural activity in the mouse schizophrenia model. RESULTS In vivo two-photon calcium imaging and ex vivo electrophysiological recording of the primary visual cortex revealed impaired synaptic transmission and abnormal neural activity in the schizophrenia model, but not in the depression model. These functional deficits were most prominent in the combined schizophrenia and depression model. CONCLUSION Overall, our data support a mechanism by which the visual cortex plays a role in visual disturbances in schizophrenia.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Lidan Zheng
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Tao Fang
- Key Laboratory of Real-Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Centre Hospital, Tianjin Medical University Affiliated Tianjin Fourth Centre Hospital, Nankai University Affiliated Fourth Hospital, Tianjin, China
| | - Ranli Li
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Yun Sun
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Real-Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Centre Hospital, Tianjin Medical University Affiliated Tianjin Fourth Centre Hospital, Nankai University Affiliated Fourth Hospital, Tianjin, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chuanjun Zhuo
- Laboratory of Psychiatric-Neuroimaging-Genetic and Cor-morbidity (PNGC_Lab), Tianjin Anding Hospital, Mental Health Centre of Tianjin, Affiliated Teaching Hospital of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Key Laboratory of Real-Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Centre Hospital, Tianjin Medical University Affiliated Tianjin Fourth Centre Hospital, Nankai University Affiliated Fourth Hospital, Tianjin, China
| |
Collapse
|
4
|
Lippmann B, Barmashenko G, Funke K. Effects of repetitive transcranial magnetic and deep brain stimulation on long-range synchrony of oscillatory activity in a rat model of developmental schizophrenia. Eur J Neurosci 2021; 53:2848-2869. [PMID: 33480084 DOI: 10.1111/ejn.15125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Aberrant neuronal network activity likely resulting from disturbed interactions of excitatory and inhibitory systems may be a major cause of cognitive deficits in neuropsychiatric diseases, like within the spectrum of schizophrenic phenotypes. In particular, the synchrony and pattern of oscillatory brain activity appears to be disturbed within limbic networks, e.g. between prefrontal cortex and hippocampus. In a rat model of maternal immune activation (MIA), we compared the acute effects of deep brain stimulation within either medial prefrontal cortex or ventral hippocampus with the effects of repetitive transcranial magnetic stimulation (rTMS), using the intermittent theta-burst protocol (iTBS), on oscillatory activity within limbic structures. Simultaneous local field potential recordings were made from medial prefrontal cortex, ventral hippocampus, nucleus accumbens and rostral part of ventral tegmental area before and after deep brain stimulation in anaesthetized rats previously (~3 h) treated with sham or verum rTMS. We found a waxing and waning pattern of theta and gamma activity in all structures which was less synchronous in particular between medial prefrontal cortex and ventral hippocampus in MIA offspring. Deep brain stimulation in medial prefrontal cortex and pre-treatment with iTBS-rTMS partly improved this pattern. Gamma-theta cross-frequency coupling was stronger in MIA offspring and could partly be reduced by deep brain stimulation in medial prefrontal cortex. We can confirm aberrant limbic network activity in a rat MIA model, and at least acute normalizing effects of the neuromodulatory methods. It has to be proven whether these procedures can have chronic effects suitable for therapeutic purposes.
Collapse
Affiliation(s)
- Benjamin Lippmann
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Gleb Barmashenko
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,AIO-Studien-gGmbH, Berlin, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Rovný R, Besterciová D, Riečanský I. Genetic Determinants of Gating Functions: Do We Get Closer to Understanding Schizophrenia Etiopathogenesis? Front Psychiatry 2020; 11:550225. [PMID: 33324248 PMCID: PMC7723973 DOI: 10.3389/fpsyt.2020.550225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Deficits in the gating of sensory stimuli, i.e., the ability to suppress the processing of irrelevant sensory input, are considered to play an important role in the pathogenesis of several neuropsychiatric disorders, in particular schizophrenia. Gating is disrupted both in schizophrenia patients and their unaffected relatives, suggesting that gating deficit may represent a biomarker associated with a genetic liability to the disorder. To assess the strength of the evidence for the etiopathogenetic links between genetic variation, gating efficiency, and schizophrenia, we carried out a systematic review of human genetic association studies of sensory gating (suppression of the P50 component of the auditory event-related brain potential) and sensorimotor gating (prepulse inhibition of the acoustic startle response). Sixty-three full-text articles met the eligibility criteria for inclusion in the review. In total, 117 genetic variants were reported to be associated with gating functions: 33 variants for sensory gating, 80 variants for sensorimotor gating, and four variants for both sensory and sensorimotor gating. However, only five of these associations (four for prepulse inhibition-CHRNA3 rs1317286, COMT rs4680, HTR2A rs6311, and TCF4 rs9960767, and one for P50 suppression-CHRNA7 rs67158670) were consistently replicated in independent samples. Although these variants and genes were all implicated in schizophrenia in research studies, only two polymorphisms (HTR2A rs6311 and TCF4 rs9960767) were also reported to be associated with schizophrenia at a meta-analytic or genome-wide level of evidence. Thus, although gating is widely considered as an important endophenotype of schizophrenia, these findings demonstrate that evidence for a common genetic etiology of impaired gating functions and schizophrenia is yet unsatisfactory, warranting further studies in this field.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominika Besterciová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Schleyken S, Baldermann J, Huys D, Franklin J, Visser-Vandewalle V, Kuhn J, Kohl S. Deep brain stimulation and sensorimotor gating in tourette syndrome and obsessive-compulsive disorder. J Psychiatr Res 2020; 129:272-280. [PMID: 32829082 DOI: 10.1016/j.jpsychires.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Recent translational data suggest that deep brain stimulation (DBS) of the cortico-striato-thalamo-cortical (CSTC) loops improves sensorimotor gating in psychiatric disorders that show deficient prepulse inhibition (PPI), a robust operational measure of sensorimotor gating. To our knowledge we are the first to investigate this effect in patients with Tourette syndrome (TS). We measured PPI of the acoustic startle reflex in patients with TS (N = 10) or Obsessive-Compulsive Disorder (OCD) (N = 8) treated with DBS of the centromedian and ventro-oral internal thalamic nucleus and the anterior limb of internal capsule-nucleus accumbens area respectively, and aged- and gender-matched healthy controls (HC). PPI of the DBS groups was measured in randomized order in the ON and OFF stimulation condition. Statistical analysis revealed no significant difference in PPI (%) of patients with TS between ON (M = 20.5, SD = 14.9) and OFF (M = 25.2, SD = 29.7) condition. There were significantly reduced PPI levels in patients with TS in the ON condition compared to HC (M = 49.2, SD = 10.7), but no significant difference in PPI between TS in the OFF condition and HC. Furthermore, we found no significant stimulation or group effect for OCD and HC (OCD ON: M = 57.0, SD = 8.3; OCD OFF: 67.8, SD = 19.6; HC: M = 63.0, SD = 24.3). Our study has a number of limitations. Sample sizes are small due to the restricted patient collective. The study was not controlled for use of psychoactive medication or nicotine. Furthermore, we were not able to assess presurgical PPI measurements. In conclusion, we were able to show that PPI is impaired in patients with TS. This finding is in line with recent translational work. With respect to the OCD cohort we were not able to replicate our previously published data. A disability in sensorimotor gating plays a pivotal role in many psychiatric disorders therefore more research should be conducted to disentangle the potential and limitations of modulating sensorimotor gating via brain stimulation techniques.
Collapse
Affiliation(s)
- Sophia Schleyken
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Juan Baldermann
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Jeremy Franklin
- Institute of Medical Statistics and Computational Biology, University of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany; Johanniter Hospital Oberhausen, Department of Psychiatry, Psychotherapy and Psychosomatics, Steinbrinkstrasse 96A, 46145, Oberhausen, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
7
|
Elle T, Alam M, Voigt C, Krauss JK, John N, Schwabe K. Deep brain stimulation of the thalamic centromedian-parafascicular nucleus improves behavioural and neuronal traits in a rat model of Tourette. Behav Brain Res 2020; 378:112251. [DOI: 10.1016/j.bbr.2019.112251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
|
8
|
Vigli D, Rusconi L, Valenti D, La Montanara P, Cosentino L, Lacivita E, Leopoldo M, Amendola E, Gross C, Landsberger N, Laviola G, Kilstrup-Nielsen C, Vacca RA, De Filippis B. Rescue of prepulse inhibition deficit and brain mitochondrial dysfunction by pharmacological stimulation of the central serotonin receptor 7 in a mouse model of CDKL5 Deficiency Disorder. Neuropharmacology 2018; 144:104-114. [PMID: 30326240 DOI: 10.1016/j.neuropharm.2018.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause CDKL5 Deficiency Disorder (CDD), a rare neurodevelopmental syndrome characterized by severe behavioural and physiological symptoms. No cure is available for CDD. CDKL5 is a kinase that is abundantly expressed in the brain and plays a critical role in neurodevelopmental processes, such as neuronal morphogenesis and plasticity. This study provides the first characterization of the neurobehavioural phenotype of 1 year old Cdkl5-null mice and demonstrates that stimulation of the serotonin receptor 7 (5-HT7R) with the agonist molecule LP-211 (0.25 mg/kg once/day for 7 days) partially rescues the abnormal phenotype and brain molecular alterations in Cdkl5-null male mice. In particular, LP-211 treatment completely normalizes the prepulse inhibition defects observed in Cdkl5-null mice and, at a molecular level, restores the abnormal cortical phosphorylation of rpS6, a downstream target of mTOR and S6 kinase, which plays a direct role in regulating protein synthesis. Moreover, we demonstrate for the first time that mitochondria show prominent functional abnormalities in Cdkl5-null mouse brains that can be restored by pharmacological stimulation of brain 5-HT7R.
Collapse
Affiliation(s)
- Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Laura Rusconi
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy
| | - Paolo La Montanara
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enza Lacivita
- Dept. Pharmacy, University of Bari "Aldo Moro", 70125 Bari, Italy
| | | | - Elena Amendola
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Napoli, Italy
| | - Cornelius Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL) 00015 Monterotondo, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate, Italy
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Rosa A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
9
|
Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res 2018; 198. [PMID: 29525460 PMCID: PMC6103885 DOI: 10.1016/j.schres.2018.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States.
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
10
|
Gault JM, Davis R, Cascella NG, Saks ER, Corripio-Collado I, Anderson WS, Olincy A, Thompson JA, Pomarol-Clotet E, Sawa A, Daskalakis ZJ, Lipsman N, Abosch A. Approaches to neuromodulation for schizophrenia. J Neurol Neurosurg Psychiatry 2018; 89:777-787. [PMID: 29242310 DOI: 10.1136/jnnp-2017-316946] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 11/03/2022]
Abstract
Based on the success of deep brain stimulation (DBS) for treating movement disorders, there is growing interest in using DBS to treat schizophrenia (SZ). We review the unmet needs of patients with SZ and the scientific rationale behind the DBS targets proposed in the literature in order to guide future development of DBS to treat this vulnerable patient population. SZ remains a devastating disorder despite treatment. Relapse, untreated psychosis, intolerable side effects and the lack of effective treatment for negative and cognitive symptoms contribute to poor outcome. Novel therapeutic interventions are needed to treat SZ and DBS is emerging as a potential intervention. Convergent genetic, pharmacological and neuroimaging evidence implicating neuropathology associated with psychosis is consistent with SZ being a circuit disorder amenable to striatal modulation with DBS. Many of the DBS targets proposed in the literature may modulate striatal dysregulation. Additional targets are considered for treating tardive dyskinesia and negative and cognitive symptoms. A need is identified for the concurrent development of neurophysiological biomarkers relevant to SZ pathology in order to inform DBS targeting. Finally, we discuss the current clinical trials of DBS for SZ, and their ethical considerations. We conclude that patients with severe symptoms despite treatment must have the capacity to consent for a DBS clinical trial in which risks can be estimated, but benefit is not known. In addition, psychiatric populations should have access to the potential benefits of neurosurgical advances.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Rachel Davis
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Nicola G Cascella
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elyn R Saks
- University of Southern California Law School, Los Angeles, California, USA
| | - Iluminada Corripio-Collado
- Psychiatric Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|