1
|
Wankhede N, Kale M, Shukla M, Nathiya D, R R, Kaur P, Goyanka B, Rahangdale S, Taksande B, Upaganlawar A, Khalid M, Chigurupati S, Umekar M, Kopalli SR, Koppula S. Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. Asian J Psychiatr 2024; 101:104241. [PMID: 39276483 DOI: 10.1016/j.ajp.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The integration of artificial intelligence (AI) into the diagnosis and treatment of autism spectrum disorder (ASD) represents a promising frontier in healthcare. This review explores the current landscape and future prospects of AI technologies in ASD diagnostics and interventions. AI enables early detection and personalized assessment of ASD through the analysis of diverse data sources such as behavioural patterns, neuroimaging, genetics, and electronic health records. Machine learning algorithms exhibit high accuracy in distinguishing ASD from neurotypical development and other developmental disorders, facilitating timely interventions. Furthermore, AI-driven therapeutic interventions, including augmentative communication systems, virtual reality-based training, and robot-assisted therapies, show potential in improving social interactions and communication skills in individuals with ASD. Despite challenges such as data privacy and interpretability, the future of AI in ASD holds promise for refining diagnostic accuracy, deploying telehealth platforms, and tailoring treatment plans. By harnessing AI, clinicians can enhance ASD care delivery, empower patients, and advance our understanding of this complex condition.
Collapse
Affiliation(s)
- Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Madhu Shukla
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Barkha Goyanka
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| |
Collapse
|
2
|
He R, Alonso‐Sánchez MF, Sepulcre J, Palaniyappan L, Hinzen W. Changes in the structure of spontaneous speech predict the disruption of hierarchical brain organization in first-episode psychosis. Hum Brain Mapp 2024; 45:e70030. [PMID: 39301700 PMCID: PMC11413563 DOI: 10.1002/hbm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
Psychosis implicates changes across a broad range of cognitive functions. These functions are cortically organized in the form of a hierarchy ranging from primary sensorimotor (unimodal) to higher-order association cortices, which involve functions such as language (transmodal). Language has long been documented as undergoing structural changes in psychosis. We hypothesized that these changes as revealed in spontaneous speech patterns may act as readouts of alterations in the configuration of this unimodal-to-transmodal axis of cortical organization in psychosis. Results from 29 patients with first-episodic psychosis (FEP) and 29 controls scanned with 7 T resting-state fMRI confirmed a compression of the cortical hierarchy in FEP, which affected metrics of the hierarchical distance between the sensorimotor and default mode networks, and of the hierarchical organization within the semantic network. These organizational changes were predicted by graphs representing semantic and syntactic associations between meaningful units in speech produced during picture descriptions. These findings unite psychosis, language, and the cortical hierarchy in a single conceptual scheme, which helps to situate language within the neurocognition of psychosis and opens the clinical prospect for mental dysfunction to become computationally measurable in spontaneous speech.
Collapse
Affiliation(s)
- Rui He
- Department of Translation and Language SciencesUniversitat Pompeu FabraBarcelonaSpain
| | | | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Medical Biophysics, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
- Robarts Research Institute, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Wolfram Hinzen
- Department of Translation and Language SciencesUniversitat Pompeu FabraBarcelonaSpain
- Intitut Català de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
3
|
Kizilay E, Arslan B, Verim B, Demirlek C, Demir M, Cesim E, Eyuboglu MS, Uzman Ozbek S, Sut E, Yalincetin B, Bora E. Automated linguistic analysis in youth at clinical high risk for psychosis. Schizophr Res 2024; 274:121-128. [PMID: 39293249 DOI: 10.1016/j.schres.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Identifying individuals at clinical high risk for psychosis (CHRP) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.
Collapse
Affiliation(s)
- Elif Kizilay
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Berat Arslan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cemal Demirlek
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Muhammed Demir
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Sumeyye Eyuboglu
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman Ozbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Sut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
4
|
Olah J, Wong WLE, Chaudhry AURR, Mena O, Tang SX. Detecting schizophrenia, bipolar disorder, psychosis vulnerability and major depressive disorder from 5 minutes of online-collected speech. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.03.24313020. [PMID: 39281747 PMCID: PMC11398428 DOI: 10.1101/2024.09.03.24313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Psychosis poses substantial social and healthcare burdens. The analysis of speech is a promising approach for the diagnosis and monitoring of psychosis, capturing symptoms like thought disorder and flattened affect. Recent advancements in Natural Language Processing (NLP) methodologies enable the automated extraction of informative speech features, which has been leveraged for early psychosis detection and assessment of symptomology. However, critical gaps persist, including the absence of standardized sample collection protocols, small sample sizes, and a lack of multi-illness classification, limiting clinical applicability. Our study aimed to (1) identify an optimal assessment approach for the online and remote collection of speech, in the context of assessing the psychosis spectrum and evaluate whether a fully automated, speech-based machine learning (ML) pipeline can discriminate among different conditions on the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects (MDD), and healthy controls (HC) at varying layers of analysis and diagnostic complexity. Methods We adopted online data collection methods to collect 20 minutes of speech and demographic information from individuals. Participants were categorized as "healthy" help-seekers (HC), having a schizophrenia-spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), or being on the psychosis spectrum with sub-clinical psychotic experiences (SPE). SPE status was determined based on self-reported clinical diagnosis and responses to the PHQ-8 and PQ-16 screening questionnaires, while other diagnoses were determined based on self-report from participants. Linguistic and paralinguistic features were extracted and ensemble learning algorithms (e.g., XGBoost) were used to train models. A 70%-30% train-test split and 30-fold cross-validation was used to validate the model performance. Results The final analysis sample included 1140 individuals and 22,650 minutes of speech. Using 5-minutes of speech, our model could discriminate between HC and those with a serious mental illness (SSD or BD) with 86% accuracy (AUC = 0.91, Recall = 0.7, Precision = 0.98). Furthermore, our model could discern among HC, SPE, BD and SSD groups with 86% accuracy (F1 macro = 0.855, Recall Macro = 0.86, Precision Macro = 0.86). Finally, in a 5-class discrimination task including individuals with MDD, our model had 76% accuracy (F1 macro = 0.757, Recall Macro = 0.758, Precision Macro = 0.766). Conclusion Our ML pipeline demonstrated disorder-specific learning, achieving excellent or good accuracy across several classification tasks. We demonstrated that the screening of mental disorders is possible via a fully automated, remote speech assessment pipeline. We tested our model on relatively high number conditions (5 classes) in the literature and in a stratified sample of psychosis spectrum, including HC, SPE, SSD and BD (4 classes). We tested our model on a large sample (N = 1150) and demonstrated best-in-class accuracy with remotely collected speech data in the psychosis spectrum, however, further clinical validation is needed to test the reliability of model performance.
Collapse
Affiliation(s)
| | | | | | | | - Sunny X. Tang
- Psychiatry Research, Feinstein Institutes for Medical Research
| |
Collapse
|
5
|
He R, de la Foz VO, Cacho LMF, Homan P, Sommer I, Ayesa-arriola R, Hinzen W. Task-voting for schizophrenia spectrum disorders prediction using machine learning across linguistic feature domains.. [DOI: 10.1101/2024.08.31.24312886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
AbstractBackground and HypothesisIdentifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.Study DesignWe present a task-voting procedure using different speech-elicitation tasks to predict SSD in Spanish, followed by ablation studies highlighting the roles of specific tasks and feature domains. Speech from five tasks was recorded from 92 subjects (49 with SSD and 41 controls). A total of 319 features were automatically extracted, from which 24 were pre-selected based on between-feature correlations and ANOVA F-values, covering acoustic-prosody, morphosyntax, and semantic similarity metrics.Study ResultsExtraTrees-based classification using these features yielded an accuracy of 0.840 on hold-out data. Ablating picture descriptions impaired performance most, followed by story reading, retelling, and free speech. Removing morphosyntactic measures impaired performance most, followed by acoustic and semantic measures. Mixed-effect models suggested significant group differences on all 24 features. In SSD, speech patterns were slower and more variable temporally, while variations in pitch, amplitude, and sound intensity decreased. Semantic similarity between speech and prompts decreased, while minimal distances from embedding centroids to each word increased, and word-to-word similarity arrays became more predictable, all replicating patterns documented in other languages. Morphosyntactically, SSD patients used more first-person pronouns together with less third-person pronouns, and more punctuations and negations. Semantic metrics correlated with a range of positive symptoms, and multiple acoustic-prosodic features with negative symptoms.ConclusionsThis study highlights the importance of combining different speech tasks and features for SSD detection, and validates previously found patterns in psychosis for Spanish.
Collapse
|
6
|
Chen J, Benedyk A, Moldavski A, Tost H, Meyer-Lindenberg A, Braun U, Durstewitz D, Koppe G, Schwarz E. Quantifying brain-functional dynamics using deep dynamical systems: Technical considerations. iScience 2024; 27:110545. [PMID: 39165842 PMCID: PMC11334782 DOI: 10.1016/j.isci.2024.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Both mental health and mental illness unfold in complex and unpredictable ways. Novel artificial intelligence approaches from the area of dynamical systems reconstruction can characterize such dynamics and help understand the underlying brain mechanisms, which can also be used as potential biomarkers. However, applying deep learning to model dynamical systems at the individual level must overcome numerous computational challenges to be reproducible and clinically useful. In this study, we performed an extensive analysis of these challenges using generative modeling of brain dynamics from fMRI data as an example and demonstrated their impact on classifying patients with schizophrenia and major depression. This study highlights the tendency of deep learning models to identify functionally unique solutions during parameter optimization, which severely impacts the reproducibility of downstream predictions. We hope this study guides the future development of individual-level generative models and similar machine learning approaches aimed at identifying reproducible biomarkers of mental illness.
Collapse
Affiliation(s)
- Jiarui Chen
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Anastasia Benedyk
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Alexander Moldavski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Urs Braun
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, J5, 68159 Mannheim, Germany
- Faculty of Physics and Astronomy, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Georgia Koppe
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Emanuel Schwarz
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| |
Collapse
|
7
|
Cowan HR, McAdams DP, Ouellet L, Jones CM, Mittal VA. Self-concept and Narrative Identity in Youth at Clinical High Risk for Psychosis. Schizophr Bull 2024; 50:848-859. [PMID: 37816626 PMCID: PMC11283199 DOI: 10.1093/schbul/sbad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS Disturbances of the narrative self and personal identity accompany the onset of psychotic disorders in late adolescence and early adulthood (a formative developmental stage for self-concept and personal narratives). However, these issues have primarily been studied retrospectively after illness onset, limiting any inferences about their developmental course. STUDY DESIGN Youth at clinical high risk for psychosis (CHR) (n = 49) and matched healthy comparison youth (n = 52) completed a life story interview (including self-defining memory, turning point, life challenge, and psychotic-like experience) and questionnaires assessing self-esteem, self-beliefs, self-concept clarity, and ruminative/reflective self-focus. Trained raters coded interviews for narrative identity themes of emotional tone, agency, temporal coherence, context coherence, self-event connections, and meaning-making (intraclass correlations >0.75). Statistical analyses tested group differences and relationships between self-concept, narrative identity, symptoms, and functioning. STUDY RESULTS CHR participants reported more negative self-esteem and self-beliefs, poorer self-concept clarity, and more ruminative self-focus, all of which related to negative symptoms. CHR participants narrated their life stories with themes of negative emotion and passivity (ie, lack of personal agency), which related to positive and negative symptoms. Reflective self-focus and autobiographical reasoning were unaffected and correlated. Autobiographical reasoning was uniquely associated with preserved role functioning. CONCLUSIONS This group of youth at CHR exhibited some, but not all, changes to self-concept and narrative identity seen in psychotic disorders. A core theme of negativity, uncertainty, and passivity ran through their semantic and narrative self-representations. Preserved self-reflection and autobiographical reasoning suggest sources of resilience and potential footholds for cognitive-behavioral and metacognitive interventions.
Collapse
Affiliation(s)
- Henry R Cowan
- Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Dan P McAdams
- Psychology, Northwestern University, Evanston, IL, USA
| | - Leah Ouellet
- Human Development and Social Policy, Northwestern University, Evanston, IL, USA
| | | | | |
Collapse
|
8
|
Deneault A, Dumais A, Désilets M, Hudon A. Natural Language Processing and Schizophrenia: A Scoping Review of Uses and Challenges. J Pers Med 2024; 14:744. [PMID: 39063998 PMCID: PMC11278236 DOI: 10.3390/jpm14070744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Approximately 1% of the global population is affected by schizophrenia, a disorder marked by cognitive deficits, delusions, hallucinations, and language issues. It is associated with genetic, neurological, and environmental factors, and linked to dopaminergic hyperactivity and neurotransmitter imbalances. Recent research reveals that patients exhibit significant language impairments, such as reduced verbal output and fluency. Advances in machine learning and natural language processing show potential for early diagnosis and personalized treatments, but additional research is required for the practical application and interpretation of such technology. The objective of this study is to explore the applications of natural language processing in patients diagnosed with schizophrenia. (2) Methods: A scoping review was conducted across multiple electronic databases, including Medline, PubMed, Embase, and PsycInfo. The search strategy utilized a combination of text words and subject headings, focusing on schizophrenia and natural language processing. Systematically extracted information included authors, population, primary uses of the natural language processing algorithms, main outcomes, and limitations. The quality of the identified studies was assessed. (3) Results: A total of 516 eligible articles were identified, from which 478 studies were excluded based on the first analysis of titles and abstracts. Of the remaining 38 studies, 18 were selected as part of this scoping review. The following six main uses of natural language processing were identified: diagnostic and predictive modeling, followed by specific linguistic phenomena, speech and communication analysis, social media and online content analysis, clinical and cognitive assessment, and linguistic feature analysis. (4) Conclusions: This review highlights the main uses of natural language processing in the field of schizophrenia and the need for more studies to validate the effectiveness of natural language processing in diagnosing and treating schizophrenia.
Collapse
Affiliation(s)
- Antoine Deneault
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Alexandre Dumais
- Department of Psychiatry, Institut Universitaire en santé Mentale de Montréal, Montreal, QC H1N 3M5, Canada; (A.D.); (M.D.)
| | - Marie Désilets
- Department of Psychiatry, Institut Universitaire en santé Mentale de Montréal, Montreal, QC H1N 3M5, Canada; (A.D.); (M.D.)
| | - Alexandre Hudon
- Department of Psychiatry, Institut Universitaire en santé Mentale de Montréal, Montreal, QC H1N 3M5, Canada; (A.D.); (M.D.)
| |
Collapse
|
9
|
Cong Y, LaCroix AN, Lee J. Clinical efficacy of pre-trained large language models through the lens of aphasia. Sci Rep 2024; 14:15573. [PMID: 38971898 PMCID: PMC11227580 DOI: 10.1038/s41598-024-66576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The rapid development of large language models (LLMs) motivates us to explore how such state-of-the-art natural language processing systems can inform aphasia research. What kind of language indices can we derive from a pre-trained LLM? How do they differ from or relate to the existing language features in aphasia? To what extent can LLMs serve as an interpretable and effective diagnostic and measurement tool in a clinical context? To investigate these questions, we constructed predictive and correlational models, which utilize mean surprisals from LLMs as predictor variables. Using AphasiaBank archived data, we validated our models' efficacy in aphasia diagnosis, measurement, and prediction. Our finding is that LLMs-surprisals can effectively detect the presence of aphasia and different natures of the disorder, LLMs in conjunction with the existing language indices improve models' efficacy in subtyping aphasia, and LLMs-surprisals can capture common agrammatic deficits at both word and sentence level. Overall, LLMs have potential to advance automatic and precise aphasia prediction. A natural language processing pipeline can be greatly benefitted from integrating LLMs, enabling us to refine models of existing language disorders, such as aphasia.
Collapse
Affiliation(s)
- Yan Cong
- School of Languages and Cultures, Purdue University, West Lafayette, USA.
| | - Arianna N LaCroix
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, USA
| | - Jiyeon Lee
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
10
|
Balch J, Raider R, Keith J, Reed C, Grafman J, McNamara P. Sleep and dream disturbances associated with dissociative experiences. Conscious Cogn 2024; 122:103708. [PMID: 38821030 DOI: 10.1016/j.concog.2024.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
Some dissociative experiences may be related, in part, to REM intrusion into waking consciousness. If so, some aspects of dream content may be associated with daytime dissociative experiences. We tested the hypothesis that some types of dream content would predict daytime dissociative symptomology. As part of a longitudinal study of the impact of dreams on everyday behavior we administered a battery of survey instruments to 219 volunteers. Assessments included the Dissociative Experiences Scale (DES), along with other measures known to be related to either REM intrusion effects or dissociative experiences. We also collected dream reports and sleep measures across a two-week period from a subgroup of the individuals in the baseline group. Of this subgroup we analyzed two different subsamples; 24 individuals with dream recall for at least half the nights in the two-week period; and 30 individuals who wore the DREEM Headband which captured measures of sleep architecture. In addition to using multiple regression analyses to quantify associations between DES and REM intrusion and dream content variables we used a split half procedure to create high vs low DES groups and then compared groups across all measures. Participants in the high DES group evidenced significantly greater nightmare distress scores, REM Behavior Disorder scores, paranormal beliefs, lucid dreams, and sleep onset times. Validated measures of dreamed first person perspective and overall dream coherence in a time series significantly predicted overall DES score accounting for 26% of the variance in dissociation. Dream phenomenology and coherence of the dreamed self significantly predicts dissociative symptomology as an individual trait. REM intrusion may be one source of dissociative experiences. Attempts to ameliorate dissociative symptoms or to treat nightmare distress should consider the stability of dream content as a viable indicator of dissociative tendencies.
Collapse
Affiliation(s)
- John Balch
- Department of Psychology, National University, 9388 Lightwave Ave., San Diego, CA 92123, United States; Center for Mind and Culture, 566 Commonwealth Ave., Suite M-2, Boston, MA 02215, United States.
| | - Rachel Raider
- Department of Psychology, National University, 9388 Lightwave Ave., San Diego, CA 92123, United States
| | - Joni Keith
- Department of Psychology, National University, 9388 Lightwave Ave., San Diego, CA 92123, United States
| | - Chanel Reed
- Department of Psychology, National University, 9388 Lightwave Ave., San Diego, CA 92123, United States
| | - Jordan Grafman
- Think and Speak Lab, Shirley Ryan AbilityLab, 355 E Erie St, Chicago, IL 60611, United States; Feinberg School of Medicine & Department of Psychology, Northwestern University, 420 E. Superior St., Chicago, IL 60611, United States
| | - Patrick McNamara
- Department of Psychology, National University, 9388 Lightwave Ave., San Diego, CA 92123, United States; Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, United States
| |
Collapse
|
11
|
Ben Moshe T, Ziv I, Dershowitz N, Bar K. The contribution of prosody to machine classification of schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:53. [PMID: 38762536 PMCID: PMC11102498 DOI: 10.1038/s41537-024-00463-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/15/2024] [Indexed: 05/20/2024]
Abstract
We show how acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting symptoms of schizophrenia from a single spoken response. We compare the individual contributions of acoustic and previously-employed text modalities to the algorithmic determination whether the speaker has schizophrenia. Our classification results clearly show that we can extract relevant acoustic features better than those textual ones. We find that, when combined with those acoustic features, textual features improve classification only slightly.
Collapse
Affiliation(s)
- Tomer Ben Moshe
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ido Ziv
- Behavioral Sciences, Netanya Academic College, Netanya, Israel.
| | - Nachum Dershowitz
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Bar
- Effi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| |
Collapse
|
12
|
Zhang T, Xu L, Wei Y, Cui H, Tang X, Hu Y, Tang Y, Wang Z, Liu H, Chen T, Li C, Wang J. Advancements and Future Directions in Prevention Based on Evaluation for Individuals With Clinical High Risk of Psychosis: Insights From the SHARP Study. Schizophr Bull 2024:sbae066. [PMID: 38741342 DOI: 10.1093/schbul/sbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS This review examines the evolution and future prospects of prevention based on evaluation (PBE) for individuals at clinical high risk (CHR) of psychosis, drawing insights from the SHARP (Shanghai At Risk for Psychosis) study. It aims to assess the effectiveness of non-pharmacological interventions in preventing psychosis onset among CHR individuals. STUDY DESIGN The review provides an overview of the developmental history of the SHARP study and its contributions to understanding the needs of CHR individuals. It explores the limitations of traditional antipsychotic approaches and introduces PBE as a promising framework for intervention. STUDY RESULTS Three key interventions implemented by the SHARP team are discussed: nutritional supplementation based on niacin skin response blunting, precision transcranial magnetic stimulation targeting cognitive and brain functional abnormalities, and cognitive behavioral therapy for psychotic symptoms addressing symptomatology and impaired insight characteristics. Each intervention is evaluated within the context of PBE, emphasizing the potential for tailored approaches to CHR individuals. CONCLUSIONS The review highlights the strengths and clinical applications of the discussed interventions, underscoring their potential to revolutionize preventive care for CHR individuals. It also provides insights into future directions for PBE in CHR populations, including efforts to expand evaluation techniques and enhance precision in interventions.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - ZiXuan Wang
- Department of Psychology, Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, MA, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
13
|
Arslan B, Kizilay E, Verim B, Demirlek C, Dokuyan Y, Turan YE, Kucukakdag A, Demir M, Cesim E, Bora E. Automated linguistic analysis in speech samples of Turkish-speaking patients with schizophrenia-spectrum disorders. Schizophr Res 2024; 267:65-71. [PMID: 38518480 DOI: 10.1016/j.schres.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Modern natural language processing (NLP) methods provide ways to objectively quantify language disturbances for potential use in diagnostic classification. We performed computerized language analysis in speech samples of 82 Turkish-speaking subjects, including 44 patients with schizophrenia spectrum disorders (SSD) and 38 healthy controls (HC). Exploratory analysis of speech samples involved 16 sentence-level semantic similarity features using SBERT (Sentence Bidirectional Encoder Representation from Text) as well as 8 generic and 8 part-of-speech (POS) features. The random forest classifier using SBERT-derived semantic similarity features achieved a mean accuracy of 85.6 % for the classification of SSD and HC. When semantic similarity features were combined with generic and POS features, the classifier's mean accuracy reached to 86.8 %. Our analysis reflected increased sentence-level semantic similarity scores in SSD. Generic and POS analyses revealed an increase in the use of verbs, proper nouns and pronouns in SSD while our results showed a decrease in the utilization of conjunctions, determiners, and both average and maximum sentence length in SSD compared to HC. Quantitative language features were correlated with the expressive deficit domain of BNSS (Brief Negative Symptom Scale) as well as with the duration of illness. These findings from Turkish-speaking interviews contribute to the growing evidence-based NLP-derived assessments in non-English-speaking patients.
Collapse
Affiliation(s)
- Berat Arslan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Elif Kizilay
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burcu Verim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cemal Demirlek
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yagmur Dokuyan
- Department of Psychiatry, Izmir City Hospital, Izmir, Turkey
| | - Yaren Ecesu Turan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Aybuke Kucukakdag
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Emre Bora
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
| |
Collapse
|
14
|
Hinzen W, Palaniyappan L. The 'L-factor': Language as a transdiagnostic dimension in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110952. [PMID: 38280712 DOI: 10.1016/j.pnpbp.2024.110952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Thoughts and moods constituting our mental life incessantly change. When the steady flow of this dynamics diverges in clinical directions, the possible pathways involved are captured through discrete diagnostic labels. Yet a single vulnerable neurocognitive system may be causally involved in psychopathological deviations transdiagnostically. We argue that language viewed as integrating cortical functions is the best current candidate, whose forms of breakdown along its different dimensions are then manifest as symptoms - from prosodic abnormalities and rumination in depression to distortions of speech perception in verbal hallucinations, distortions of meaning and content in delusions, or disorganized speech in formal thought disorder. Spontaneous connected speech provides continuous objective readouts generating a highly accessible bio-behavioral marker with the potential of revolutionizing neuropsychological measurement. This argument turns language into a transdiagnostic 'L-factor' providing an analytical and mechanistic substrate for previously proposed latent general factors of psychopathology ('p-factor') and cognitive functioning ('c-factor'). Together with immense practical opportunities afforded by rapidly advancing natural language processing (NLP) technologies and abundantly available data, this suggests a new era of translational clinical psychiatry, in which both psychopathology and language may be rethought together.
Collapse
Affiliation(s)
- Wolfram Hinzen
- Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal H4H1R3, Quebec, Canada; Robarts Research Institute & Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
15
|
Dalal TC, Liang L, Silva AM, Mackinley M, Voppel A, Palaniyappan L. Speech based natural language profile before, during and after the onset of psychosis: A cluster analysis. Acta Psychiatr Scand 2024. [PMID: 38600593 DOI: 10.1111/acps.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Speech markers are digitally acquired, computationally derived, quantifiable set of measures that reflect the state of neurocognitive processes relevant for social functioning. "Oddities" in language and communication have historically been seen as a core feature of schizophrenia. The application of natural language processing (NLP) to speech samples can elucidate even the most subtle deviations in language. We aim to determine if NLP based profiles that are distinctive of schizophrenia can be observed across the various clinical phases of psychosis. DESIGN Our sample consisted of 147 participants and included 39 healthy controls (HC), 72 with first-episode psychosis (FEP), 18 in a clinical high-risk state (CHR), 18 with schizophrenia (SZ). A structured task elicited 3 minutes of speech, which was then transformed into quantitative measures on 12 linguistic variables (lexical, syntactic, and semantic). Cluster analysis that leveraged healthy variations was then applied to determine language-based subgroups. RESULTS We observed a three-cluster solution. The largest cluster included most HC and the majority of patients, indicating a 'typical linguistic profile (TLP)'. One of the atypical clusters had notably high semantic similarity in word choices with less perceptual words, lower cohesion and analytical structure; this cluster was almost entirely composed of patients in early stages of psychosis (EPP - early phase profile). The second atypical cluster had more patients with established schizophrenia (SPP - stable phase profile), with more perceptual but less cognitive/emotional word classes, simpler syntactic structure, and a lack of sufficient reference to prior information (reduced givenness). CONCLUSION The patterns of speech deviations in early and established stages of schizophrenia are distinguishable from each other and detectable when lexical, semantic and syntactic aspects are assessed in the pursuit of 'formal thought disorder'.
Collapse
Affiliation(s)
- Tyler C Dalal
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | | | | - Alban Voppel
- Robarts Research Institute, London, Ontario, Canada
| | - Lena Palaniyappan
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Peng Z, Li Q, Liu X, Zhang H, Luosang-Zhuoma, Ran M, Liu M, Tan X, Stein MJ. A new schizophrenia screening instrument based on evaluating the patient's writing. Schizophr Res 2024; 266:127-135. [PMID: 38401411 DOI: 10.1016/j.schres.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Formal Thought Disorder (FTD) is a defining feature of schizophrenia, which is often assessed through patients' speech. Meanwhile, the written language is less studied. The aim of the present study is to establish and validate a comprehensive clinical screening scale, capturing the full variety of empirical characteristics of writing in patients with schizophrenia. The 16-item Screening Instrument for Schizophrenic Features in Writing (SISFiW) is derived from detailed literature review and a "brainstorming" discussion on 30 samples written by patients with schizophrenia. One hundred and fifty-seven participants (114 patients with an ICD-10 diagnoses of schizophrenia; 43 healthy control subjects) were interviewed and symptoms assessed with the Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Thought, Language, and Communication (TLC). Article samples written by each participant were rated with the SISFiW. Results demonstrated significant difference of the SISFiW-total between the patient group and healthy controls [(3.61 ± 1.72) vs. (0.49 ± 0.63), t = 16.64, p<0.001]. The inter-rater reliability (weighted kappa = 0.72) and the internal consistency (Cronbach's alpha coefficient = 0.613) were acceptable, but correlations with the criterion (PANSS and TLC) were unremarkable. The ROC analysis indicated a cutoff point at 2 with the maximal sensitivity (93.0 %)/specificity (93.0 %). Discriminant analysis of the SISFiW items yielded 8 classifiers that discriminated between the diagnostic groups at a perfect overall performance (with 90.4 % of original and 88.5 % cross-validated grouped cases classified correctly). This instrument appears to be practicable and reliable, with relatively robust discriminatory power, and may serve as a complementary tool to existing FTD rating scales.
Collapse
Affiliation(s)
- Zulai Peng
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Qingjun Li
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Xinglan Liu
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Huangzhiheng Zhang
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Luosang-Zhuoma
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Manli Ran
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Maohang Liu
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| | - Xiaolin Tan
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China.
| | - Mark J Stein
- Chongqing Mental Health Center, Chongqing, China; Affiliated Hospital of Southwest University, Chongqing, China
| |
Collapse
|
17
|
Zaher F, Diallo M, Achim AM, Joober R, Roy MA, Demers MF, Subramanian P, Lavigne KM, Lepage M, Gonzalez D, Zeljkovic I, Davis K, Mackinley M, Sabesan P, Lal S, Voppel A, Palaniyappan L. Speech markers to predict and prevent recurrent episodes of psychosis: A narrative overview and emerging opportunities. Schizophr Res 2024; 266:205-215. [PMID: 38428118 DOI: 10.1016/j.schres.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Preventing relapse in schizophrenia improves long-term health outcomes. Repeated episodes of psychotic symptoms shape the trajectory of this illness and can be a detriment to functional recovery. Despite early intervention programs, high relapse rates persist, calling for alternative approaches in relapse prevention. Predicting imminent relapse at an individual level is critical for effective intervention. While clinical profiles are often used to foresee relapse, they lack the specificity and sensitivity needed for timely prediction. Here, we review the use of speech through Natural Language Processing (NLP) to predict a recurrent psychotic episode. Recent advancements in NLP of speech have shown the ability to detect linguistic markers related to thought disorder and other language disruptions within 2-4 weeks preceding a relapse. This approach has shown to be able to capture individual speech patterns, showing promise in its use as a prediction tool. We outline current developments in remote monitoring for psychotic relapses, discuss the challenges and limitations and present the speech-NLP based approach as an alternative to detect relapses with sufficient accuracy, construct validity and lead time to generate clinical actions towards prevention.
Collapse
Affiliation(s)
- Farida Zaher
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Mariama Diallo
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Amélie M Achim
- Département de Psychiatrie et Neurosciences, Université Laval, Québec City, QC, Canada; Vitam - Centre de Recherche en Santé Durable, Québec City, QC, Canada; Centre de Recherche CERVO, Québec City, QC, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marc-André Roy
- Département de Psychiatrie et Neurosciences, Université Laval, Québec City, QC, Canada; Centre de Recherche CERVO, Québec City, QC, Canada
| | - Marie-France Demers
- Centre de Recherche CERVO, Québec City, QC, Canada; Faculté de Pharmacie, Université Laval, Québec City, QC, Canada
| | - Priya Subramanian
- Department of Psychiatry, Schulich School of Medicine, Western University, London, ON, Canada
| | - Katie M Lavigne
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Daniela Gonzalez
- Prevention and Early Intervention Program for Psychosis, London Health Sciences Center, Lawson Health Research Institute, London, ON, Canada
| | - Irnes Zeljkovic
- Department of Psychiatry, Schulich School of Medicine, Western University, London, ON, Canada
| | - Kristin Davis
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Michael Mackinley
- Department of Psychiatry, Schulich School of Medicine, Western University, London, ON, Canada; Prevention and Early Intervention Program for Psychosis, London Health Sciences Center, Lawson Health Research Institute, London, ON, Canada
| | - Priyadharshini Sabesan
- Lakeshore General Hospital and Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Shalini Lal
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; School of Rehabilitation, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Alban Voppel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Psychiatry, Schulich School of Medicine, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada.
| |
Collapse
|
18
|
Zhang Y, Lv Q, Yin Y, Wang H, Bueber MA, Phillips MR, Li T. Research in China about the biological mechanisms that potentially link socioenvironmental changes and mental health: a scoping review. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 45:100610. [PMID: 38699292 PMCID: PMC11064722 DOI: 10.1016/j.lanwpc.2022.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
China's rapid socioeconomic development since 1990 makes it a fitting location to summarise research about how biological changes associated with socioenvironmental changes affect population mental health and, thus, lay the groundwork for subsequent, more focused studies. An initial search identified 308 review articles in the international literature about biomarkers associated with 12 common mental health disorders. We then searched for studies conducted in China that assessed the association of the identified mental health related-biomarkers with socioenvironmental factors in English-language and Chinese-language databases. We located 1330 articles published between 1 January 1990 and 1 August 2021 that reported a total of 3567 associations between 56 specific biomarkers and 11 socioenvironmental factors: 3156 (88·5%) about six types of environmental pollution, 381 (10·7%) about four health-related behaviours (diet, physical inactivity, internet misuse, and other lifestyle factors), and 30 (0·8%) about socioeconomic inequity. Only 245 (18·4%) of the papers simultaneously considered the possible effect of the biomarkers on mental health conditions; moreover, most of these studies assessed biomarkers in animal models of mental disorders, not human subjects. Among the 245 papers, mental health conditions were linked with biomarkers of environmental pollution in 188 (76·7%), with biomarkers of health-related behaviours in 48 (19·6%), and with biomarkers of socioeconomic inequality in 9 (3·7%). The 604 biomarker-mental health condition associations reported (107 in human subjects and 497 in animal models) included 379 (62·7%) about cognitive functioning, 117 (19·4%) about anxiety, 56 (9·3%) about depression, 21 (3·5%) about neurodevelopmental conditions, and 31 (5·1%) about neurobehavioural symptoms. Improved understanding of the biological mechanisms linking socioenvironmental changes to community mental health will require expanding the range of socioenvironmental factors considered, including mental health outcomes in more of the studies about the association of biomarkers with socioenvironmental factors, and increasing the proportion of studies that assess mental health outcomes in humans.
Collapse
Affiliation(s)
- Yamin Zhang
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuyue Lv
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Han Wang
- West China School of Medicine, Chengdu, Sichuan, China
| | - Marlys Ann Bueber
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Michael Robert Phillips
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Departments of Psychiatry and Epidemiology, Columbia University, New York, NY, USA
| | - Tao Li
- Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Çabuk T, Sevim N, Mutlu E, Yağcıoğlu AEA, Koç A, Toulopoulou T. Natural language processing for defining linguistic features in schizophrenia: A sample from Turkish speakers. Schizophr Res 2024; 266:183-189. [PMID: 38417398 DOI: 10.1016/j.schres.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/26/2023] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Natural language processing (NLP) provides fast and accurate extraction of features related to the language of schizophrenia. We utilized NLP methods to test the hypothesis that schizophrenia is associated with altered linguistic features in Turkish, a non-Indo-European language, compared to controls. We also explored whether these possible altered linguistic features were language-dependent or -independent. We extracted and compared speech in schizophrenia (SZ, N = 38) and healthy well-matched control (HC, N = 38) participants using NLP. The analysis was conducted in two parts. In the first one, mean sentence length, total completed words, moving average type-token ratio to measure the lexical diversity, and first-person singular pronoun usage were calculated. In the second one, we used parts-of-speech tagging (POS) and Word2Vec in schizophrenia and control. We found that SZ had lower mean sentence length and moving average type-token ratio but higher use of first-person singular pronoun. All these significant results were correlated with the Thought and Language Disorder Scale score. The POS approach demonstrated that SZ used fewer coordinating conjunctions. Our methodology using Word2Vec detected that SZ had higher semantic similarity than HC and K-Means could differentiate between SZ and HC into two distinct groups with high accuracy, 86.84 %. Our findings showed that altered linguistic features in SZ are mostly language-independent. They are promising to describe language patterns in schizophrenia which proposes that NLP measurements may allow for rapid and objective measurements of linguistic features.
Collapse
Affiliation(s)
- Tuğçe Çabuk
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Bilkent, 06800 Ankara, Turkey.
| | - Nurullah Sevim
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, 06800 Ankara, Turkey
| | - Emre Mutlu
- Department of Psychiatry, Hacettepe University, Faculty of Medicine, Sıhhiye, 06230 Ankara, Turkey
| | - A Elif Anıl Yağcıoğlu
- Department of Psychiatry, Hacettepe University, Faculty of Medicine, Sıhhiye, 06230 Ankara, Turkey.
| | - Aykut Koç
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM), Bilkent University, Bilkent, 06800 Ankara, Turkey.
| | - Timothea Toulopoulou
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Bilkent, 06800 Ankara, Turkey; 1(st) Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
20
|
Olah J, Cummins N, Arribas M, Gibbs-Dean T, Molina E, Sethi D, Kempton MJ, Morgan S, Spencer T, Diederen K. Towards a scalable approach to assess speech organization across the psychosis-spectrum -online assessment in conjunction with automated transcription and extraction of speech measures. Transl Psychiatry 2024; 14:156. [PMID: 38509087 PMCID: PMC10954690 DOI: 10.1038/s41398-024-02851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Automatically extracted measures of speech constitute a promising marker of psychosis as disorganized speech is associated with psychotic symptoms and predictive of psychosis-onset. The potential of speech markers is, however, hampered by (i) lengthy assessments in laboratory settings and (ii) manual transcriptions. We investigated whether a short, scalable data collection (online) and processing (automated transcription) procedure would provide data of sufficient quality to extract previously validated speech measures. To evaluate the fit of our approach for purpose, we assessed speech in relation to psychotic-like experiences in the general population. Participants completed an 8-minute-long speech task online. Sample 1 included measures of psychometric schizotypy and delusional ideation (N = 446). Sample 2 included a low and high psychometric schizotypy group (N = 144). Recordings were transcribed both automatically and manually, and connectivity, semantic, and syntactic speech measures were extracted for both types of transcripts. 73%/86% participants in sample 1/2 completed the experiment. Nineteen out of 25 speech measures were strongly (r > 0.7) and significantly correlated between automated and manual transcripts in both samples. Amongst the 14 connectivity measures, 11 showed a significant relationship with delusional ideation. For the semantic and syntactic measures, On Topic score and the Frequency of personal pronouns were negatively correlated with both schizotypy and delusional ideation. Combined with demographic information, the speech markers could explain 11-14% of the variation of delusional ideation and schizotypy in Sample 1 and could discriminate between high-low schizotypy with high accuracy (0.72-0.70, AUC = 0.78-0.79) in Sample 2. The moderate to high retention rate, strong correlation of speech measures across manual and automated transcripts and sensitivity to psychotic-like experiences provides initial evidence that online collected speech in combination with automatic transcription is a feasible approach to increase accessibility and scalability of speech-based assessment of psychosis.
Collapse
Affiliation(s)
- Julianna Olah
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Nicholas Cummins
- Institute of Psychiatry, Psychology and Neuroscience, Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Maite Arribas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Toni Gibbs-Dean
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elena Molina
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Divina Sethi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah Morgan
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Tom Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
21
|
Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel) 2024; 14:233. [PMID: 38398742 PMCID: PMC10890405 DOI: 10.3390/life14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Drug development is expensive, time-consuming, and has a high failure rate. In recent years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the discovery of new drugs, and the development of novel AI techniques. We explore various AI methodologies, including machine learning and deep learning, and their applications in target identification, virtual screening, and drug design. This paper also discusses the historical development of AI in medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI's role in the repositioning of existing drugs and the identification of drug combinations, underscoring its potential in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the AI programs and platforms currently used in drug discovery, illustrating the technological advancements and future directions of this field. This study not only presents the current state of AI in drug discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
22
|
Olah J, Spencer T, Cummins N, Diederen K. Automated analysis of speech as a marker of sub-clinical psychotic experiences. Front Psychiatry 2024; 14:1265880. [PMID: 38361830 PMCID: PMC10867252 DOI: 10.3389/fpsyt.2023.1265880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Automated speech analysis techniques, when combined with artificial intelligence and machine learning, show potential in capturing and predicting a wide range of psychosis symptoms, garnering attention from researchers. These techniques hold promise in predicting the transition to clinical psychosis from at-risk states, as well as relapse or treatment response in individuals with clinical-level psychosis. However, challenges in scientific validation hinder the translation of these techniques into practical applications. Although sub-clinical research could aid to tackle most of these challenges, there have been only few studies conducted in speech and psychosis research in non-clinical populations. This work aims to facilitate this work by summarizing automated speech analytical concepts and the intersection of this field with psychosis research. We review psychosis continuum and sub-clinical psychotic experiences, and the benefits of researching them. Then, we discuss the connection between speech and psychotic symptoms. Thirdly, we overview current and state-of-the art approaches to the automated analysis of speech both in terms of language use (text-based analysis) and vocal features (audio-based analysis). Then, we review techniques applied in subclinical population and findings in these samples. Finally, we discuss research challenges in the field, recommend future research endeavors and outline how research in subclinical populations can tackle the listed challenges.
Collapse
Affiliation(s)
- Julianna Olah
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Thomas Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas Cummins
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Buchman DZ, Imahori D, Lo C, Hui K, Walker C, Shaw J, Davis KD. The Influence of Using Novel Predictive Technologies on Judgments of Stigma, Empathy, and Compassion among Healthcare Professionals. AJOB Neurosci 2024; 15:32-45. [PMID: 37450417 DOI: 10.1080/21507740.2023.2225470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Our objective was to evaluate whether the description of a machine learning (ML) app or brain imaging technology to predict the onset of schizophrenia or alcohol use disorder (AUD) influences healthcare professionals' judgments of stigma, empathy, and compassion. METHODS We randomized healthcare professionals (N = 310) to one vignette about a person whose clinician seeks to predict schizophrenia or an AUD, using a ML app, brain imaging, or a psychosocial assessment. Participants used scales to measure their judgments of stigma, empathy, and compassion. RESULTS Participants randomized to the ML vignette endorsed less anger and more fear relative to the psychosocial vignette, and the brain imaging vignette elicited higher pity ratings. The brain imaging and ML vignettes evoked lower personal responsibility judgments compared to the psychosocial vignette. Physicians and nurses reported less empathy than clinical psychologists. CONCLUSIONS The use of predictive technologies may reinforce essentialist views about mental health and substance use that may increase specific aspects of stigma and reduce others.
Collapse
Affiliation(s)
- Daniel Z Buchman
- Centre for Addiction and Mental Health
- Dalla Lana School of Public Health, University of Toronto
- University of Toronto Joint Centre for Bioethics
| | | | - Christopher Lo
- Dalla Lana School of Public Health, University of Toronto
- Temerty Faculty of Medicine, University of Toronto
- College of Healthcare Sciences, James Cook University, Singapore
| | - Katrina Hui
- Centre for Addiction and Mental Health
- Temerty Faculty of Medicine, University of Toronto
| | | | - James Shaw
- University of Toronto Joint Centre for Bioethics
- Temerty Faculty of Medicine, University of Toronto
| | - Karen D Davis
- Temerty Faculty of Medicine, University of Toronto
- Krembil Brain Institute, University Health Network
| |
Collapse
|
24
|
Daniel DG, Cohen AS, Harvey PD, Velligan DI, Potter WZ, Horan WP, Moore RC, Marder SR. Rationale and Challenges for a New Instrument for Remote Measurement of Negative Symptoms. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae027. [PMID: 39502136 PMCID: PMC11535854 DOI: 10.1093/schizbullopen/sgae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
There is a broad consensus that the commonly used clinician-administered rating scales for assessment of negative symptoms share significant limitations, including (1) reliance upon accurate self-report and recall from the patient and caregiver; (2) potential for sampling bias and thus being unrepresentative of daily-life experiences; (3) subjectivity of the symptom scoring process and limited sensitivity to change. These limitations led a work group from the International Society of CNS Clinical Trials and Methodology (ISCTM) to initiate the development of a multimodal negative symptom instrument. Experts from academia and industry reviewed the current methods of assessing the domains of negative symptoms including diminished (1) affect; (2) sociality; (3) verbal communication; (4) goal-directed behavior; and (5) Hedonic drives. For each domain, they documented the limitations of the current methods and recommended new approaches that could potentially be included in a multimodal instrument. The recommended methods for assessing negative symptoms included ecological momentary assessment (EMA), in which the patient self-reports their condition upon receipt of periodic prompts from a smartphone or other device during their daily routine; and direct inference of negative symptoms through detection and analysis of the patient's voice, appearance or activity from audio/visual or sensor-based (eg, global positioning systems, actigraphy) recordings captured by the patient's smartphone or other device. The process for developing an instrument could resemble the NIMH MATRICS process that was used to develop a battery for measuring cognition in schizophrenia. Although the EMA and other digital measures for negative symptoms are at relatively early stages of development/maturity and development of such an instrument faces substantial challenges, none of them are insurmountable.
Collapse
Affiliation(s)
- David Gordon Daniel
- Signant Health, Blue Bell, PA, USA
- Bioniche Global Development, LLC, McLean, VA, USA
- George Washington University, Washington, DC, USA
| | - Alex S Cohen
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Dawn I Velligan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Stephen R Marder
- Semel Institute for Neuroscience at UCLA and the VA Desert Pacific Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA
| |
Collapse
|
25
|
Ehlen F, Montag C, Leopold K, Heinz A. Linguistic findings in persons with schizophrenia-a review of the current literature. Front Psychol 2023; 14:1287706. [PMID: 38078276 PMCID: PMC10710163 DOI: 10.3389/fpsyg.2023.1287706] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 10/24/2024] Open
Abstract
INTRODUCTION Alterations of verbalized thought occur frequently in psychotic disorders. We characterize linguistic findings in individuals with schizophrenia based on the current literature, including findings relevant for differential and early diagnosis. METHODS Review of literature published via PubMed search between January 2010 and May 2022. RESULTS A total of 143 articles were included. In persons with schizophrenia, language-related alterations can occur at all linguistic levels. Differentiating from findings in persons with affective disorders, typical symptoms in those with schizophrenia mainly include so-called "poverty of speech," reduced word and sentence production, impaired processing of complex syntax, pragmatic language deficits as well as reduced semantic verbal fluency. At the at-risk state, "poverty of content," pragmatic difficulties and reduced verbal fluency could be of predictive value. DISCUSSION The current results support multilevel alterations of the language system in persons with schizophrenia. Creative expressions of psychotic experiences are frequently found but are not in the focus of this review. Clinical examinations of linguistic alterations can support differential diagnostics and early detection. Computational methods (Natural Language Processing) may improve the precision of corresponding diagnostics. The relations between language-related and other symptoms can improve diagnostics.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Montag
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte (Psychiatric University Clinic at St. Hedwig Hospital, Große Hamburger Berlin) – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karolina Leopold
- Vivantes Klinikum am Urban und Vivantes Klinikum im Friedrichshain, Kliniken für Psychiatrie, Psychotherapie und Psychosomatik, Akademische Lehrkrankenhäuser Charité - Universitätsmedizin Berlin, Berlin, Germany
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Nour MM, McNamee DC, Liu Y, Dolan RJ. Trajectories through semantic spaces in schizophrenia and the relationship to ripple bursts. Proc Natl Acad Sci U S A 2023; 120:e2305290120. [PMID: 37816054 PMCID: PMC10589662 DOI: 10.1073/pnas.2305290120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Human cognition is underpinned by structured internal representations that encode relationships between entities in the world (cognitive maps). Clinical features of schizophrenia-from thought disorder to delusions-are proposed to reflect disorganization in such conceptual representations. Schizophrenia is also linked to abnormalities in neural processes that support cognitive map representations, including hippocampal replay and high-frequency ripple oscillations. Here, we report a computational assay of semantically guided conceptual sampling and exploit this to test a hypothesis that people with schizophrenia (PScz) exhibit abnormalities in semantically guided cognition that relate to hippocampal replay and ripples. Fifty-two participants [26 PScz (13 unmedicated) and 26 age-, gender-, and intelligence quotient (IQ)-matched nonclinical controls] completed a category- and letter-verbal fluency task, followed by a magnetoencephalography (MEG) scan involving a separate sequence-learning task. We used a pretrained word embedding model of semantic similarity, coupled to a computational model of word selection, to quantify the degree to which each participant's verbal behavior was guided by semantic similarity. Using MEG, we indexed neural replay and ripple power in a post-task rest session. Across all participants, word selection was strongly influenced by semantic similarity. The strength of this influence showed sensitivity to task demands (category > letter fluency) and predicted performance. In line with our hypothesis, the influence of semantic similarity on behavior was reduced in schizophrenia relative to controls, predicted negative psychotic symptoms, and correlated with an MEG signature of hippocampal ripple power (but not replay). The findings bridge a gap between phenomenological and neurocomputational accounts of schizophrenia.
Collapse
Affiliation(s)
- Matthew M. Nour
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, LondonWC1B 5EH, United Kingdom
| | - Daniel C. McNamee
- Champalimaud Research, Centre for the Unknown, 1400-038Lisbon, Portugal
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Chinese Institute for Brain Research, Beijing102206, China
| | - Raymond J. Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, LondonWC1B 5EH, United Kingdom
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
- Wellcome Centre for Human Neuroimaging, University College London, LondonWC1N 3AR, United Kingdom
| |
Collapse
|
27
|
Lee JW, Han DH. Data Analysis of Psychological Approaches to Soccer Research: Using LDA Topic Modeling. Behav Sci (Basel) 2023; 13:787. [PMID: 37887437 PMCID: PMC10604603 DOI: 10.3390/bs13100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
This study identifies the topical areas of research that have attempted a psychological approach to soccer research over the last 33 years (1990-2022) and explored the growth and stagnation of the topic as well as research contributions to soccer development. Data were obtained from 1863 papers from the Web of Science database. The data were collected through keyword text mining and data preprocessing to determine the keywords needed for analysis. Based on the keywords, latent Dirichlet allocation-based topic modeling analysis was performed to analyze the topic distribution of papers and explore research trends by topic area. The topic modeling process included four topic area and fifty topics. The "Coaching Essentials in Football" topic area had the highest frequency, but it was not statistically identified as a trend. However, coaching, including training, is expected to continue to be an important research topic, as it is a key requirement for success in the highly competitive elite football world. Interest in the research field of "Psychological Skills for Performance Development" has waned in recent years. This may be due to the predominance of other subject areas rather than a lack of interest. Various high-tech interventions and problem-solving attempts are being made in this field, providing opportunities for qualitative and quantitative expansion. "Motivation, cognition, and emotion" is a largely underrated subject area in soccer psychology. This could be because survey-based psychological evaluation attempts have decreased as the importance of rapid field application has been emphasized in recent soccer-related studies. However, measuring psychological factors contributes to the study of football psychology through a new methodology and theoretical background. Recognizing the important role of psychological factors in player performance and mental management, as well as presenting new research directions and approaches that can be directly applied to the field, will advance soccer psychology research.
Collapse
Affiliation(s)
- Jea Woog Lee
- Intelligent Information Processing Lab, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University Hospital, Seoul 06974, Republic of Korea
| |
Collapse
|
28
|
Corona-Hernández H, de Boer JN, Brederoo SG, Voppel AE, Sommer IEC. Assessing coherence through linguistic connectives: Analysis of speech in patients with schizophrenia-spectrum disorders. Schizophr Res 2023; 259:48-58. [PMID: 35778234 DOI: 10.1016/j.schres.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Incoherent speech is a core diagnostic symptom of schizophrenia-spectrum disorders (SSD) that can be studied using semantic space models. Since linguistic connectives signal relations between words, they and their surrounding words might represent linguistic loci to detect unusual coherence in speech. Therefore, we investigated whether connectives' measures are useful to assess incoherent speech in SSD. METHODS Connectives and their surrounding words were extracted from transcripts of spontaneous speech of 50 SSD-patients and 50 control participants. Using word2vec, two different cosine similarities were calculated: those of connectives and their surrounding words (connectives-related similarity), and those of free-of-connectives words-chunks (non-connectives similarity). Differences between groups in proportion of five types of connectives were assessed using generalized logistic models, and connectives-related similarity was analyzed through non-parametric multivariate analysis of variance. These features were evaluated in classification tasks to differentiate between groups. RESULTS SSD-patients used less contingency (e.g., because) (p = .008) and multiclass connectives (e.g., as) (p < .001) than control participants. SSD-patients had higher minimum similarity of multiclass (adj-p = .04) and temporality connectives (e.g., after) (adj-p < .001), narrower similarity-range of expansion (e.g., and) (adj-p = .002) and multiclass connectives (adj-p = .04), and lower maximum similarity of expansion connectives (adj-p = .005). Using connectives' features alone, SSD-patients and controls could be distinguished with 85 % accuracy. DISCUSSION Our results show that SSD-speech can be distinguished from speech of control participants with high accuracy, based solely on connectives' features. We conclude that including connectives could strengthen computational models to categorize SSD.
Collapse
Affiliation(s)
- H Corona-Hernández
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - J N de Boer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Utrecht, Utrecht University & Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - S G Brederoo
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - A E Voppel
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands
| | - I E C Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
29
|
Silva AM, Limongi R, MacKinley M, Ford SD, Alonso-Sánchez MF, Palaniyappan L. Syntactic complexity of spoken language in the diagnosis of schizophrenia: A probabilistic Bayes network model. Schizophr Res 2023; 259:88-96. [PMID: 35752547 DOI: 10.1016/j.schres.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023]
Abstract
In the clinical linguistics of schizophrenia, syntactic complexity has received much attention. In this study, we address whether syntactic complexity deteriorates within the six months following the first episode of psychosis in those who develop a diagnosis of schizophrenia. We collected data from a cohort of twenty-six first-episode psychosis and 12 healthy control subjects using the Thought and Language Index interview in response to three pictures from the Thematic Apperception Test at first assessment and after six months (the time of consensus diagnosis). An automated labeling (part-of-speech tagging) for specific syntactic elements calculated large and granular syntactic complexity indices with a focus on clause complexity as a particular case from this spoken language data. Probabilistic reasoning leveraging the conditional independence properties of Bayes networks revealed that consensus diagnosis of schizophrenia predicted a decrease in nominal subjects per clause among individuals with first episode psychosis. From the entire sample, we estimate a 95.4 % probability that a 50 % decrease in mean nominal subjects per clause after six months is explained by the presence of first episode psychosis. Among those with psychosis, a 30 % decrease in this clause-complexity index after six months of experiencing the first episode predicted with 95 % probability a consensus diagnosis of schizophrenia, representing a conditional relationship between a longitudinal decrease in syntactic complexity and a diagnosis of schizophrenia. We conclude that an early drift towards linguistic disorganization/impoverishment of clause complexity-at the granular level of nominal subject per clause-is a distinctive feature of schizophrenia that decreases longitudinally, thus differentiating schizophrenia from other psychotic illnesses with shared phenomenology.
Collapse
Affiliation(s)
- Angelica M Silva
- Robarts Research Institute, Western University, London, Ontario, Canada.
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Canada; Faculty of Human and Social Sciences, Wilfred Laurier University, Brantford, Ontario, Canada
| | - Michael MacKinley
- Robarts Research Institute, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Sabrina D Ford
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| |
Collapse
|
30
|
Liebenthal E, Ennis M, Rahimi-Eichi H, Lin E, Chung Y, Baker JT. Linguistic and non-linguistic markers of disorganization in psychotic illness. Schizophr Res 2023; 259:111-120. [PMID: 36564239 PMCID: PMC10282106 DOI: 10.1016/j.schres.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Disorganization, presenting as impairment in thought, language and goal-directed behavior, is a core multidimensional syndrome of psychotic disorders. This study examined whether scalable computational measures of spoken language, and smartphone usage pattern, could serve as digital biomarkers of clinical disorganization symptoms. METHODS We examined in a longitudinal cohort of adults with a psychotic disorder, the associations between clinical measures of disorganization and computational measures of 1) spoken language derived from monthly, semi-structured, recorded clinical interviews; and 2) smartphone usage pattern derived via passive sensing technologies over the month prior to the interview. The language features included speech quantity, rate, fluency, and semantic regularity. The smartphone features included data missingness and phone usage during sleep time. The clinical measures consisted of the Positive and Negative Symptom Scale (PANSS) conceptual disorganization, difficulty in abstract thinking, and poor attention, items. Mixed linear regression analyses were used to estimate both fixed and random effects. RESULTS Greater severity of clinical symptoms of conceptual disorganization was associated with greater verbosity and more disfluent speech. Greater severity of conceptual disorganization was also associated with greater missingness of smartphone data, and greater smartphone usage during sleep time. While the observed associations were significant across the group, there was also significant variation between individuals. CONCLUSIONS The findings suggest that digital measures of speech disfluency may serve as scalable markers of conceptual disorganization. The findings warrant further investigation into the use of recorded interviews and passive sensing technologies to assist in the characterization and tracking of psychotic illness.
Collapse
Affiliation(s)
- Einat Liebenthal
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Michaela Ennis
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Habiballah Rahimi-Eichi
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Eric Lin
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Medical Informatics, Veterans Affairs Boston, Boston, MA, USA
| | - Yoonho Chung
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Justin T Baker
- McLean Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Parola A, Lin JM, Simonsen A, Bliksted V, Zhou Y, Wang H, Inoue L, Koelkebeck K, Fusaroli R. Speech disturbances in schizophrenia: Assessing cross-linguistic generalizability of NLP automated measures of coherence. Schizophr Res 2023; 259:59-70. [PMID: 35927097 DOI: 10.1016/j.schres.2022.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Language disorders - disorganized and incoherent speech in particular - are distinctive features of schizophrenia. Natural language processing (NLP) offers automated measures of incoherent speech as promising markers for schizophrenia. However, the scientific and clinical impact of NLP markers depends on their generalizability across contexts, samples, and languages, which we systematically assessed in the present study relying on a large, novel, cross-linguistic corpus. METHODS We collected a Danish (DK), German (GE), and Chinese (CH) cross-linguistic dataset involving transcripts from 187 participants with schizophrenia (111DK, 25GE, 51CH) and 200 matched controls (129DK, 29GE, 42CH) performing the Animated Triangles Task. Fourteen previously published NLP coherence measures were calculated, and between-groups differences and association with symptoms were tested for cross-linguistic generalizability. RESULTS One coherence measure, i.e. second-order coherence, robustly generalized across samples and languages. We found several language-specific effects, some of which partially replicated previous findings (lower coherence in German and Chinese patients), while others did not (higher coherence in Danish patients). We found several associations between symptoms and measures of coherence, but the effects were generally inconsistent across languages and rating scales. CONCLUSIONS Using a cumulative approach, we have shown that NLP findings of reduced semantic coherence in schizophrenia have limited generalizability across different languages, samples, and measures. We argue that several factors such as sociodemographic and clinical heterogeneity, cross-linguistic variation, and the different NLP measures reflecting different clinical aspects may be responsible for this variability. Future studies should take this variability into account in order to develop effective clinical applications targeting different patient populations.
Collapse
Affiliation(s)
- Alberto Parola
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Jessica Mary Lin
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Arndis Simonsen
- The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke Bliksted
- The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lana Inoue
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Essen, Germany; Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Germany
| | - Katja Koelkebeck
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Hospital and Institute of the University of Duisburg-Essen, Essen, Germany; Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Germany
| | - Riccardo Fusaroli
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
32
|
Lundin NB, Cowan HR, Singh DK, Moe AM. Lower cohesion and altered first-person pronoun usage in the spoken life narratives of individuals with schizophrenia. Schizophr Res 2023; 259:140-149. [PMID: 37127466 PMCID: PMC10524354 DOI: 10.1016/j.schres.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Usage of computational tools to quantify language disturbances among individuals with psychosis is increasing, improving measurement efficiency and access to fine-grained constructs. However, few studies apply automated linguistic analysis to life narratives in this population. Such research could facilitate the measurement of psychosis-relevant constructs such as sense of agency, capacity to organize one's personal history, narrative richness, and perceptions of the roles that others play in one's life. Furthermore, research is needed to understand how narrative linguistic features relate to cognitive and social functioning. In the present study, individuals with schizophrenia (n = 32) and individuals without a psychotic disorder (n = 15) produced personal life narratives within the Indiana Psychiatric Illness Interview. Narratives were analyzed using the Coh-Metrix computational tool. Linguistic variables analyzed were indices of connections within causal and goal-driven speech (deep cohesion), unique word usage (lexical diversity), and pronoun usage. Individuals with schizophrenia compared to control participants produced narratives that were lower in deep cohesion, contained more first-person singular pronouns, and contained fewer first-person plural pronouns. Narratives did not significantly differ between groups in lexical diversity, third-person pronoun usage, or total word count. Cognitive-linguistic relationships emerged in the full sample, including significant correlations between greater working memory capacity and greater deep cohesion and lexical diversity. In the schizophrenia group, social problem-solving abilities did not correlate with linguistic variables but were associated with cognition. Findings highlight the relevance of psychotherapies which aim to promote recovery among individuals with psychosis through the construction of coherent life narratives and increasing agency and social connectedness.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA.
| | - Henry R Cowan
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA.
| | - Divnoor K Singh
- Department of Neuroscience, The Ohio State University, 1585 Neil Avenue, Columbus, OH 43210, USA.
| | - Aubrey M Moe
- Department of Psychiatry and Behavioral Health, The Ohio State University, 1670 Upham Drive, Suite 460, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Loch AA, Gondim JM, Argolo FC, Lopes-Rocha AC, Andrade JC, van de Bilt MT, de Jesus LP, Haddad NM, Cecchi GA, Mota NB, Gattaz WF, Corcoran CM, Ara A. Detecting at-risk mental states for psychosis (ARMS) using machine learning ensembles and facial features. Schizophr Res 2023; 258:45-52. [PMID: 37473667 PMCID: PMC10448183 DOI: 10.1016/j.schres.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
AIMS Our study aimed to develop a machine learning ensemble to distinguish "at-risk mental states for psychosis" (ARMS) subjects from control individuals from the general population based on facial data extracted from video-recordings. METHODS 58 non-help-seeking medication-naïve ARMS and 70 healthy subjects were screened from a general population sample. At-risk status was assessed with the Structured Interview for Prodromal Syndromes (SIPS), and "Subject's Overview" section was filmed (5-10 min). Several features were extracted, e.g., eye and mouth aspect ratio, Euler angles, coordinates from 51 facial landmarks. This elicited 649 facial features, which were further selected using Gradient Boosting Machines (AdaBoost combined with Random Forests). Data was split in 70/30 for training, and Monte Carlo cross validation was used. RESULTS Final model reached 83 % of mean F1-score, and balanced accuracy of 85 %. Mean area under the curve for the receiver operator curve classifier was 93 %. Convergent validity testing showed that two features included in the model were significantly correlated with Avolition (SIPS N2 item) and expression of emotion (SIPS N3 item). CONCLUSION Our model capitalized on short video-recordings from individuals recruited from the general population, effectively distinguishing between ARMS and controls. Results are encouraging for large-screening purposes in low-resource settings.
Collapse
Affiliation(s)
- Alexandre Andrade Loch
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil.
| | - João Medrado Gondim
- Instituto de Computação, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Felipe Coelho Argolo
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Caroline Lopes-Rocha
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Julio Cesar Andrade
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Martinus Theodorus van de Bilt
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Leonardo Peroni de Jesus
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Natalia Mansur Haddad
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Natalia Bezerra Mota
- Instituto de Psiquiatria (IPUB), Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Research Department at Motrix Lab - Motrix, Rio de Janeiro, Brazil
| | - Wagner Farid Gattaz
- Laboratório de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil
| | - Cheryl Mary Corcoran
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters VA Medical Center Bronx, NY, USA
| | - Anderson Ara
- Statistics Department, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
34
|
McGowan A, Gui Y, Dobbs M, Shuster S, Cotter M, Selloni A, Goodman M, Srivastava A, Cecchi GA, Corcoran CM. ChatGPT and Bard exhibit spontaneous citation fabrication during psychiatry literature search. Psychiatry Res 2023; 326:115334. [PMID: 37499282 PMCID: PMC10424704 DOI: 10.1016/j.psychres.2023.115334] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
ChatGPT (Generative Pre-Trained Transformer) is a large language model (LLM), which comprises a neural network that has learned information and patterns of language use from large amounts of text on the internet. ChatGPT, introduced by OpenAI, responds to human queries in a conversational manner. Here, we aimed to assess whether ChatGPT could reliably produce accurate references to supplement the literature search process. We describe our March 2023 exchange with ChatGPT, which generated thirty-five citations, two of which were real. 12 citations were similar to actual manuscripts (e.g., titles with incorrect author lists, journals, or publication years) and the remaining 21, while plausible, were in fact a pastiche of multiple existent manuscripts. In June 2023, we re-tested ChatGPT's performance and compared it to that of Google's GPT counterpart, Bard 2.0. We investigated performance in English, as well as in Spanish and Italian. Fabrications made by LLMs, including erroneous citations, have been called "hallucinations"; we discuss reasons for which this is a misnomer. Furthermore, we describe potential explanations for citation fabrication by GPTs, as well as measures being taken to remedy this issue, including reinforcement learning. Our results underscore that output from conversational LLMs should be verified.
Collapse
Affiliation(s)
| | - Yunlai Gui
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Dobbs
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Shuster
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Cotter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marianne Goodman
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Administration, Bronx, NY, USA
| | | | | | - Cheryl M Corcoran
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Administration, Bronx, NY, USA.
| |
Collapse
|
35
|
Just SA, Bröcker AL, Ryazanskaya G, Nenchev I, Schneider M, Bermpohl F, Heinz A, Montag C. Validation of natural language processing methods capturing semantic incoherence in the speech of patients with non-affective psychosis. Front Psychiatry 2023; 14:1208856. [PMID: 37564246 PMCID: PMC10411549 DOI: 10.3389/fpsyt.2023.1208856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Impairments in speech production are a core symptom of non-affective psychosis (NAP). While traditional clinical ratings of patients' speech involve a subjective human factor, modern methods of natural language processing (NLP) promise an automatic and objective way of analyzing patients' speech. This study aimed to validate NLP methods for analyzing speech production in NAP patients. Methods Speech samples from patients with a diagnosis of schizophrenia or schizoaffective disorder were obtained at two measurement points, 6 months apart. Out of N = 71 patients at T1, speech samples were also available for N = 54 patients at T2. Global and local models of semantic coherence as well as different word embeddings (word2vec vs. GloVe) were applied to the transcribed speech samples. They were tested and compared regarding their correlation with clinical ratings and external criteria from cross-sectional and longitudinal measurements. Results Results did not show differences for global vs. local coherence models and found more significant correlations between word2vec models and clinically relevant outcome variables than for GloVe models. Exploratory analysis of longitudinal data did not yield significant correlation with coherence scores. Conclusion These results indicate that natural language processing methods need to be critically validated in more studies and carefully selected before clinical application.
Collapse
Affiliation(s)
- Sandra Anna Just
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Anna-Lena Bröcker
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | | | - Ivan Nenchev
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Maria Schneider
- IPB Institut für Integrative Psychotherapieausbildung Berlin, MSB Medical School Berlin, GmbH, Berlin, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Montag
- Department of Psychiatry and Neurosciences, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
36
|
Angers K, Suhr JA, Moe AM. Executively-mediated language skills are related to performance-based social functioning in the early psychosis spectrum. J Psychiatr Res 2023; 164:184-191. [PMID: 37352814 DOI: 10.1016/j.jpsychires.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Social impairment is a core deficit in psychotic spectrum disorders (PSDs). Prior work shows that language abnormalities can predict psychosis onset and are related to social outcomes in PSDs. Few studies have investigated nuanced relationships between language/verbal abilities and social functioning in the early psychosis spectrum, including at-risk (schizotypy) and first episode of psychosis (FEP) individuals. This study aimed to examine the relationship to between language/verbal performance and performance-based and examiner-rated social functioning. We also aimed to replicate prior models that demonstrate neurocognition is related to social functioning through negative symptoms and social cognition. Low schizotypy (n = 42), high schizotypy (n = 44), and FEP (n = 15) participants completed a battery of language/verbal, social cognition, and social functioning measures. Regression analyses revealed that Proverb Test performance was uniquely and significantly associated with performance-based but not examiner-rated social functioning. Other language/verbal measures were not significantly related to social functioning. In mediational analyses, language/verbal performance was indirectly related to social functioning through negative traits, and also through social cognition. Findings extend support for negative symptom and social cognitive intervention in the early psychosis spectrum, and uniquely suggest that executively-mediated language skills may be an additional target to improve social functioning.
Collapse
Affiliation(s)
- Kaley Angers
- Department of Psychiatry, Neuropsychology Section, University of Michigan, Ann Arbor, MI, USA.
| | - Julie A Suhr
- Department of Psychology, Ohio University, Athens, OH, USA
| | - Aubrey M Moe
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Pavlidou A, Gorisse G, Banakou D, Walther S. Using virtual reality to assess gesture performance deficits in schizophrenia patients. Front Psychiatry 2023; 14:1191601. [PMID: 37363173 PMCID: PMC10288366 DOI: 10.3389/fpsyt.2023.1191601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Gesture performance deficits are prevalent in schizophrenia patients and are strongly associated with poor social communication skills and community functioning, affecting their overall quality of life. Currently, video-recording technology is widely used in clinical settings to assess gesture production deficits in schizophrenia patients. Nevertheless, the subjective evaluation of video-recordings can encumber task assessment. The present study will aim to use virtual reality to examine its potential use as an alternative tool to objectively measure gesture performance accuracy in schizophrenia patients and healthy controls. Methods Gesture performance in the virtual reality setting will be based on the well-established Test of Upper Limb Apraxia. Participants will be immersed in a virtual environment where they will experience themselves being embodied in a collocated virtual body seen from a first-person perspective. Motion trackers will be placed on participants' hands and elbows to track upper body movements in real-time, and to record gesture movement for later analysis. Participants will see a virtual agent sitting across from them, with a virtual table in between. The agent will perform various types of gestures and the participants' task will be to imitate those gestures as accurately as possible. Measurements from the tracking devices will be stored and analyzed to address gesture performance accuracy across groups. Discussion This study aims to provide objective measurements of gesture performance accuracy in schizophrenia patients. If successful, the results will provide new knowledge to the gesture literature and offer the potential for novel therapeutic interventions using virtual reality technologies. Such interventions can improve gesturing and thus advance social communication skills in schizophrenia patients.
Collapse
Affiliation(s)
- Anastasia Pavlidou
- University of Bern, University Hospital of Psychiatry and Psychotherapy, Translation Research Centre, Bern, Switzerland
| | | | - Domna Banakou
- Arts and Humanities Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sebastian Walther
- University of Bern, University Hospital of Psychiatry and Psychotherapy, Translation Research Centre, Bern, Switzerland
| |
Collapse
|
38
|
Schneider K, Leinweber K, Jamalabadi H, Teutenberg L, Brosch K, Pfarr JK, Thomas-Odenthal F, Usemann P, Wroblewski A, Straube B, Alexander N, Nenadić I, Jansen A, Krug A, Dannlowski U, Kircher T, Nagels A, Stein F. Syntactic complexity and diversity of spontaneous speech production in schizophrenia spectrum and major depressive disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:35. [PMID: 37248240 DOI: 10.1038/s41537-023-00359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Syntax, the grammatical structure of sentences, is a fundamental aspect of language. It remains debated whether reduced syntactic complexity is unique to schizophrenia spectrum disorder (SSD) or whether it is also present in major depressive disorder (MDD). Furthermore, the association of syntax (including syntactic complexity and diversity) with language-related neuropsychology and psychopathological symptoms across disorders remains unclear. Thirty-four SSD patients and thirty-eight MDD patients diagnosed according to DSM-IV-TR as well as forty healthy controls (HC) were included and tasked with describing four pictures from the Thematic Apperception Test. We analyzed the produced speech regarding its syntax delineating measures for syntactic complexity (the total number of main clauses embedding subordinate clauses) and diversity (number of different types of complex sentences). We performed cluster analysis to identify clusters based on syntax and investigated associations of syntactic, to language-related neuropsychological (verbal fluency and verbal episodic memory), and psychopathological measures (positive and negative formal thought disorder) using network analyses. Syntax in SSD was significantly reduced in comparison to MDD and HC, whereas the comparison of HC and MDD revealed no significant differences. No associations were present between speech measures and current medication, duration and severity of illness, age or sex; the single association accounted for was education. A cluster analysis resulted in four clusters with different degrees of syntax across diagnoses. Subjects with less syntax exhibited pronounced positive and negative symptoms and displayed poorer performance in executive functioning, global functioning, and verbal episodic memory. All cluster-based networks indicated varying degrees of domain-specific and cross-domain connections. Measures of syntactic complexity were closely related while syntactic diversity appeared to be a separate node outside of the syntactic network. Cross-domain associations were more salient in more complex syntactic production.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany.
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Arne Nagels
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
39
|
Zhang H, Parola A, Zhou Y, Wang H, Bliksted V, Fusaroli R, Hinzen W. Linguistic markers of psychosis in Mandarin Chinese: Relations to theory of mind. Psychiatry Res 2023; 325:115253. [PMID: 37245483 DOI: 10.1016/j.psychres.2023.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
Disorganized and impoverished language is a key feature of schizophrenia (Sz), but whether and which linguistic changes previously observed in Indo-European languages generalize to other languages remains unclear. Targeting Mandarin Chinese, we aimed to profile aspects of grammatical complexity that we hypothesized would be reduced in schizophrenia in a task of verbalizing social events. 51 individuals with Sz and 39 controls participated in the animated triangles task, a standardized measure of theory of mind (ToM), in which participants describe triangles moving in either a random or an 'intentional' condition. Results revealed that clauses embedded as arguments in other clauses were reduced in Sz, and that both groups produced such clauses and grammatical aspect more frequently in the intentional condition. ToM scores specifically correlated with production of embedded argument clauses. These results document grammatical impoverishment in Sz in Chinese across several structural domains, which in some of its specific aspects relate to mentalizing performance.
Collapse
Affiliation(s)
- Han Zhang
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Carrer de Roc Boronat, 138, Barcelona 08018, Spain.
| | - Alberto Parola
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Vibeke Bliksted
- The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Riccardo Fusaroli
- Department of Linguistics, Semiotics and Cognitive Science, Aarhus University, Aarhus, Denmark; The Interacting Minds Centre, Institute of Culture and Society, Aarhus University, Aarhus, Denmark; Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Carrer de Roc Boronat, 138, Barcelona 08018, Spain; Catalan Institute for Advanced Studies and Research (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Liu XQ, Ji XY, Weng X, Zhang YF. Artificial intelligence ecosystem for computational psychiatry: Ideas to practice. World J Meta-Anal 2023; 11:79-91. [DOI: 10.13105/wjma.v11.i4.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms. One of the key strengths of computational psychiatry is that it may identify patterns in large datasets that are not easily identifiable. This may help researchers develop more effective treatments and interventions for mental health problems. This paper is a narrative review that reviews the literature and produces an artificial intelligence ecosystem for computational psychiatry. The artificial intelligence ecosystem for computational psychiatry includes data acquisition, preparation, modeling, application, and evaluation. This approach allows researchers to integrate data from a variety of sources, such as brain imaging, genetics, and behavioral experiments, to obtain a more complete understanding of mental health conditions. Through the process of data preprocessing, training, and testing, the data that are required for model building can be prepared. By using machine learning, neural networks, artificial intelligence, and other methods, researchers have been able to develop diagnostic tools that can accurately identify mental health conditions based on a patient’s symptoms and other factors. Despite the continuous development and breakthrough of computational psychiatry, it has not yet influenced routine clinical practice and still faces many challenges, such as data availability and quality, biological risks, equity, and data protection. As we move progress in this field, it is vital to ensure that computational psychiatry remains accessible and inclusive so that all researchers may contribute to this significant and exciting field.
Collapse
Affiliation(s)
- Xin-Qiao Liu
- School of Education, Tianjin University, Tianjin 300350, China
| | - Xin-Yu Ji
- School of Education, Tianjin University, Tianjin 300350, China
| | - Xing Weng
- Huzhou Educational Science & Research Center, Huzhou 313000, Zhejiang Province, China
| | - Yi-Fan Zhang
- School of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
41
|
Min S, Shin D, Rhee SJ, Park CHK, Yang JH, Song Y, Kim MJ, Kim K, Cho WI, Kwon OC, Ahn YM, Lee H. Acoustic Analysis of Speech for Screening for Suicide Risk: Machine Learning Classifiers for Between- and Within-Person Evaluation of Suicidality. J Med Internet Res 2023; 25:e45456. [PMID: 36951913 PMCID: PMC10131783 DOI: 10.2196/45456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Assessing a patient's suicide risk is challenging for health professionals because it depends on voluntary disclosure by the patient and often has limited resources. The application of novel machine learning approaches to determine suicide risk has clinical utility. OBJECTIVE This study aimed to investigate cross-sectional and longitudinal approaches to assess suicidality based on acoustic voice features of psychiatric patients using artificial intelligence. METHODS We collected 348 voice recordings during clinical interviews of 104 patients diagnosed with mood disorders at baseline and 2, 4, 8, and 12 months after recruitment. Suicidality was assessed using the Beck Scale for Suicidal Ideation and suicidal behavior using the Columbia Suicide Severity Rating Scale. The acoustic features of the voice, including temporal, formal, and spectral features, were extracted from the recordings. A between-person classification model that examines the vocal characteristics of individuals cross sectionally to detect individuals at high risk for suicide and a within-person classification model that detects considerable worsening of suicidality based on changes in acoustic features within an individual were developed and compared. Internal validation was performed using 10-fold cross validation of audio data from baseline to 2-month and external validation was performed using data from 2 to 4 months. RESULTS A combined set of 12 acoustic features and 3 demographic variables (age, sex, and past suicide attempts) were included in the single-layer artificial neural network for the between-person classification model. Furthermore, 13 acoustic features were included in the extreme gradient boosting machine learning algorithm for the within-person model. The between-person classifier was able to detect high suicidality with 69% accuracy (sensitivity 74%, specificity 62%, area under the receiver operating characteristic curve 0.62), whereas the within-person model was able to predict worsening suicidality over 2 months with 79% accuracy (sensitivity 68%, specificity 84%, area under receiver operating characteristic curve 0.67). The second model showed 62% accuracy in predicting increased suicidality in external sets. CONCLUSIONS Within-person analysis using changes in acoustic features within an individual is a promising approach to detect increased suicidality. Automated analysis of voice can be used to support the real-time assessment of suicide risk in primary care or telemedicine.
Collapse
Affiliation(s)
- Sooyeon Min
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - C Hyung Keun Park
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hun Yang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojin Song
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Ji Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Won Ik Cho
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunju Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
42
|
Limongi R, Silva AM, Mackinley M, Ford SD, Palaniyappan L. Active Inference, Epistemic Value, and Uncertainty in Conceptual Disorganization in First-Episode Schizophrenia. Schizophr Bull 2023; 49:S115-S124. [PMID: 36946528 PMCID: PMC10031740 DOI: 10.1093/schbul/sbac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Active inference has become an influential concept in psychopathology. We apply active inference to investigate conceptual disorganization in first-episode schizophrenia. We conceptualize speech production as a decision-making process affected by the latent "conceptual organization"-as a special case of uncertainty about the causes of sensory information. Uncertainty is both minimized via speech production-in which function words index conceptual organization in terms of analytic thinking-and tracked by a domain-general salience network. We hypothesize that analytic thinking depends on conceptual organization. Therefore, conceptual disorganization in schizophrenia would be both indexed by low conceptual organization and reflected in the effective connectivity within the salience network. STUDY DESIGN With 1-minute speech samples from a picture description task and resting state fMRI from 30 patients and 30 healthy subjects, we employed dynamic causal and probabilistic graphical models to investigate if the effective connectivity of the salience network underwrites conceptual organization. STUDY RESULTS Low analytic thinking scores index low conceptual organization which affects diagnostic status. The influence of the anterior insula on the anterior cingulate cortex and the self-inhibition within the anterior cingulate cortex are elevated given low conceptual organization (ie, conceptual disorganization). CONCLUSIONS Conceptual organization, a construct that explains formal thought disorder, can be modeled in an active inference framework and studied in relation to putative neural substrates of disrupted language in schizophrenia. This provides a critical advance to move away from rating-scale scores to deeper constructs in the pursuit of the pathophysiology of formal thought disorder.
Collapse
Affiliation(s)
- Roberto Limongi
- Department of Psychology, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| | | | - Michael Mackinley
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | | | - Lena Palaniyappan
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Magnani L, Carmisciano L, dell'Orletta F, Bettinardi O, Chiesa S, Imbesi M, Limonta G, Montagna E, Turone I, Martinasso D, Aguglia A, Serafini G, Amore M, Amerio A, Costanza A, Sibilla F, Calcagno P, Patti S, Molino G, Escelsior A, Trabucco A, Marzano L, Brunato D, Ravelli AA, Cappucciati M, Fiocchi R, Guerzoni G, Maravita D, Macchetti F, Mori E, Paglia CA, Roscigno F, Saginario A. Linguistic profile automated characterisation in pluripotential clinical high-risk mental state (CHARMS) conditions: methodology of a multicentre observational study. BMJ Open 2023; 13:e066642. [PMID: 36948562 PMCID: PMC10040055 DOI: 10.1136/bmjopen-2022-066642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION Language is usually considered the social vehicle of thought in intersubjective communications. However, the relationship between language and high-order cognition seems to evade this canonical and unidirectional description (ie, the notion of language as a simple means of thought communication). In recent years, clinical high at-risk mental state (CHARMS) criteria (evolved from the Ultra-High-Risk paradigm) and the introduction of the Clinical Staging system have been proposed to address the dynamicity of early psychopathology. At the same time, natural language processing (NLP) techniques have greatly evolved and have been successfully applied to investigate different neuropsychiatric conditions. The combination of at-risk mental state paradigm, clinical staging system and automated NLP methods, the latter applied on spoken language transcripts, could represent a useful and convenient approach to the problem of early psychopathological distress within a transdiagnostic risk paradigm. METHODS AND ANALYSIS Help-seeking young people presenting psychological distress (CHARMS+/- and Clinical Stage 1a or 1b; target sample size for both groups n=90) will be assessed through several psychometric tools and multiple speech analyses during an observational period of 1-year, in the context of an Italian multicentric study. Subjects will be enrolled in different contexts: Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa-IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Mental Health Department-territorial mental services (ASL 3-Genoa), Genoa, Italy; and Mental Health Department-territorial mental services (AUSL-Piacenza), Piacenza, Italy. The conversion rate to full-blown psychopathology (CS 2) will be evaluated over 2 years of clinical observation, to further confirm the predictive and discriminative value of CHARMS criteria and to verify the possibility of enriching them with several linguistic features, derived from a fine-grained automated linguistic analysis of speech. ETHICS AND DISSEMINATION The methodology described in this study adheres to ethical principles as formulated in the Declaration of Helsinki and is compatible with International Conference on Harmonization (ICH)-good clinical practice. The research protocol was reviewed and approved by two different ethics committees (CER Liguria approval code: 591/2020-id.10993; Comitato Etico dell'Area Vasta Emilia Nord approval code: 2022/0071963). Participants will provide their written informed consent prior to study enrolment and parental consent will be needed in the case of participants aged less than 18 years old. Experimental results will be carefully shared through publication in peer-reviewed journals, to ensure proper data reproducibility. TRIAL REGISTRATION NUMBER DOI:10.17605/OSF.IO/BQZTN.
Collapse
Affiliation(s)
- Luca Magnani
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, Genoa, Italy
| | - Felice dell'Orletta
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Ornella Bettinardi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Silvia Chiesa
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Massimiliano Imbesi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Giuliano Limonta
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Elisa Montagna
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Ilaria Turone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Dario Martinasso
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Aguglia
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Mario Amore
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Amerio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Psychiatry, Service of Adult Psychiatry (SPA), University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Francesca Sibilla
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Pietro Calcagno
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Sara Patti
- Department of Mental Health and Pathological Addictions, Genoa Local Authority, Genoa, Liguria, Italy
| | - Gabriella Molino
- Department of Mental Health and Pathological Addictions, Genoa Local Authority, Genoa, Liguria, Italy
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Alice Trabucco
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Lisa Marzano
- Departement of Psychology, School of Science and Technology, Middlesex University, London, UK
| | - Dominique Brunato
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Andrea Amelio Ravelli
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Marco Cappucciati
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Roberta Fiocchi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Gisella Guerzoni
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Davide Maravita
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Fabio Macchetti
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Elisa Mori
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Chiara Anna Paglia
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Federica Roscigno
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Antonio Saginario
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| |
Collapse
|
44
|
Tan EJ, Sommer IEC, Palaniyappan L. Language and Psychosis: Tightening the Association. Schizophr Bull 2023; 49:S83-S85. [PMID: 36946524 PMCID: PMC10031734 DOI: 10.1093/schbul/sbac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This special issue of DISCOURSE in Psychosis focuses on the role of language in psychosis, including the relationships between formal thought disorder and conceptual disorganization, with speech and language markers and the neural mechanisms underlying these features in psychosis. It also covers the application of computational techniques in the study of language in psychosis, as well as the potential for using speech and language data for digital phenotyping in psychiatry.
Collapse
Affiliation(s)
- Eric J Tan
- Memory, Ageing and Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Iris E C Sommer
- RijksUniversity Groningen (RUG), Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
45
|
Tang SX, Hänsel K, Cong Y, Nikzad AH, Mehta A, Cho S, Berretta S, Behbehani L, Pradhan S, John M, Liberman MY. Latent Factors of Language Disturbance and Relationships to Quantitative Speech Features. Schizophr Bull 2023; 49:S93-S103. [PMID: 36946530 PMCID: PMC10031730 DOI: 10.1093/schbul/sbac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS Quantitative acoustic and textual measures derived from speech ("speech features") may provide valuable biomarkers for psychiatric disorders, particularly schizophrenia spectrum disorders (SSD). We sought to identify cross-diagnostic latent factors for speech disturbance with relevance for SSD and computational modeling. STUDY DESIGN Clinical ratings for speech disturbance were generated across 14 items for a cross-diagnostic sample (N = 334), including SSD (n = 90). Speech features were quantified using an automated pipeline for brief recorded samples of free speech. Factor models for the clinical ratings were generated using exploratory factor analysis, then tested with confirmatory factor analysis in the cross-diagnostic and SSD groups. The relationships between factor scores and computational speech features were examined for 202 of the participants. STUDY RESULTS We found a 3-factor model with a good fit in the cross-diagnostic group and an acceptable fit for the SSD subsample. The model identifies an impaired expressivity factor and 2 interrelated disorganized factors for inefficient and incoherent speech. Incoherent speech was specific to psychosis groups, while inefficient speech and impaired expressivity showed intermediate effects in people with nonpsychotic disorders. Each of the 3 factors had significant and distinct relationships with speech features, which differed for the cross-diagnostic vs SSD groups. CONCLUSIONS We report a cross-diagnostic 3-factor model for speech disturbance which is supported by good statistical measures, intuitive, applicable to SSD, and relatable to linguistic theories. It provides a valuable framework for understanding speech disturbance and appropriate targets for modeling with quantitative speech features.
Collapse
Affiliation(s)
- Sunny X Tang
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Katrin Hänsel
- Department of Laboratory Medicine, Yale University, New Haven, USA
| | - Yan Cong
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Amir H Nikzad
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Aarush Mehta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Sarah Berretta
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Leily Behbehani
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Sameer Pradhan
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| | - Majnu John
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Mark Y Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
46
|
Voppel AE, de Boer JN, Brederoo SG, Schnack HG, Sommer IEC. Semantic and Acoustic Markers in Schizophrenia-Spectrum Disorders: A Combinatory Machine Learning Approach. Schizophr Bull 2023; 49:S163-S171. [PMID: 36305054 PMCID: PMC10031732 DOI: 10.1093/schbul/sbac142] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Speech is a promising marker to aid diagnosis of schizophrenia-spectrum disorders, as it reflects symptoms like thought disorder and negative symptoms. Previous approaches made use of different domains of speech for diagnostic classification, including features like coherence (semantic) and form (acoustic). However, an examination of the added value of each domain when combined is lacking as of yet. Here, we investigate the acoustic and semantic domains separately and combined. STUDY DESIGN Using semi-structured interviews, speech of 94 subjects with schizophrenia-spectrum disorders (SSD) and 73 healthy controls (HC) was recorded. Acoustic features were extracted using a standardized feature-set, and transcribed interviews were used to calculate semantic word similarity using word2vec. Random forest classifiers were trained for each domain. A third classifier was used to combine features from both domains; 10-fold cross-validation was used for each model. RESULTS The acoustic random forest classifier achieved 81% accuracy classifying SSD and HC, while the semantic domain classifier reached an accuracy of 80%. Joining features from the two domains, the combined classifier reached 85% accuracy, significantly improving on separate domain classifiers. For the combined classifier, top features were fragmented speech from the acoustic domain and variance of similarity from the semantic domain. CONCLUSIONS Both semantic and acoustic analyses of speech achieved ~80% accuracy in classifying SSD from HC. We replicate earlier findings per domain, additionally showing that combining these features significantly improves classification performance. Feature importance and accuracy in combined classification indicate that the domains measure different, complementing aspects of speech.
Collapse
Affiliation(s)
- Alban E Voppel
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janna N de Boer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne G Brederoo
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hugo G Schnack
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Utrecht University, Utrecht Institute of Linguistics OTS, Utrecht, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
47
|
Bianciardi B, Gajwani R, Gross J, Gumley AI, Lawrie SM, Moelling M, Schwannauer M, Schultze‐Lutter F, Fracasso A, Uhlhaas PJ. Investigating temporal and prosodic markers in clinical high-risk for psychosis participants using automated acoustic analysis. Early Interv Psychiatry 2023; 17:327-330. [PMID: 36205386 PMCID: PMC10946925 DOI: 10.1111/eip.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/14/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022]
Abstract
AIM Language disturbances are a candidate biomarker for the early detection of psychosis. Temporal and prosodic abnormalities have been observed in schizophrenia patients, while there is conflicting evidence whether such deficits are present in participants meeting clinical high-risk for psychosis (CHR-P) criteria. METHODS Clinical interviews from CHR-P participants (n = 50) were examined for temporal and prosodic metrics and compared against a group of healthy controls (n = 17) and participants with affective disorders and substance abuse (n = 23). RESULTS There were no deficits in acoustic variables in the CHR-P group, while participants with affective disorders/substance abuse were characterized by slower speech rate, longer pauses and higher unvoiced frames percentage. CONCLUSION Our finding suggests that temporal and prosodic aspects of speech are not impaired in early-stage psychosis. Further studies are required to clarify whether such abnormalities are present in sub-groups of CHR-P participants with elevated psychosis-risk.
Collapse
Affiliation(s)
- Bianca Bianciardi
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| | - Ruchika Gajwani
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
| | - Joachim Gross
- Institute for Biomagnetism and BiosignalanalysisUniversity of MuensterMuensterGermany
| | | | | | - Melina Moelling
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| | | | - Frauke Schultze‐Lutter
- Department of Psychiatry and Psychotherapy, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Department of Psychology, Faculty of PsychologyAirlangga UniversitySurabayaIndonesia
- University Hospital of Child and Adolescent Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Alessio Fracasso
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| | - Peter J. Uhlhaas
- Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
- Department of Child and Adolescent PsychiatryCharité UniversitätsmedizinBerlinGermany
| |
Collapse
|
48
|
Tan EJ, Neill E, Kleiner JL, Rossell SL. Depressive symptoms are specifically related to speech pauses in schizophrenia spectrum disorders. Psychiatry Res 2023; 321:115079. [PMID: 36716551 DOI: 10.1016/j.psychres.2023.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Depression is a common and debilitating mental illness associated with sadness and negativity and is often comorbid with other psychiatric conditions, such as schizophrenia. Depressive symptoms are presently primarily assessed through clinical interviews, however there are other behavioural indicators being investigated as more objective methods of depressive symptom assessment. The present study aimed to evaluate the utility of assessing depression using quantitative speech parameters by comparing speech between 23 schizophrenia/schizoaffective patients with clinically significant depressive symptoms (DP) 19 schizophrenia/schizoaffective patients without depressive symptoms (NDP) and 22 healthy controls with no psychiatric history (HC). Participant audio recordings were transcribed and analyzed to extract five types of speech variables: utterances, words, speaking rate, formulation errors and pauses. The results indicated that DP patients produced significantly more pauses within utterances, and had more utterances with pauses compared to NDP patients and HCs (p = <.05), who performed similarly to each other. Word, speaking rate and formulation errors variables were not significantly different between the patient groups (p > .05). The findings suggest that depressive symptoms may have a specific relationship to speech pauses, and support the potential future use of speech pause assessments as an alternative and objective depression rating and monitoring tool.
Collapse
Affiliation(s)
- Eric J Tan
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia.
| | - Erica Neill
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia
| | - Jacqui L Kleiner
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
49
|
de Boer JN, Voppel AE, Brederoo SG, Schnack HG, Truong KP, Wijnen FNK, Sommer IEC. Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool. Psychol Med 2023; 53:1302-1312. [PMID: 34344490 PMCID: PMC10009369 DOI: 10.1017/s0033291721002804] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Clinicians routinely use impressions of speech as an element of mental status examination. In schizophrenia-spectrum disorders, descriptions of speech are used to assess the severity of psychotic symptoms. In the current study, we assessed the diagnostic value of acoustic speech parameters in schizophrenia-spectrum disorders, as well as its value in recognizing positive and negative symptoms. METHODS Speech was obtained from 142 patients with a schizophrenia-spectrum disorder and 142 matched controls during a semi-structured interview on neutral topics. Patients were categorized as having predominantly positive or negative symptoms using the Positive and Negative Syndrome Scale (PANSS). Acoustic parameters were extracted with OpenSMILE, employing the extended Geneva Acoustic Minimalistic Parameter Set, which includes standardized analyses of pitch (F0), speech quality and pauses. Speech parameters were fed into a random forest algorithm with leave-ten-out cross-validation to assess their value for a schizophrenia-spectrum diagnosis, and PANSS subtype recognition. RESULTS The machine-learning speech classifier attained an accuracy of 86.2% in classifying patients with a schizophrenia-spectrum disorder and controls on speech parameters alone. Patients with predominantly positive v. negative symptoms could be classified with an accuracy of 74.2%. CONCLUSIONS Our results show that automatically extracted speech parameters can be used to accurately classify patients with a schizophrenia-spectrum disorder and healthy controls, as well as differentiate between patients with predominantly positive v. negatives symptoms. Thus, the field of speech technology has provided a standardized, powerful tool that has high potential for clinical applications in diagnosis and differentiation, given its ease of comparison and replication across samples.
Collapse
Affiliation(s)
- J. N. de Boer
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University & University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - A. E. Voppel
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S. G. Brederoo
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H. G. Schnack
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University & University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
- Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, the Netherlands
| | - K. P. Truong
- Department of Human Media Interaction, University of Twente, Enschede, the Netherlands
| | - F. N. K. Wijnen
- Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, the Netherlands
| | - I. E. C. Sommer
- Department of Biomedical Sciences of Cells and Systems and Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
50
|
Agurto C, Norel R, Wen B, Wei Y, Zhang D, Bilgrami Z, Hsi X, Zhang T, Pasternak O, Li H, Keshavan M, Seidman LJ, Whitfield-Gabrieli S, Shenton ME, Niznikiewicz MA, Wang J, Cecchi G, Corcoran C, Stone WS. Are language features associated with psychosis risk universal? A study in Mandarin-speaking youths at clinical high risk for psychosis. World Psychiatry 2023; 22:157-158. [PMID: 36640384 PMCID: PMC9840499 DOI: 10.1002/wps.21045] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Carla Agurto
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Raquel Norel
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Bo Wen
- IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Yanyan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zarina Bilgrami
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Xiaolu Hsi
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|