1
|
Kim M, Lee H, Kwon S, Cho S, Um MY. Phlorotannin Supplement Improves Scopolamine-Induced Memory Dysfunction by Rescuing Synaptic Damage in Mice. J Microbiol Biotechnol 2024; 34:2301-2309. [PMID: 39317682 PMCID: PMC11637834 DOI: 10.4014/jmb.2407.07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
This study investigated the efficacy of a phlorotannin supplement (PS) in ameliorating scopolamine (SCO)-induced memory deficits in mice, focusing on synaptic function and the underlying molecular mechanisms. Male C57BL/6N mice were divided into six groups and treated with vehicle, donepezil (5 mg/kg body weight, (BW)), or PS (100, 250, or 500 mg/kg BW) for 6 weeks. Behavioral tests were conducted, followed by Golgi staining, immunofluorescence, and immunoblotting to assess synaptic protein expression and signaling pathways. Behavioral tests showed that PS administration significantly improved SCO-induced memory impairment and restored synaptic protein expression (synaptophysin, synapsin1, and postsynaptic density protein 95) in the hippocampus. Additionally, PS enhanced brain-derived neurotrophic factor (BDNF) signaling and activated the extracellular signal-regulated kinase/CAMP response element binding protein (ERK-CREB) pathway, essential for synaptic plasticity. Our findings demonstrate that PS mitigates SCO-induced memory dysfunction by protecting synaptic integrity and activating the BDNF-ERK-CREB signaling pathway, indicating the potential of PS as a natural intervention for treating memory deficits.
Collapse
Affiliation(s)
- Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Haeun Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sangoh Kwon
- S&D Research and Development Institute, Cheongju 28156 Republic of Korea
| | - Seungmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Li X, Wu X, Lu T, Kuang C, Si Y, Zheng W, Li Z, Xue Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3412. [PMID: 38542386 PMCID: PMC10970535 DOI: 10.3390/ijms25063412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xue Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Wu
- Department of Laboratory Animal Sciences, Peking University Health Sciences Center, Beijing 100191, China;
| | - Tangsheng Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yue Si
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Zhonghao Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
| |
Collapse
|
3
|
Fenton AA, Hurtado JR, Broek JAC, Park E, Mishra B. Do Place Cells Dream of Deceptive Moves in a Signaling Game? Neuroscience 2023; 529:129-147. [PMID: 37591330 PMCID: PMC10592151 DOI: 10.1016/j.neuroscience.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. Developing such integrative frameworks is crucial if we are to understand cognitive functions like learning, memory, and perception. The present work focuses on systems neuroscience organized around the connected brain regions of the entorhinal cortex and hippocampus. These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.
Collapse
Affiliation(s)
- André A Fenton
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| | - José R Hurtado
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Jantine A C Broek
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - EunHye Park
- Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, USA
| | - Bud Mishra
- Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA; Department of Cell Biology, NYU Langone Medical Center, New York, NY, USA; Simon Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
4
|
Català-Solsona J, Lituma PJ, Lutzu S, Siedlecki-Wullich D, Fábregas-Ordoñez C, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Activity-Dependent Nr4a2 Induction Modulates Synaptic Expression of AMPA Receptors and Plasticity via a Ca 2+/CRTC1/CREB Pathway. J Neurosci 2023; 43:3028-3041. [PMID: 36931707 PMCID: PMC10146469 DOI: 10.1523/jneurosci.1341-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Transcription factors have a pivotal role in synaptic plasticity and the associated modification of neuronal networks required for memory formation and consolidation. The nuclear receptors subfamily 4 group A (Nr4a) have emerged as possible modulators of hippocampal synaptic plasticity and cognitive functions. However, the molecular and cellular mechanisms underlying Nr4a2-mediated hippocampal synaptic plasticity are not completely known. Here, we report that neuronal activity enhances Nr4a2 expression and function in cultured mouse hippocampal neurons (both sexes) by an ionotropic glutamate receptor/Ca2+/cAMP response element-binding protein/CREB-regulated transcription factor 1 (iGluR/Ca2+/CREB/CRTC1) pathway. Nr4a2 activation mediates BDNF production and increases expression of iGluRs, thereby affecting LTD at CA3-CA1 synapses in acute mouse hippocampal slices (both sexes). Together, our results indicate that the iGluR/Ca2+/CREB/CRTC1 pathway mediates activity-dependent expression of Nr4a2, which is involved in glutamatergic synaptic plasticity by increasing BDNF and synaptic GluA1-AMPARs. Therefore, Nr4a2 activation could be a therapeutic approach for brain disorders associated with dysregulated synaptic plasticity.SIGNIFICANCE STATEMENT A major factor that regulates fast excitatory synaptic transmission and plasticity is the modulation of synaptic AMPARs. However, despite decades of research, the underlying mechanisms of this modulation remain poorly understood. Our study identified a molecular pathway that links neuronal activity with AMPAR modulation and hippocampal synaptic plasticity through the activation of Nr4a2, a member of the nuclear receptor subfamily 4. Since several compounds have been described to activate Nr4a2, our study not only provides mechanistic insights into the molecular pathways related to hippocampal synaptic plasticity and learning, but also identifies Nr4a2 as a potential therapeutic target for pathologic conditions associated with dysregulation of glutamatergic synaptic function.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Dolores Siedlecki-Wullich
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Cristina Fábregas-Ordoñez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Alfredo J Miñano-Molina
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Carlos A Saura
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - José Rodriguez-Álvarez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| |
Collapse
|
5
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
6
|
Chung A, Jou C, Grau-Perales A, Levy E, Dvorak D, Hussain N, Fenton AA. Cognitive control persistently enhances hippocampal information processing. Nature 2021; 600:484-488. [PMID: 34759316 PMCID: PMC8872635 DOI: 10.1038/s41586-021-04070-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/29/2021] [Indexed: 01/30/2023]
Abstract
Could learning that uses cognitive control to judiciously use relevant information while ignoring distractions generally improve brain function, beyond forming explicit memories? According to a neuroplasticity hypothesis for how some cognitive behavioural therapies are effective, cognitive control training (CCT) changes neural circuit information processing1-3. Here we investigated whether CCT persistently alters hippocampal neural circuit function. We show that mice learned and remembered a conditioned place avoidance during CCT that required ignoring irrelevant locations of shock. CCT facilitated learning new tasks in novel environments for several weeks, relative to unconditioned controls and control mice that avoided the same place during reduced distraction. CCT rapidly changes entorhinal cortex-to-dentate gyrus synaptic circuit function, resulting in an excitatory-inhibitory subcircuit change that persists for months. CCT increases inhibition that attenuates the dentate response to medial entorhinal cortical input, and through disinhibition, potentiates the response to strong inputs, pointing to overall signal-to-noise enhancement. These neurobiological findings support the neuroplasticity hypothesis that, as well as storing item-event associations, CCT persistently optimizes neural circuit information processing.
Collapse
Affiliation(s)
- Ain Chung
- Center for Neural Science, New York University
| | - Claudia Jou
- Department of Psychology, Hunter College, City University of New York
| | | | - Eliott Levy
- Center for Neural Science, New York University
| | - Dino Dvorak
- Center for Neural Science, New York University
| | | | - André A. Fenton
- Center for Neural Science, New York University,Neuroscience Institute at the NYU Langone Medical Center
| |
Collapse
|
7
|
Chen X, Shi L, Zhang L, Cheng Y, Xue Z, Yan J, Jiang H. Epitranscriptomic Analysis of N6-methyladenosine in Infant Rhesus Macaques after Multiple Sevoflurane Anesthesia. Neuroscience 2021; 482:64-76. [PMID: 34843896 DOI: 10.1016/j.neuroscience.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022]
Abstract
Clinical investigations to date have proposed the possibility that exposure to anesthetics is associated with neurodevelopmental deficits. Sevoflurane is the most commonly used general anesthetic in pediatric patients. Animal studies have demonstrated that multiple exposures to sevoflurane during the postnatal period resulted in neuropathological brain changes and long-term cognitive deficits. However, the underlying mechanisms remain to be clarified. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was performed to acquire genome-wide profiling of RNA N6-methyladenosine (m6A) in the prefrontal cortex of infant rhesus macaques. The macaques in the sevoflurane group had more m6A peaks than the macaques in the control group (p ≤ 0.05). After sevoflurane treatment, the mRNA levels of YT521-B homology domain family 1 (YTHDF1) and YT521-B homology domain family 3 (YTHDF3) were decreased, and sevoflurane anesthesia dynamically regulated RNA m6A methylation. Gene ontology (GO) analysis revealed that after sevoflurane exposure, genes with increased methylation of m6A sites were enriched in some physiological processes relevant to neurodevelopment, mainly focused on synaptic plasticity. The female macaques had 18 hypermethylated genes. The males had 35 hypermethylated genes, and some physiological processes related to the regulation of synaptic structure were enriched. Rhesus macaques are genetically closer to human beings. Our findings can help in the study of the mechanism of sevoflurane-relevant neurodevelopmental deficits at the posttranscriptional level and can provide new insights into potential clinical preventions and interventions for the neurotoxicity of neonatal anesthesia exposure.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
8
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
9
|
Anesthesia and surgery induce a functional decrease in excitatory synaptic transmission in prefrontal cortex neurons, and intraoperative administration of dexmedetomidine does not elicit the synaptic dysfunction. Biochem Biophys Res Commun 2021; 572:27-34. [PMID: 34332326 DOI: 10.1016/j.bbrc.2021.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Postoperative delirium (POD), a syndrome of confusion and inattention, frequently occurs after anesthesia and surgery. The prefrontal cortex (PFC) plays key roles in executive functions and cognitive controls. However, the neuropathogenesis of POD in the PFC remains largely unknown. We investigated whether anesthesia and surgery induced neurofunctional changes in the mouse PFC. After laparotomy was performed under isoflurane anesthesia, PFC neuronal activities were compared at the synaptic level using whole-cell patch-clamp recordings. A battery of behavioral tests measuring natural and learned behaviors, and effects of intraoperative dexmedetomidine were also examined. In the anesthesia/surgery group showing changes in natural and learned behaviors, the frequency of excitatory synaptic responses in PFC pyramidal neurons was decreased after the surgery without any changes in the response kinetics. On the other hand, neuronal intrinsic properties and inhibitory synaptic responses were not changed. In the anesthesia/surgery group administered intraoperative dexmedetomidine, the excitatory synaptic transmission and the behaviors were not altered. These results suggest that anesthesia and surgery induce a functional reduction selectively in the PFC excitatory synaptic transmission, and intraoperative dexmedetomidine inhibits the plastic change in the PFC excitatory synaptic input.
Collapse
|
10
|
Hansen N, Timäus C. Autoimmune encephalitis with psychiatric features in adults: historical evolution and prospective challenge. J Neural Transm (Vienna) 2020; 128:1-14. [PMID: 33026492 PMCID: PMC7815593 DOI: 10.1007/s00702-020-02258-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Our review aims to delineate the psychiatric spectrum of autoantibody-associated autoimmune encephalitis over time through its discoveries of antibodies. We searched in PubMed for appropriate articles depicting the first appearance and spectrum of psychiatric symptomatology in autoantibody-positive encephalitis for this narrative review. Memory impairment was first associated with autoantibodies against intracellular antigens such as anti-HuD antibodies in 1993. 8 years later, autoantibodies against cell membrane surface antigens such as voltage-gated potassium channels were described in conjunction with memory dysfunction. The spectrum of psychiatric syndromes was amplified between 1990 and 2020 to include disorientation, behavior, cognitive dysfunction, obsessive compulsive behavior and suicidality in encephalitis patients occurring together mainly with antibodies against surface antigens, less so against intracellular antigens. In general, we found no specific psychiatric symptoms underlying specific autoantibody-associated encephalitis. As fundamental data on this issue have not been systemically assessed to date, we cannot know whether our specific findings would remain from systematic studies, i.e., on the association between cerebrospinal fluid N-methyl-D-aspartate receptor antibodies in catatonia. The psychiatric symptomatology overlaps between psychiatric domains and occurs frequently in antibody-positive encephalitis. No specific psychiatric symptoms imply an underlying, specifically autoantibody-associated encephalitis. The psychiatric phenotypology associated with antibody-positive encephalitis has evolved tremendously recently, and this new evidence reveals its relevance for future diagnostic and treatment aspects of autoimmune encephalitis patients.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany.
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany
| |
Collapse
|
11
|
Li X, Yuan X, Kang Y, Pang L, Liu Y, Zhu Q, Lv L, Huang XF, Song X. A synergistic effect between family intervention and rTMS improves cognitive and negative symptoms in schizophrenia: A randomized controlled trial. J Psychiatr Res 2020; 126:81-91. [PMID: 32428747 DOI: 10.1016/j.jpsychires.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The present study explored an efficient new therapy that combined repetitive transcranial magnetic stimulation (rTMS) and family intervention in addition to risperidone to improve schizophrenia. METHODS A randomized controlled trial (January 2016-September 2017) involving 200 patients, of which 188 patients completed the 12-week study, and 50 controls were conducted in the research. The patients were randomly assigned to 12 weeks of treatment with risperidone alone (risperidone group), rTMS and risperidone (rTMS group), family intervention and risperidone (family intervention group), rTMS and risperidone plus family intervention (combined group). MATRICS Consensus Cognitive Battery (MCCB) and the Positive and Negative Symptoms Scale (PANSS) were used to evaluate treatment efficacy. Repeated measures analysis of variance (RMANOVA) were performed to evaluate different treatment efficacy between four groups after 12 weeks of treatment. RESULTS (1) There were no significant differences in sex, age, education, cognitive function, or PANSS scores between the four groups at baseline (p's > 0.05). (2) There was a significant decrease in the PANSS scores and an increase in the MCCB scores after 12 weeks of treatment in all groups (time effect p's < 0.001). (3) The improvements in positive symptoms and negative symptoms were more obvious in the combined group than in other groups (p's < 0.05). (4) The combined group showed the superior effect in cognition function after 12 weeks. (5) And, interestingly, a remarkable synergistic effect between rTMS and family intervention therapy was observed. CONCLUSION There was a synergistic effect between rTMS and the family intervention as an effective combined therapy in improving schizophrenia. This study is registered with Chictr.org, number ChiCTR1900024422 (http://www.chictr.org.cn/edit.aspx?pid=34285&htm=4).
Collapse
Affiliation(s)
- Xue Li
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Lijuan Pang
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- The Supervision Bureau of the Health and Family Planning Commission, Wancheng District, Nanyang City, China
| | - Qiyue Zhu
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Luxian Lv
- Henan Province Mental Hospital, The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Thomas ME, Guercio GD, Drudik KM, de Villers-Sidani É. Evidence of Hyperacusis in Adult Rats Following Non-traumatic Sound Exposure. Front Syst Neurosci 2019; 13:55. [PMID: 31708754 PMCID: PMC6819503 DOI: 10.3389/fnsys.2019.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Manipulations that enhance neuroplasticity may inadvertently create opportunities for maladaptation. We have previously used passive exposures to non-traumatic white noise to open windows of plasticity in the adult rat auditory cortex and induce frequency-specific functional reorganizations of the tonotopic map. However, similar reorganizations in the central auditory pathway are thought to contribute to the generation of hearing disorders such as tinnitus and hyperacusis. Here, we investigate whether noise-induced reorganizations are accompanied by electrophysiological or behavioral evidence of tinnitus or hyperacusis in adult Long-Evans rats. We used a 2-week passive exposure to moderate-intensity (70 dB SPL) broadband white noise to reopen a critical period for spectral tuning such that a second 1-week exposure to 7 kHz tone pips produced an expansion of the 7 kHz frequency region in the primary auditory cortex (A1). We demonstrate for the first time that this expansion also takes place in the ventral auditory field (VAF). Sound exposure also led to spontaneous and sound-evoked hyperactivity in the anterior auditory field (AAF). Rats were assessed for behavioral evidence of tinnitus or hyperacusis using gap and tone prepulse inhibition of the acoustic startle response. We found that sound exposure did not affect gap-prepulse inhibition. However, sound exposure led to an improvement in prepulse inhibition when the prepulse was a 7 kHz tone, showing that exposed rats had enhanced sensorimotor gating for the exposure frequency. Together, our electrophysiological and behavioral results provide evidence of hyperacusis but not tinnitus in sound-exposed animals. Our findings demonstrate that periods of prolonged noise exposure may open windows of plasticity that can also be understood as windows of vulnerability, potentially increasing the likelihood for maladaptive plasticity to take place.
Collapse
Affiliation(s)
- Maryse E Thomas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Gerson D Guercio
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, United States.,Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Kristina M Drudik
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Étienne de Villers-Sidani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
13
|
Wang Q, Hu Y, Wan J, Dong B, Sun J. Lactate: A Novel Signaling Molecule in Synaptic Plasticity and Drug Addiction. Bioessays 2019; 41:e1900008. [PMID: 31270822 DOI: 10.1002/bies.201900008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/20/2019] [Indexed: 12/21/2022]
Abstract
l-Lactate is emerging as a crucial regulatory nexus for energy metabolism in the brain and signaling transduction in synaptic plasticity, memory processes, and drug addiction instead of being merely a waste by-product of anaerobic glycolysis. In this review, the role of lactate in various memory processes, synapse plasticity and drug addiction on the basis of recent studies is summarized and discussed. To this end, three main parts are presented: first, lactate as an energy substrate in energy metabolism of the brain is described; second, lactate as a novel signaling molecule in synaptic plasticity, neural circuits, memory, and drug addiction is described; and third, in light of the above descriptions, it is plausible to speculate that lactate is predominantly a signaling molecule in specific memory processes and partly acts as an energy substrate. The future perspective in lactate signaling involving microglia and associated precise signaling pathways in the brain is highlighted.
Collapse
Affiliation(s)
- Qiuting Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Hu
- Department of Paediatrics, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong, 250200, China
| | - Jiale Wan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
14
|
Morishita H, Vinogradov S. Neuroplasticity and dysplasticity processes in schizophrenia. Schizophr Res 2019; 207:1-2. [PMID: 30930035 PMCID: PMC10049840 DOI: 10.1016/j.schres.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, USA.
| | | |
Collapse
|