1
|
Chen Y, Wang S, Zhang X, Yang Q, Hua M, Li Y, Qin W, Liu F, Liang M. Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables. Schizophr Bull 2024; 51:108-119. [PMID: 38819252 PMCID: PMC11661961 DOI: 10.1093/schbul/sbae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables. STUDY DESIGN We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores. STUDY RESULTS The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort. CONCLUSION This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Yayuan Chen
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Sijia Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qingqing Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghui Hua
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, China
| | - Yifan Li
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Li D, Zhang Y, Lai L, Hao J, Wang X, Zhao Z, Cui X, Xiang J, Wang B. The impact of indirect structure on functional connectivity in schizophrenia using a multiplex brain network. J Psychiatr Res 2024; 179:257-265. [PMID: 39321524 DOI: 10.1016/j.jpsychires.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
It is known that abnormal functional connectivity (FC) in schizophrenia (SZ) is closely related to structural connectivity (SC). We speculate that indirect SC also have an impact on FC in SZ patients. Conventional single-layer network has limitations for studying the relationship between indirect SC and FC. Thus, this study constructed a multiplex network based on structural connectivity and functional connectivity (SC-FC). The SC-FC bandwidth and SC-FC cost are used to analyze the impact of indirect SC on FC. Moreover, this paper proposed mediation ability, mediation cost, mediated strength and mediated cost to quantify the effects of mediator nodes and mediated nodes on indirect SC. The results show that SZ patients exhibit lower SC-FC bandwidth and SC-FC cost compared to healthy controls (HC), which could be caused by the limbic and subcortical network (LSN), default mode network (DMN) and visual network (VN). The mediator and mediated nodes in indirect SC of SZ patients also showed diminished effects. These findings suggest that functional communication ability and cost in SZ patients are influenced by indirect SC. This study provides new perspectives for understanding the relationship between indirect SC and FC, and provides strong evidence for interpreting the physiological mechanisms of SZ patients.
Collapse
Affiliation(s)
- Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yating Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Luyao Lai
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianchao Hao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xuedong Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhenyu Zhao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
3
|
Ajunwa CC, Zhang J, Collin G, Keshavan MS, Tang Y, Zhang T, Li H, Shenton ME, Stone WS, Wang J, Niznikiewicz M, Whitfield-Gabrieli S. Dissociable Default Mode Network Connectivity Patterns Underlie Distinct Symptoms in Psychosis Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620271. [PMID: 39484521 PMCID: PMC11527119 DOI: 10.1101/2024.10.25.620271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Clinical High Risk (CHR) stage of psychosis is characterized by subthreshold symptoms of schizophrenia including negative symptoms, dysphoric mood, and functional deterioration. Hyperconnectivity of the default-mode network (DMN) has been observed in early schizophrenia, but the extent to which hyperconnectivity is present in CHR, and the extent to which such hyperconnectivity may underlie transdiagnostic symptoms, is not clear. As part of the Shanghai At-Risk for Psychosis (SHARP) program, resting-state fMRI data were collected from 251 young adults (158 CHR and 93 controls, M = 18.72, SD = 4.68, 129 male). We examined functional connectivity of the DMN by performing a whole-brain seed-to-voxel analysis with the MPFC as the seed. Symptom severity across a number of dimensions, including negative symptoms, positive symptoms, and affective symptoms were assessed. Compared to controls, CHRs exhibited significantly greater functional connectivity (p < 0.001 uncorrected) between the MPFC and 1) other DMN nodes including the posterior cingulate cortex (PCC), and 2) auditory cortices (superior and middle temporal gyri, STG/MTG). Furthermore, these two patterns of hyperconnectivity were differentially associated with distinct symptom clusters. Within CHR, MPFC-PCC connectivity was significantly correlated with anxiety (r= 0.23, p=0.006), while MPFC-STG/MTG connectivity was significantly correlated with negative symptom severity (r=0.26, p=0.001). Secondary analyses using item-level symptom scores confirmed a similar dissociation. These results demonstrate that two dissociable patterns of DMN hyperconnectivity found in the CHR stage may underlie distinct dimensions of symptomatology.
Collapse
Affiliation(s)
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, MA
- Department of Radiology Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William S. Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margaret Niznikiewicz
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
4
|
Toutain TGLDO, Miranda JGV, do Rosário RS, de Sena EP. Directed brain interactions over time: A resting-state EEG comparison between schizophrenia and healthy individuals. Psychiatry Res Neuroimaging 2024; 344:111861. [PMID: 39153230 DOI: 10.1016/j.pscychresns.2024.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Understanding the neurophysiological mechanisms of schizophrenia (SZ) is one of the challenges of neuroscience. Many anatomical and functional studies have pointed to problems in brain connectivity in SZ individuals. However, little is known about the relationships between specific brain regions and impairments in brain connectivity in SZ individuals. Herein we propose a new approach using time-varying graphs and the motif synchronization method to build dynamic brain functional networks (BFNs). Dynamic BFNs were constructed from resting-state electroencephalography (rs-EEG) of 14 schizophrenia (SZ) individuals and 14 healthy controls (HCs). BFNs were evaluated based on the percentage of synchronization importance between a pair of regions (considering external and internal interactions) over time. We found differences in the directed interaction between brain regions in SZ individuals compared to the control group. Our method revealed low bilaterally directed interactions between the temporal lobes in SZ individuals compared to HCs, indicating a potential link between altered brain connectivity and the characteristic symptoms of schizophrenia. From a clinical perspective, these results shed light on developing new therapeutic approaches targeting these specific neural interactions that are altered in individuals with SZ. This knowledge allows the application of better interventions focused on restoring or compensating for interrupted connectivity patterns.
Collapse
Affiliation(s)
- Thaise G L de O Toutain
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil; Laboratory of Biosystems, Federal University of Bahia, Salvador, Brazil
| | | | | | - Eduardo Pondé de Sena
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil; Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Vale do Canela, Salvador, BA 40110-100, Brazil.
| |
Collapse
|
5
|
Li WX, Lin QH, Zhang CY, Han Y, Li HJ, Calhoun VD. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data. J Neurosci Methods 2024; 409:110207. [PMID: 38944128 DOI: 10.1016/j.jneumeth.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Real-valued mutual information (MI) has been used in spatial functional network connectivity (FNC) to measure high-order and nonlinear dependence between spatial maps extracted from magnitude-only functional magnetic resonance imaging (fMRI). However, real-valued MI cannot fully capture the group differences in spatial FNC from complex-valued fMRI data with magnitude and phase dependence. METHODS We propose a complete complex-valued MI method according to the chain rule of MI. We fully exploit the dependence among magnitudes and phases of two complex-valued signals using second and fourth-order joint entropies, and propose to use a Gaussian copula transformation with a lower bound property to avoid inaccurate estimation of joint probability density function when computing the joint entropies. RESULTS The proposed method achieves more accurate MI estimates than the two histogram-based (normal and symbolic approaches) and kernel density estimation methods for simulated signals, and enhances group differences in spatial functional network connectivity for experimental complex-valued fMRI data. COMPARISON WITH EXISTING METHODS Compared with the simplified complex-valued MI and real-valued MI, the proposed method yields higher MI estimation accuracy, leading to 17.4 % and 145.5 % wider MI ranges, and more significant connectivity differences between healthy controls and schizophrenia patients. A unique connection between executive control network (EC) and right frontal parietal areas, and three additional connections mainly related to EC are detected than the simplified complex-valued MI. CONCLUSIONS With capability in quantifying MI fully and accurately, the proposed complex-valued MI is promising in providing qualified FNC biomarkers for identifying mental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Wei-Xing Li
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Hua Lin
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chao-Ying Zhang
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Han
- School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan-Jie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Zhao Z, Feng Y, Wang M, Wei J, Tan T, Li R, Hu H, Wang M, Chen P, Gao X, Wei Y, Wang C, Gao Z, Jiang W, Zhou X, Li M, Wang C, Pang T, Yu Y. Investigating cortical complexity and connectivity in rats with schizophrenia. Front Neuroinform 2024; 18:1392271. [PMID: 39211912 PMCID: PMC11358091 DOI: 10.3389/fninf.2024.1392271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background The above studies indicate that the SCZ animal model has abnormal gamma oscillations and abnormal functional coupling ability of brain regions at the cortical level. However, few researchers have focused on the correlation between brain complexity and connectivity at the cortical level. In order to provide a more accurate representation of brain activity, we studied the complexity of electrocorticogram (ECoG) signals and the information interaction between brain regions in schizophrenic rats, and explored the correlation between brain complexity and connectivity. Methods We collected ECoG signal from SCZ rats. The frequency domain and time domain functional connectivity of SCZ rats were evaluated by magnitude square coherence and mutual information (MI). Permutation entropy (PE) and permutation Lempel-Ziv complexity (PLZC) were used to analyze the complexity of ECoG, and the relationship between them was evaluated. In addition, in order to further understand the causal structure of directional information flow among brain regions, we used phase transfer entropy (PTE) to analyze the effective connectivity of the brain. Results Firstly, in the high gamma band, the complexity of brain regions in SCZ rats is higher than that in normal rats, and the neuronal activity is irregularity. Secondly, the information integration ability of SCZ rats decreased and the communication of brain network information was hindered at the cortical level. Finally, compared with normal rats, the causal relationship between brain regions of SCZ rats was closer, but the information interaction center was not clear. Conclusion The above findings suggest that at the cortical level, complexity and connectivity are valid biomarkers for identifying SCZ. This bridges the gap between peak potentials and EEG. This may help to understand the pathophysiological mechanisms at the cortical level in schizophrenics.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yifan Feng
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Menghan Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Jiarong Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Tao Tan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Ruijiao Li
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Heshun Hu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengke Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Peiqi Chen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xudong Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Wenshuai Jiang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mingcai Li
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Chong Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Ting Pang
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
- Center of Image and Signal Processing, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
7
|
Kanyal A, Mazumder B, Calhoun VD, Preda A, Turner J, Ford J, Ye DH. Multi-modal deep learning from imaging genomic data for schizophrenia classification. Front Psychiatry 2024; 15:1384842. [PMID: 39006822 PMCID: PMC11239396 DOI: 10.3389/fpsyt.2024.1384842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Schizophrenia (SZ) is a psychiatric condition that adversely affects an individual's cognitive, emotional, and behavioral aspects. The etiology of SZ, although extensively studied, remains unclear, as multiple factors come together to contribute toward its development. There is a consistent body of evidence documenting the presence of structural and functional deviations in the brains of individuals with SZ. Moreover, the hereditary aspect of SZ is supported by the significant involvement of genomics markers. Therefore, the need to investigate SZ from a multi-modal perspective and develop approaches for improved detection arises. Methods Our proposed method employed a deep learning framework combining features from structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and genetic markers such as single nucleotide polymorphism (SNP). For sMRI, we used a pre-trained DenseNet to extract the morphological features. To identify the most relevant functional connections in fMRI and SNPs linked to SZ, we applied a 1-dimensional convolutional neural network (CNN) followed by layerwise relevance propagation (LRP). Finally, we concatenated these obtained features across modalities and fed them to the extreme gradient boosting (XGBoost) tree-based classifier to classify SZ from healthy control (HC). Results Experimental evaluation on clinical dataset demonstrated that, compared to the outcomes obtained from each modality individually, our proposed multi-modal approach performed classification of SZ individuals from HC with an improved accuracy of 79.01%. Conclusion We proposed a deep learning based framework that selects multi-modal (sMRI, fMRI and genetic) features efficiently and fuse them to obtain improved classification scores. Additionally, by using Explainable AI (XAI), we were able to pinpoint and validate significant functional network connections and SNPs that contributed the most toward SZ classification, providing necessary interpretation behind our findings.
Collapse
Affiliation(s)
- Ayush Kanyal
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Badhan Mazumder
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, United States
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, Univeristy of California Irvine, Irvine, CA, United States
| | - Jessica Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - Judith Ford
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Dong Hye Ye
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, United States
| |
Collapse
|
8
|
Feng S, Zheng S, Dong L, Li Z, Zhu H, Liu S, Li X, Ning Y, Jia H. Effects of aripiprazole on resting-state functional connectivity of large-scale brain networks in first-episode drug-naïve schizophrenia patients. J Psychiatr Res 2024; 171:215-221. [PMID: 38309211 DOI: 10.1016/j.jpsychires.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Aripiprazole modulates functional connectivity (FC) between several brain regions in first-episode schizophrenia patients, contributing to improvement in clinical symptoms. However, the effects of aripiprazole on abnormal connections among extensive brain networks in schizophrenia patients remain unclear. We aimed to investigate the effects of 12 weeks of aripiprazole treatment on the FC of large-scale brain networks. Forty-five first-episode drug-naïve schizophrenia patients and 45 healthy controls were recruited for this longitudinal study. Resting-state functional magnetic resonance imaging (fMRI) data were collected at baseline and after 12 weeks of aripiprazole treatment. The patients were classified into those in response (SCHr group) and non-response (SCHnr group) according to the improvement of clinical symptoms after 12-weeks treatment. The FC were evaluated for seven large-scale brain networks. In addition, correlation analysis was performed to investigate associations between changes FC of large-scale brain networks and clinical symptoms. Before aripiprazole treatment, schizophrenia patients showed decreased FC of extensive brain networks compared to healthy controls. The 12-week aripiprazole treatment significantly prevented the constantly decreased FC of subcortical network, default mode network and other brain networks in patients with SCHr, in association with the improvement of clinical symptoms. Taken together, these findings have revealed the effects of aripiprazole on FC in large-scale networks in schizophrenia patients, which could provide new insight on interpreting symptom improvement in SCH.
Collapse
Affiliation(s)
- Sitong Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Linrui Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ziyan Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shanshan Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Wang C, Wang C, Ren Y, Zhang R, Ai L, Wu Y, Ran X, Wang M, Hu H, Shen J, Zhao Z, Yang Y, Ren W, Yu Y. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition. Brain Res Bull 2024; 206:110848. [PMID: 38104673 DOI: 10.1016/j.brainresbull.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Schizophrenia classification and abnormal brain network recognition have an important research significance. Researchers have proposed many classification methods based on machine learning and deep learning. However, fewer studies utilized the advantages of complementary information from multi feature to learn the best representation of schizophrenia. In this study, we proposed a multi-feature fusion network (MFFN) using functional network connectivity (FNC) and time courses (TC) to distinguish schizophrenia patients from healthy controls. DNN backbone was adopted to learn the feature map of functional network connectivity, C-RNNAM backbone was designed to learn the feature map of time courses, and Deep SHAP was applied to obtain the most discriminative brain networks. We proved the effectiveness of this proposed model using the combining two public datasets and evaluated this model quantitatively using the evaluation indexes. The results showed that the functional network connectivity generated by independent component analysis has advantage in schizophrenia classification by comparing static and dynamic functional connections. This method obtained the best classification accuracy (ACC=87.30%, SPE=89.28%, SEN=85.71%, F1 =88.23%, and AUC=0.9081), and it demonstrated the superiority of this proposed model by comparing state-of-the-art methods. Ablation experiment also demonstrated that multi feature fusion and attention module can improve classification accuracy. The most discriminative brain networks showed that default mode network and visual network of schizophrenia patients have aberrant connections in brain networks. In conclusion, this method can identify schizophrenia effectively and visualize the abnormal brain network, and it has important clinical application value.
Collapse
Affiliation(s)
- Chang Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Chen Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Yaning Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Rui Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Lunpu Ai
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yang Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Xiangying Ran
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Mengke Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Heshun Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Zongya Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China
| | - Wenjie Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
| |
Collapse
|
10
|
Xiang J, Sun Y, Wu X, Guo Y, Xue J, Niu Y, Cui X. Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sci 2023; 14:40. [PMID: 38248255 PMCID: PMC10813230 DOI: 10.3390/brainsci14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder with unclear etiology and pathological features. Neuroscientists are increasingly proposing that schizophrenia is an abnormality in the dynamic organization of brain networks. Previous studies have found that the dynamic brain networks of people with SZ are abnormal in both space and time. However, little is known about the interactions and overlaps between hubs of the brain underlying spatiotemporal dynamics. In this study, we aimed to investigate different patterns of spatial and temporal overlap of hubs between SZ patients and healthy individuals. Specifically, we obtained resting-state functional magnetic resonance imaging data from the public dataset for 43 SZ patients and 49 healthy individuals. We derived a representation of time-varying functional connectivity using the Jackknife Correlation (JC) method. We employed the Betweenness Centrality (BC) method to identify the hubs of the brain's functional connectivity network. We then applied measures of temporal overlap, spatial overlap, and hierarchical clustering to investigate differences in the organization of brain hubs between SZ patients and healthy controls. Our findings suggest significant differences between SZ patients and healthy controls at the whole-brain and subnetwork levels. Furthermore, spatial overlap and hierarchical clustering analysis showed that quasi-periodic patterns were disrupted in SZ patients. Analyses of temporal overlap revealed abnormal pairwise engagement preferences in the hubs of SZ patients. These results provide new insights into the dynamic characteristics of the network organization of the SZ brain.
Collapse
Affiliation(s)
- Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yumeng Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xubin Wu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yuxiang Guo
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Jiayue Xue
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Yan Niu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| | - Xiaohong Cui
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (J.X.); (Y.S.); (X.W.); (J.X.); (Y.N.)
| |
Collapse
|
11
|
Levi PT, Chopra S, Pang JC, Holmes A, Gajwani M, Sassenberg TA, DeYoung CG, Fornito A. The effect of using group-averaged or individualized brain parcellations when investigating connectome dysfunction in psychosis. Netw Neurosci 2023; 7:1228-1247. [PMID: 38144692 PMCID: PMC10631788 DOI: 10.1162/netn_a_00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/27/2023] [Indexed: 12/26/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to each brain. This approach neglects individual differences in brain functional organization and may inaccurately delineate the true borders of functional regions. These inaccuracies could inflate or underestimate group differences in case-control analyses. We investigated how individual differences in brain organization influence group comparisons of FC using psychosis as a case study, drawing on fMRI data in 121 early psychosis patients and 57 controls. We defined FC networks using either a group-based parcellation or an individually tailored variant of the same parcellation. Individualized parcellations yielded more functionally homogeneous ROIs than did group-based parcellations. At the level of individual connections, case-control FC differences were widespread, but the group-based parcellation identified approximately 7.7% more connections as dysfunctional than the individualized parcellation. When considering differences at the level of functional networks, the results from both parcellations converged. Our results suggest that a substantial fraction of dysconnectivity previously observed in psychosis may be driven by the parcellation method, rather than by a pathophysiological process related to psychosis.
Collapse
Affiliation(s)
- Priscila T. Levi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - James C. Pang
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Mehul Gajwani
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | | | - Colin G. DeYoung
- Department of Psychology, University of Minnesota, Minnesota, MN, USA
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, Turner JA, Calhoun VD. Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia. Curr Neurol Neurosci Rep 2023; 23:937-946. [PMID: 37999830 PMCID: PMC11126894 DOI: 10.1007/s11910-023-01325-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Over the last decade, evidence suggests that a combination of behavioral and neuroimaging findings can help illuminate changes in functional dysconnectivity in schizophrenia. We review the recent connectivity literature considering several vital models, considering connectivity findings, and relationships with clinical symptoms. We reviewed resting state fMRI studies from 2017 to 2023. We summarized the role of two sets of brain networks (cerebello-thalamo-cortical (CTCC) and the triple network set) across three hypothesized models of schizophrenia etiology (neurodevelopmental, vulnerability-stress, and neurotransmitter hypotheses). RECENT FINDINGS The neurotransmitter and neurodevelopmental models best explained CTCC-subcortical dysfunction, which was consistently connected to symptom severity and motor symptoms. Triple network dysconnectivity was linked to deficits in executive functioning, and the salience network (SN)-default mode network dysconnectivity was tied to disordered thought and attentional deficits. This paper links behavioral symptoms of schizophrenia (symptom severity, motor, executive functioning, and attentional deficits) to various hypothesized mechanisms.
Collapse
Affiliation(s)
- Amritha Harikumar
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Kseniya P Solovyeva
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Maria Misiura
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Armin Iraji
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Sergey M Plis
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Turner
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vince D Calhoun
- The Georgia State University/Georgia Institute of Technology/Emory University Center for Translational Research in Neuroimaging and Data Science (TReNDS Center), 55 Park Pl NE, Atlanta, GA, 30303, USA.
| |
Collapse
|
13
|
Niu M, Guo H, Zhang Z, Fu Y. Abnormal temporal variability of rich-club organization in three major psychiatric conditions. Front Psychiatry 2023; 14:1226143. [PMID: 37720902 PMCID: PMC10500439 DOI: 10.3389/fpsyt.2023.1226143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Convergent evidence has demonstrated a shared rich-club reorganization across multiple major psychiatric conditions. However, previous studies assessing altered functional couplings between rich-club regions have typically focused on the mean time series from entire functional magnetic resonance imaging (fMRI) scanning session, neglecting their time-varying properties. Methods In this study, we aim to explore the common and/or unique alterations in the temporal variability of rich-club organization among schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We employed a temporal rich-club (TRC) approach to quantitatively assess the propensity of well-connected nodes to form simultaneous and stable structures in a temporal network derived from resting-state fMRI data of 156 patients with major psychiatric disorders (SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow at both whole-brain and subnetwork scales across varying network sparsity, sliding window strategies, lengths and steps of sliding windows, and durations of TRC coefficients. Results The SZ and BD groups displayed significantly decreased TRC coefficients compared to corresponding HC groups at the whole-brain scale and in most subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in longer durations, as opposed to shorter durations, which markedly differs from the SZ and BD groups. These findings reveal both transdiagnostic and illness-specific patterns in temporal variability of rich-club organization across SZ, BD, and ADHD. Discussion TRC may serve as an effective metric for detecting brain network disruptions in particular states, offering novel insights and potential biomarkers into the neurobiological basis underpinning the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Hanning Guo
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Teng X, Guo C, Lei X, Yang F, Wu Z, Yu L, Ren J, Zhang C. Comparison of brain network between schizophrenia and bipolar disorder: A multimodal MRI analysis of comparative studies. J Affect Disord 2023; 327:197-206. [PMID: 36736789 DOI: 10.1016/j.jad.2023.01.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cognitive impairment is a shared symptom of Schizophrenia (SCZ) and bipolar disorder (BP), but the underlying neural mechanisms for both remain unclear. We aimed to identify abnormalities in the structural and functional brain network of patients with SCZ and BP. METHODS The study included 69 patients with SCZ, 40 with BP, and 63 healthy controls (HC). After neurocognitive function assessment, resting-state functional magnetic resonance imaging and diffusion tensor imaging were acquired respectively. We compared the network of structural connectivity (SC) and functional connectivity (FC) among the three groups and performed graph theoretical analyses. The SC-FC coupling was calculated, and the correlations between the cognitive function scores and network properties were ascertained. RESULTS The BP group showed significantly higher indicators in subnetworks and graph theory analysis than SCZ and HC. Several brain regions, such as the inferior parietal lobe, exhibited differences among all pairwise comparisons and showed significant correlations with cognitive scores in both SCZ and BP. SC-FC coupling did not significantly differ between the three groups but showed close associations with clinical performance. Interestingly, the direction of correlations between the network properties and cognition tends to present the opposite between SCZ and BP, especially regarding the working memory, attention, and language sections. CONCLUSIONS The FC and SC network of the SCZ group appeared more inefficient and disconnected than BP. The network demonstrated to be closely but differently associated with cognitive function at both local and global levels, indicating the potentially separated pathologies of cognition deficits in SCZ and BP.
Collapse
Affiliation(s)
- Xinyue Teng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyue Guo
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Lei
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyin Yang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zenan Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Kai J, Mackinley M, Khan AR, Palaniyappan L. Aberrant frontal lobe "U"-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study. Neuroimage Clin 2023; 38:103367. [PMID: 36913907 PMCID: PMC10011060 DOI: 10.1016/j.nicl.2023.103367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is believed to be a developmental disorder with one hypothesis suggesting that symptoms arise due to abnormal interactions (or disconnectivity) between different brain regions. While some major deep white matter pathways have been extensively studied (e.g. arcuate fasciculus), studies of short-ranged, "U"-shaped tracts have been limited in patients with schizophrenia, in part due to the sheer abundance of tracts present and due to the spatial variations across individuals that defy probabilistic characterization in the absence of reliable templates. In this study, we use diffusion magnetic resonance imaging (dMRI) to investigate frontal lobe superficial white matter that are present in the majority of study participants, comparing healthy controls and minimally treated patients with first-episode schizophrenia (<3 median days of lifetime treatment). Through group comparisons, 3 out of 63 frontal lobe "U"-shaped tracts were found to demonstrate localized aberrations affecting the microstructural tissue properties (via diffusion tensor metrics) in this early stage of disease. No associations were found in patients between aberrant segments of affected tracts and clinical or cognitive variables. Aberrations in the frontal lobe "U"-shaped tracts in early untreated stages of psychosis occur irrespective of symptom burden, and are distributed across critical functional networks associated with executive function and salience processing. While we limited the investigation to the frontal lobe, a framework has been developed to study such connections in other brain regions, enabling further extensive investigations jointly with the major deep white matter pathways.
Collapse
Affiliation(s)
- Jason Kai
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael Mackinley
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Gao Z, Xiao Y, Zhu F, Tao B, Yu W, Lui S. The whole-brain connectome landscape in patients with schizophrenia: a systematic review and meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev 2023; 148:105144. [PMID: 36990373 DOI: 10.1016/j.neubiorev.2023.105144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The alterations of connectome in schizophrenia have been reported, but the results remain inconsistent. We conducted a systematic review and random-effects meta-analysis on structural or functional connectome MRI studies comparing global graph theoretical characteristics between schizophrenia and healthy controls. Meta-regression and subgroup analyses were performed to examine confounding effects. Based on the included 48 studies, Structural connectome in schizophrenia showed a significant decrease in segregation (lower clustering coefficient and local efficiency, Hedge's g= -0.352 and -0.864, respectively) and integration (higher characteristic path length and lower global efficiency, Hedge's g= 0.532 and -0.577 respectively). The functional connectome showed no difference between groups except γ. Moderator analysis indicated that clinical and methodological factors exerted a potential effect on the graph theoretical characteristics. Our analysis revealed a weaker small-worldization trend in structural connectome of schizophrenia. For the relatively unchanged functional connectome, more homogenous and high-quality studies are warranted to elucidate whether the change was blurred by heterogeneity or the presentation of pathophysiological reconfiguration.
Collapse
|
17
|
Fu Y, Niu M, Gao Y, Dong S, Huang Y, Zhang Z, Zhuo C. Altered nonlinear Granger causality interactions in the large-scale brain networks of patients with schizophrenia. J Neural Eng 2022; 19. [PMID: 36579785 DOI: 10.1088/1741-2552/acabe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.It has been demonstrated that schizophrenia (SZ) is characterized by functional dysconnectivity involving extensive brain networks. However, the majority of previous studies utilizing resting-state functional magnetic resonance imaging (fMRI) to infer abnormal functional connectivity (FC) in patients with SZ have focused on the linear correlation that one brain region may influence another, ignoring the inherently nonlinear properties of fMRI signals.Approach. In this paper, we present a neural Granger causality (NGC) technique for examining the changes in SZ's nonlinear causal couplings. We develop static and dynamic NGC-based analyses of large-scale brain networks at several network levels, estimating complicated temporal and causal relationships in SZ patients.Main results. We find that the NGC-based FC matrices can detect large and significant differences between the SZ and healthy control groups at both the regional and subnetwork scales. These differences are persistent and significantly overlapped at various network sparsities regardless of whether the brain networks were built using static or dynamic techniques. In addition, compared to controls, patients with SZ exhibited extensive NGC confusion patterns throughout the entire brain.Significance. These findings imply that the NGC-based FCs may be a useful method for quantifying the abnormalities in the causal influences of patients with SZ, hence shedding fresh light on the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuanhang Gao
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanyan Huang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, People's Republic of China.,Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Scheliga S, Schwank R, Scholle R, Habel U, Kellermann T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res 2022; 318:114934. [PMID: 36347125 DOI: 10.1016/j.psychres.2022.114934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Psychotic symptoms may be traced back to sensory sensitivity. Thereby, visual motion (VM) processing particularly has been suggested to be impaired in schizophrenia (SCZ). In healthy brains, VM underlies predictive processing within hierarchically structured systems. However, less is known about predictive VM processing in SCZ. Therefore, we performed fMRI during a VM paradigm with three conditions of varying predictability, i.e., Predictable-, Random-, and Arbitrary motion. The study sample comprised 17 SCZ patients and 23 healthy controls. We calculated general linear model (GLM) analysis to assess group differences in VM processing across motion conditions. Here, we identified significantly lower activity in right temporoparietal junction (TPJ) for SCZ patients. Therefore, right TPJ was set as seed for connectivity analyses. For patients, across conditions we identified increased connections to higher regions, namely medial prefrontal cortex, or paracingulate gyrus. Healthy subjects activated sensory regions as area V5, or superior parietal lobule. Reduced TPJ activity may reflect both a failure in the bottom-up flow of visual information and a decrease of signal processing as consequence of increased top-down input from frontal areas. In sum, these altered neural patterns provide a framework for future studies focusing on predictive VM processing to identify potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Rosalie Schwank
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ruben Scholle
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
19
|
Wang Y, Hu X, Li Y. Investigating cognitive flexibility deficit in schizophrenia using task-based whole-brain functional connectivity. Front Psychiatry 2022; 13:1069036. [PMID: 36479558 PMCID: PMC9719952 DOI: 10.3389/fpsyt.2022.1069036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cognitive flexibility is a core cognitive control function supported by the brain networks of the whole-brain. Schizophrenic patients show deficits in cognitive flexibility in conditions such as task-switching. A large number of neuroimaging studies have revealed abnormalities in local brain activations associated with deficits in cognitive flexibility in schizophrenia, but the relationship between impaired cognitive flexibility and the whole-brain functional connectivity (FC) pattern is unclear. Method We investigated the task-based functional connectivity of the whole-brain in patients with schizophrenia and healthy controls during task-switching. Multivariate pattern analysis (MVPA) was utilized to investigate whether the FC pattern can be used as a feature to discriminate schizophrenia patients from healthy controls. Graph theory analysis was further used to quantify the degrees of integration and segregation in the whole-brain networks to interpret the different reconfiguration patterns of brain networks in schizophrenia patients and healthy controls. Results The results showed that the FC pattern classified schizophrenia patients and healthy controls with significant accuracy. Moreover, the altered whole-brain functional connectivity pattern was driven by a lower degree of network integration and segregation in schizophrenia, indicating that both global and local information transfers at the entire-network level were less efficient in schizophrenia patients than in healthy controls during task-switching processing. Conclusion These results investigated the group differences in FC profiles during task-switching and not only elucidated that FC patterns are changed in schizophrenic patients, suggesting that task-based FC could be used as a potential neuromarker to discriminate schizophrenia patients from healthy controls in cognitive flexibility but also provide increased insight into the brain network organization that may contribute to impaired cognitive flexibility.
Collapse
Affiliation(s)
- Yanqing Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Hu
- School of Linguistic Science and Art, Jiangsu Normal University, Xuzhou, China
- Key Laboratory of Language and Cognitive Neuroscience of Jiangsu Province, Collaborative Innovation Center for Language Ability, Xuzhou, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Diamond A, Silverstein SM, Keane BP. Visual system assessment for predicting a transition to psychosis. Transl Psychiatry 2022; 12:351. [PMID: 36038544 PMCID: PMC9424317 DOI: 10.1038/s41398-022-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The field of psychiatry is far from perfect in predicting which individuals will transition to a psychotic disorder. Here, we argue that visual system assessment can help in this regard. Such assessments have generated medium-to-large group differences with individuals prior to or near the first psychotic episode or have shown little influence of illness duration in larger samples of more chronic patients. For example, self-reported visual perceptual distortions-so-called visual basic symptoms-occur in up to 2/3rds of those with non-affective psychosis and have already longitudinally predicted an impending onset of schizophrenia. Possibly predictive psychophysical markers include enhanced contrast sensitivity, prolonged backward masking, muted collinear facilitation, reduced stereoscopic depth perception, impaired contour and shape integration, and spatially restricted exploratory eye movements. Promising brain-based markers include visual thalamo-cortical hyperconnectivity, decreased occipital gamma band power during visual detection (MEG), and reduced visually evoked occipital P1 amplitudes (EEG). Potentially predictive retinal markers include diminished cone a- and b-wave amplitudes and an attenuated photopic flicker response during electroretinography. The foregoing assessments are often well-described mechanistically, implying that their findings could readily shed light on the underlying pathophysiological changes that precede or accompany a transition to psychosis. The retinal and psychophysical assessments in particular are inexpensive, well-tolerated, easy to administer, and brief, with few inclusion/exclusion criteria. Therefore, across all major levels of analysis-from phenomenology to behavior to brain and retinal functioning-visual system assessment could complement and improve upon existing methods for predicting which individuals go on to develop a psychotic disorder.
Collapse
Affiliation(s)
- Alexander Diamond
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Brain & Cognitive Sciences, University of Rochester, 358 Meliora Hall, NY, Rochester, USA.
| |
Collapse
|
21
|
Sendi MSE, Salat DH, Miller RL, Calhoun VD. Two-step clustering-based pipeline for big dynamic functional network connectivity data. Front Neurosci 2022; 16:895637. [PMID: 35958983 PMCID: PMC9358255 DOI: 10.3389/fnins.2022.895637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic imaging (rs-fMRI) studies the temporally varying functional integration between brain networks. In a conventional dFNC pipeline, a clustering stage to summarize the connectivity patterns that are transiently but reliably realized over the course of a scanning session. However, identifying the right number of clusters (or states) through a conventional clustering criterion computed by running the algorithm repeatedly over a large range of cluster numbers is time-consuming and requires substantial computational power even for typical dFNC datasets, and the computational demands become prohibitive as datasets become larger and scans longer. Here we developed a new dFNC pipeline based on a two-step clustering approach to analyze large dFNC data without having access to huge computational power. Methods In the proposed dFNC pipeline, we implement two-step clustering. In the first step, we randomly use a sub-sample dFNC data and identify several sets of states at different model orders. In the second step, we aggregate all dFNC states estimated from all iterations in the first step and use this to identify the optimum number of clusters using the elbow criteria. Additionally, we use this new reduced dataset and estimate a final set of states by performing a second kmeans clustering on the aggregated dFNC states from the first k-means clustering. To validate the reproducibility of results in the new pipeline, we analyzed four dFNC datasets from the human connectome project (HCP). Results We found that both conventional and proposed dFNC pipelines generate similar brain dFNC states across all four sessions with more than 99% similarity. We found that the conventional dFNC pipeline evaluates the clustering order and finds the final dFNC state in 275 min, while this process takes only 11 min for the proposed dFNC pipeline. In other words, the new pipeline is 25 times faster than the traditional method in finding the optimum number of clusters and finding the final dFNC states. We also found that the new method results in better clustering quality than the conventional approach (p < 0.001). We show that the results are replicated across four different datasets from HCP. Conclusion We developed a new analytic pipeline that facilitates the analysis of large dFNC datasets without having access to a huge computational power source. We validated the reproducibility of the result across multiple datasets.
Collapse
Affiliation(s)
- Mohammad S. E. Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- *Correspondence: Mohammad S. E. Sendi,
| | - David H. Salat
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Robyn L. Miller
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- Vince D. Calhoun,
| |
Collapse
|
22
|
Abstract
Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Yet, the difficulty of reliable training on high-dimensional low sample size datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this work, we introduce a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. Results successfully demonstrate that the proposed framework enables learning the dynamics of resting-state fMRI directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction.
Collapse
|
23
|
Rawls E, Kummerfeld E, Mueller BA, Ma S, Zilverstand A. The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks. Neuroimage 2022; 255:119211. [PMID: 35430360 PMCID: PMC9177236 DOI: 10.1016/j.neuroimage.2022.119211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
We demonstrate a data-driven approach for calculating a "causal connectome" of directed connectivity from resting-state fMRI data using a greedy adjacency search and pairwise non-Gaussian edge orientations. We used this approach to construct n = 442 causal connectomes. These connectomes were very sparse in comparison to typical Pearson correlation-based graphs (roughly 2.25% edge density) yet were fully connected in nearly all cases. Prominent highly connected hubs of the causal connectome were situated in attentional (dorsal attention) and executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly different connectivity profiles: attentional networks shared incoming connections with sensory regions and outgoing connections with higher cognitive networks, while executive networks primarily connected to other higher cognitive networks and had a high degree of bidirected connectivity. Virtual lesion analyses accentuated these findings, demonstrating that attentional and executive hub networks are points of critical vulnerability in the human causal connectome. These data highlight the central role of attention and executive control networks in the human cortical connectome and set the stage for future applications of data-driven causal connectivity analysis in psychiatry.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA.
| | | | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, USA; Medical Discovery Team on Addiction, University of Minnesota, USA
| |
Collapse
|
24
|
Wei J, Wang X, Cui X, Wang B, Xue J, Niu Y, Wang Q, Osmani A, Xiang J. Functional Integration and Segregation in a Multilayer Network Model of Patients with Schizophrenia. Brain Sci 2022; 12:brainsci12030368. [PMID: 35326324 PMCID: PMC8946586 DOI: 10.3390/brainsci12030368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Research has shown that abnormal brain networks in patients with schizophrenia appear at different frequencies, but the relationship between these different frequencies is unclear. Therefore, it is necessary to use a multilayer network model to evaluate the integration of information from different frequency bands. To explore the mechanism of integration and separation in the multilayer network of schizophrenia, we constructed multilayer frequency brain network models in 50 patients with schizophrenia and 69 healthy subjects, and the entropy of the multiplex degree (EMD) and multilayer clustering coefficient (MCC) were calculated. The results showed that the ability to integrate and separate information in the multilayer network of patients was significantly higher than that of normal people. This difference was mainly reflected in the default mode network, sensorimotor network, subcortical network, and visual network. Among them, the subcortical network was different in both MCC and EMD outcomes. Furthermore, differences were found in the posterior cingulate gyrus, hippocampus, amygdala, putamen, pallidum, and thalamus. The thalamus and posterior cingulate gyrus were associated with the patient’s symptom scores. Our results showed that the cross-frequency interaction ability of patients with schizophrenia was significantly enhanced, among which the subcortical network was the most active. This interaction may serve as a compensation mechanism for intralayer dysfunction.
Collapse
Affiliation(s)
- Jing Wei
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
- School of Information, Shanxi University of Finance and Economics, Taiyuan 030024, China
| | - Xiaoyue Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Xiaohong Cui
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Jiayue Xue
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Qianshan Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Arezo Osmani
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.W.); (X.W.); (X.C.); (B.W.); (J.X.); (Y.N.); (Q.W.); (A.O.)
- Correspondence:
| |
Collapse
|
25
|
Yamamoto M, Bagarinao E, Shimamoto M, Iidaka T, Ozaki N. Involvement of cerebellar and subcortical connector hubs in schizophrenia. NEUROIMAGE: CLINICAL 2022; 35:103140. [PMID: 36002971 PMCID: PMC9421528 DOI: 10.1016/j.nicl.2022.103140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Hubs with altered connectivity to multiple networks were identified in patients. Identified hubs were located in the cerebellum, midbrain, thalamus, and insula. In controls, these hubs were strongly connected with the basal ganglia network. Hubs’ connections to large-scale networks were associated with clinical data. Their connections were also highly predictive of patients from controls.
Background Schizophrenia is considered a brain connectivity disorder in which functional integration within the brain fails. Central to the brain’s integrative function are connector hubs, brain regions characterized by strong connections with multiple networks. Given their critical role in functional integration, we hypothesized that connector hubs, including those located in the cerebellum and subcortical regions, are severely impaired in patients with schizophrenia. Methods We identified brain voxels with significant connectivity alterations in patients with schizophrenia (n = 76; men = 43) compared to healthy controls (n = 80; men = 43) across multiple large-scale resting state networks (RSNs) using a network metric called functional connectivity overlap ratio (FCOR). From these voxels, candidate connector hubs were identified and verified using seed-based connectivity analysis. Results We found that most networks exhibited connectivity alterations in the patient group. Specifically, connectivity with the basal ganglia and high visual networks was severely affected over widespread brain areas in patients, affecting subcortical and cerebellar regions and the regions involved in visual and sensorimotor processing. Furthermore, we identified critical connector hubs in the cerebellum, midbrain, thalamus, insula, and calcarine with connectivity to multiple RSNs affected in the patients. FCOR values of these regions were also associated with clinical data and could classify patient and control groups with > 80 % accuracy. Conclusions These findings highlight the critical role of connector hubs, particularly those in the cerebellum and subcortical regions, in the pathophysiology of schizophrenia and the potential role of FCOR as a clinical biomarker for the disorder.
Collapse
|
26
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
27
|
Liloia D, Brasso C, Cauda F, Mancuso L, Nani A, Manuello J, Costa T, Duca S, Rocca P. Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: A revised coordinate-based meta-analysis. Neurosci Biobehav Rev 2021; 123:83-103. [PMID: 33497790 DOI: 10.1016/j.neubiorev.2021.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess pathophysiological models of how the disorder develops is an important target for the clinical practice. We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization. Results reveal a cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region found altered among c-HR, RDSZ and ChSZ. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ. These findings support the current neuroprogressive models of SZ and integrate this deterioration with the clinical evolution of the disease.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Brasso
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Paola Rocca
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
| |
Collapse
|