1
|
Garip B, Khokhar JY, Kayir H. Plasma essential amino acid levels in first episode psychosis at baseline and after antipsychotic treatment. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:103. [PMID: 39505892 PMCID: PMC11542070 DOI: 10.1038/s41537-024-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
This study assessed plasma levels of essential amino acids (EAA) in drug-naïve first episode psychosis (FEP) patients at diagnosis and after 10 weeks of antipsychotic treatment. Forty FEP patients were enrolled at baseline, with blood samples collected before and after a 10-week antipsychotic treatment period. Plasma EAA levels were measured using an LC/MS/MS method. Psychotic symptoms were evaluated using standardized inventories before and after treatment. A decrease in BPRS score of more than 40% was used to indicate treatment response. Thirty-five healthy volunteers served as the control group. Baseline plasma levels of Thr, Met, Leu, Lys, His, and Tyr were higher in FEP patients than in healthy controls. After 10 weeks of treatment, Leu, His, and Tyr increased further, primarily in treatment-responsive patients. Conversely, Val level was lower than controls in patients at baseline and remained unchanged after treatment. Increased EAA levels were correlated with lower (less severe) scores in positive symptom scales. Treatment non-responders had persistently low Tyr/large neutral amino acid (LNAA) ratio. Tyr/LNAA ratio increased after treatment, specifically in treatment-responders. Phe/Tyr ratio decreased post-treatment in both responder and non-responder groups. Elevated EAA levels in FEP patients may signify compensatory responses to increased physiological demand for neurotransmitters or energy. Combining specific EAA supplementation with antipsychotic treatment may enhance treatment response in these patients.
Collapse
Affiliation(s)
- Beyazit Garip
- Gulhane Training and Research Hospital, Department of Psychiatry, Ankara, Turkey
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hakan Kayir
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
4
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
6
|
Yang KC, Chen YY, Liu MN, Yang BH, Chou YH. Interactions between dopamine transporter and N-methyl-d-aspartate receptor-related amino acids on cognitive impairments in schizophrenia. Schizophr Res 2022; 248:263-270. [PMID: 36115191 DOI: 10.1016/j.schres.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cognitive impairments, the main determinants of functional outcomes in schizophrenia, had limited treatment responses and need a better understanding of the mechanisms. Dysfunctions of the dopamine system and N-methyl-d-aspartate receptor (NMDAR), the primary pathophysiologies of schizophrenia, may impair cognition. This study explored the effects and interactions of striatal dopamine transporter (DAT) and plasma NMDAR-related amino acids on cognitive impairments in schizophrenia. METHODS We recruited 36 schizophrenia patients and 36 age- and sex-matched healthy controls (HC). All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT and ultra-performance liquid chromatography were applied to determine DAT availability and plasma concentrations of eight amino acids, respectively. RESULTS Compared with HC, schizophrenia patients had lower cognitive performance, higher methionine concentrations, decreased concentrations of glutamic acid, cysteine, aspartic acid, arginine, the ratio of glutamic acid to gamma-aminobutyric acid (Glu/GABA), and DAT availability in the left caudate nucleus (CN) and putamen. Regarding memory scores, Glu/GABA and the DAT availability in left CN and putamen exhibited positive relationships, while methionine concentrations showed negative associations in all participants. The DAT availability in left CN mediated the methionine-memory relationship. An exploratory backward stepwise regression analysis for the four biological markers associated with memory indicated that DAT availability in left CN and Glu/GABA remained in the final model. CONCLUSIONS This study demonstrated the interactions of striatal DAT and NMDAR-related amino acids on cognitive impairments in schizophrenia. Future studies to comprehensively evaluate their complex interactions and treatment implications are warranted.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Yu Chen
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Şorodoc V, Rusu-Zota G, Nechita P, Moraru C, Manole OM. Effects of imidazoline agents in a rat conditioned place preference model of addiction. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:365-376. [PMID: 34997272 PMCID: PMC8816376 DOI: 10.1007/s00210-021-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Agmatine (AG), idazoxan (IDZ), and efaroxan (EFR) are imidazoline receptor ligands with beneficial effects in central nervous system disorders. The present study aimed to evaluate the interaction between AG, IDZ, and EFR with an opiate, tramadol (TR), in a conditioned place preference (CPP) paradigm. In the experiment, we used five groups with 8 adult male Wistar rats each. During the condition session, on days 2, 4, 6, and 8, the rats received the drugs (saline, or TR, or IDZ and TR, or EFR and TR, or AG and TR) and were placed in their least preferred compartment. On days 1, 3, 5, and 7, the rats received saline in the preferred compartment. In the preconditioning, the preferred compartment was determined. In the postconditioning, the preference for one of the compartments was reevaluated. TR increased the time spent in the non-preferred compartment. AG decreased time spent in the TR-paired compartment. EFR, more than IDZ, reduced the time spent in the TR-paired compartment, but without statistical significance. AG reversed the TR-induced CPP, while EFR and IDZ only decreased the time spent in the TR-paired compartment, without statistical significance.
Collapse
Affiliation(s)
- V Şorodoc
- Department of Internal Medicine (Toxicology), University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| | - G Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania.
| | - P Nechita
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - C Moraru
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - O M Manole
- University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| |
Collapse
|
8
|
Silva-Costa LC, Smith BJ. Post-translational Modifications in Brain Diseases: A Future for Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:129-141. [DOI: 10.1007/978-3-031-05460-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Bernstein HG, Keilhoff G, Laube G, Dobrowolny H, Steiner J. Polyamines and polyamine-metabolizing enzymes in schizophrenia: Current knowledge and concepts of therapy. World J Psychiatry 2021; 11:1177-1190. [PMID: 35070769 PMCID: PMC8717027 DOI: 10.5498/wjp.v11.i12.1177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central nervous system and other organs. A large body of evidence suggests that the polyamine pathway is prominently involved in the etiology and pathology of schizophrenia. Alterations in the expression and activity of polyamine metabolizing enzymes, as well as changes in the levels of the individual polyamines, their precursors and derivatives, have been measured in schizophrenia and animal models of the disease. Additionally, neuroleptic treatment has been shown to influence polyamine concentrations in brain and blood of individuals with schizophrenia. Thus, the polyamine system may appear to be a promising target for neuropharmacological treatment of schizophrenia. However, for a number of practical reasons there is currently only limited hope for a polyamine-based schizophrenia therapy.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gregor Laube
- Department of Anatomy, Charite, Berlin D-10117, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| |
Collapse
|
10
|
Avigdor BE, Yang K, Shinder I, Orsburn BC, Rais R, Kano SI, Sawa A, Pevsner J. Characterization of antipsychotic medications, amino acid signatures, and platelet-activating factor in first-episode psychosis. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Du Y, Chen L, Li XS, Li XL, Xu XD, Tai SB, Yang GL, Tang Q, Liu H, Liu SH, Zhang SY, Cheng Y. Metabolomic Identification of Exosome-Derived Biomarkers for Schizophrenia: A Large Multicenter Study. Schizophr Bull 2020; 47:615-623. [PMID: 33159208 PMCID: PMC8084447 DOI: 10.1093/schbul/sbaa166] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes have been suggested as promising targets for the diagnosis and treatment of neurological diseases, including schizophrenia (SCZ), but the potential role of exosome-derived metabolites in these diseases was rarely studied. Using ultra-performance liquid chromatography-tandem mass spectrometry, we performed the first metabolomic study of serum-derived exosomes from patients with SCZ. Our sample comprised 385 patients and 332 healthy controls recruited from 3 clinical centers and 4 independent cohorts. We identified 25 perturbed metabolites in patients that can be used to classify samples from patients and control participants with 95.7% accuracy (95% CI: 92.6%-98.9%) in the training samples (78 patients and 66 controls). These metabolites also showed good to excellent performance in differentiating between patients and controls in the 3 test sets of participants, with accuracies 91.0% (95% CI: 85.7%-96.3%; 107 patients and 62 controls), 82.7% (95% CI: 77.6%-87.9%; 104 patients and 142 controls), and 99.0% (95% CI: 97.7%-100%; 96 patients and 62 controls), respectively. Bioinformatic analysis suggested that these metabolites were enriched in pathways implicated in SCZ, such as glycerophospholipid metabolism. Taken together, our findings support a role for exosomal metabolite dysregulation in the pathophysiology of SCZ and indicate a strong potential for exosome-derived metabolites to inform the diagnosis of SCZ.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiao-Lin Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xiang-Dong Xu
- Department of Psychiatry, Urumqi Fourth People’s Hospital, Urumqi, Xinjiang, China
| | - Shao-Bin Tai
- Department of Psychiatry, Huangshan Second People’s Hospital, Huangshan, An Hui, China
| | - Geng-Lin Yang
- Department of Psychiatry, Urumqi Fourth People’s Hospital, Urumqi, Xinjiang, China
| | - Quan Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hua Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Shu-Han Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China,College of Life and Environmental Sciences, Minzu University of China, Beijing, China,NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health-Care Hospital, Changsha, Hunan, China,To whom correspondence should be addressed; 27 South Zhongguancun Avenue, Beijing 100081, China; tel: 86-10-68931383, fax: 86-10-68936927, e-mail:
| |
Collapse
|
12
|
Sari SA, Ulger D, Ersan S, Bakir D, Uzun Cicek A, Ismailoglu F. Effects of agmatine, glutamate, arginine, and nitric oxide on executive functions in children with attention deficit hyperactivity disorder. J Neural Transm (Vienna) 2020; 127:1675-1684. [PMID: 33026491 DOI: 10.1007/s00702-020-02261-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to investigate the effects of agmatine, nitric oxide (NO), arginine, and glutamate, which are the metabolites in the polyamine pathway, on the performance of executive functions (EF) in attention deficit hyperactivity disorder (ADHD). The ADHD group included 35 treatment-naive children (6-14 years old) who were ewly diagnosed with ADHD. The control group consisted of 35 healthy children with the same age and sex, having no previous psychiatric disorders. In the study groups, Stroop test (ST) and trail making test (TMT) were used to monitor EF, and blood samples were collected to measure agmatine with ultra-high-performance liquid chromatography and NO, glutamate, and arginine with enzyme-linked immunosorbent assay (ELISA). The EFs were significantly impaired in the ADHD group. The agmatine and arginine levels of the ADHD group were significantly higher than their peers. The NO and glutamate levels were also higher in the ADHD group compared to the control group, but these differences did not reach statistical significance. Children with ADHD had more difficulties during EF tasks compared to healthy children. The elevated NO and glutamate levels may be related with the impairment during EF tasks. Therefore, agmatine and arginine may increase to improve EF tasks through its inhibitory effect on the synthesis of NO and glutamate. Further studies are needed about polyamine pathway molecules to shed light on the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Seda Aybuke Sari
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey.
| | - Dilara Ulger
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serpil Ersan
- Department of Biochemistry, Faculty of Medicine, Nigde Omer Halis University, Nigde, Turkey
| | - Deniz Bakir
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayla Uzun Cicek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey
| | - Firat Ismailoglu
- Department of Computer Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
13
|
Baytunca BM, Kalyoncu T, Özbaran B, Köse S, Öngür D, Uzbay T. Reduced blood agmatine level in early-onset schizophrenia. Schizophr Res 2020; 222:528-529. [PMID: 32446703 DOI: 10.1016/j.schres.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Burak M Baytunca
- University of Utah, Department of Psychiatry, Salt Lake City, UT, USA.
| | - Tuğba Kalyoncu
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Burcu Özbaran
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Sezen Köse
- Ege University, School of Medicine, Department of Child and Adolescent Psychiatry, İzmir, Turkey
| | - Dost Öngür
- Division of Psychotic Disorders, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center (NPARC), Üsküdar University, İstanbul, Turkey
| |
Collapse
|
14
|
Liu D, An Z, Li P, Chen Y, Zhang R, Liu L, He J, Abliz Z. A targeted neurotransmitter quantification and nontargeted metabolic profiling method for pharmacometabolomics analysis of olanzapine by using UPLC-HRMS. RSC Adv 2020; 10:18305-18314. [PMID: 35517196 PMCID: PMC9053711 DOI: 10.1039/d0ra02406f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Neurotransmitters (NTs) are specific endogenous metabolites that act as “messengers” in synaptic transmission and are widely distributed in the central nervous system. Olanzapine (OLZ), a first-line antipsychotic drug, plays a key role in sedation and hypnosis, but, it presents clinical problems with a narrow therapeutic window, large individual differences and serious adverse effects, as well as an unclear mechanism in vivo. Herein, a simultaneous targeted NT quantification and nontargeted metabolomics method was developed and validated for pharmacometabolomics analysis of OLZ by using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS). Considering the low physiological concentrations of NTs, a full MS scan and target selective ion monitoring (tSIM) scan were combined for nontargeted metabolomics and targeted NT quantification, respectively. By using this strategy, NTs at a very low physiological concentration can be accurately detected and quantified in biological samples by tSIM scans. Moreover, simultaneously nontargeted profiling was also achieved by the full MS scan. The newly established UPLC-HRMS method was further used for the pharmacometabolomics study of OLZ. Statistical analysis revealed that tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, γ-aminobutyric acid etc. were significantly downregulated, while tyrosine was significantly upregulated, which suggested that OLZ could promote the downstream phase II reaction of 5-hydroxytryptamine, inhibit tyrosine hydroxylase activity, and increase the activity of γ-aminobutyric acid transaminase. In conclusion, this method could provide novel insights for revealing the pharmacodynamic effect and mechanism of antipsychotic drugs. We developed a method that would provide novel insights for revealing the pharmacodynamic effect and mechanism of antipsychotic drugs (olanzapine).![]()
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| | - Pengfei Li
- Pharmacy Department of Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing 100020
- P. R. China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
15
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
16
|
Garip B, Kayir H. Alteration in NMDAR-related amino acids in first episode psychosis. Synapse 2019; 73:e22127. [PMID: 31403728 DOI: 10.1002/syn.22127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to explore the role of N-methyl-D-aspartate receptor (NMDAR) related amino acids in drug-naive first episode psychosis (FEP) patients. The medication naïve patients with FEP (n = 40) and healthy volunteers with no family history of schizophrenia (n = 35) were recruited to the study and followed up for 10 weeks. Liquid chromatography-mass spectrometry method was used to measure plasma levels of the amino acids. The plasma glutamine, glutamic acid, proline, serine, asparagine, and hydroxyproline levels were significantly higher in the FEP patients compared to healthy controls (p values < .0001). The glutamine/glutamic acid ratio in FEP patients was not different from the healthy controls (p > .05). After the antipsychotic treatment, plasma glutamic acid, proline, and hydroxyproline levels were significantly increased (p values < .05) while the asparagine level and glutamine/glutamic acid ratio were decreased (p values < .05). The serine and glutamine levels did not show any differences with the treatment (p > .05). The initial plasma glutamine levels were negatively correlated with the initial Scale for the Assessment of Positive Symptoms (SAPS) score (r = -.45, p = .003). The initial plasma proline levels were negatively correlated with the initial and follow-up SAPS scores (r = -.51 and -.39, p values < .05). The initial plasma proline and hydroxyproline levels were both negatively correlated with the initial Brief Psychiatric Rating Scale score (r = -.37, p = .017 and r = -.33, p = .033, respectively). Increase in NMDAR-related amino acid levels during the FEP may be a compensatory response to glutamatergic hypofunction. Their plasma levels were significantly correlated with several psychotic symptoms before and after 10-week treatment. Antipsychotic treatment has differential effects on the plasma levels of these amino acids.
Collapse
Affiliation(s)
- Beyazit Garip
- Department of Psychiatry, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Hakan Kayir
- Noro Saglik Brain Trainings Research Application Center, Istanbul, Turkey
| |
Collapse
|