1
|
Boudriot E, Stephan M, Rabe F, Smigielski L, Schmitt A, Falkai P, Ziller MJ, Rossner MJ, Homan P, Papiol S, Raabe FJ. Genetic Analysis of Retinal Cell Types in Neuropsychiatric Disorders. JAMA Psychiatry 2025; 82:285-295. [PMID: 39775833 PMCID: PMC11883512 DOI: 10.1001/jamapsychiatry.2024.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Importance As an accessible part of the central nervous system, the retina provides a unique window to study pathophysiological mechanisms of brain disorders in humans. Imaging and electrophysiological studies have revealed retinal alterations across several neuropsychiatric and neurological disorders, but it remains largely unclear which specific cell types and biological mechanisms are involved. Objective To determine whether specific retinal cell types are affected by genomic risk for neuropsychiatric and neurological disorders and to explore the mechanisms through which genomic risk converges in these cell types. Design, Setting, and Participants This genetic association study combined findings from genome-wide association studies in schizophrenia, bipolar disorder, major depressive disorder, multiple sclerosis, Parkinson disease, Alzheimer disease, and stroke with retinal single-cell transcriptomic datasets from humans, macaques, and mice. To identify susceptible cell types, Multi-Marker Analysis of Genomic Annotation (MAGMA) cell-type enrichment analyses were applied and subsequent pathway analyses performed. The cellular top hits were translated to the structural level using retinal optical coherence tomography (acquired between 2009 and 2010) and genotyping data in the large population-based UK Biobank cohort study. Data analysis was conducted between 2022 and 2024. Main Outcomes and Measures Cell type-specific enrichment of genetic risk loading for neuropsychiatric and neurological disorder traits in the gene expression profiles of retinal cells. Results Expression profiles of amacrine cells (interneurons within the retina) were robustly enriched in schizophrenia genetic risk across mammalian species and in different developmental stages. This enrichment was primarily driven by genes involved in synapse biology. Moreover, expression profiles of retinal immune cell populations were enriched in multiple sclerosis genetic risk. No consistent cell-type associations were found for bipolar disorder, major depressive disorder, Parkinson disease, Alzheimer disease, or stroke. On the structural level, higher polygenic risk for schizophrenia was associated with thinning of the ganglion cell inner plexiform layer, which contains dendrites and synaptic connections of amacrine cells (B, -0.09; 95% CI, -0.16 to -0.03; P = .007; n = 36 349; mean [SD] age, 57.50 [8.00] years; 19 859 female [54.63%]). Higher polygenic risk for multiple sclerosis was associated with increased thickness of the retinal nerve fiber layer (B, 0.06; 95% CI, 0.02 to 0.10; P = .007; n = 36 371; mean [SD] age, 57.51 [8.00] years; 19 843 female [54.56%]). Conclusions and Relevance This study provides novel insights into the cellular underpinnings of retinal alterations in neuropsychiatric and neurological disorders and highlights the retina as a potential proxy to study synaptic pathology in schizophrenia.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Systasy Bioscience, Munich, Germany
| | - Finn Rabe
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Schmitt
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Mental Health, Partner Site Munich-Augsburg, Germany
- Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Mental Health, Partner Site Munich-Augsburg, Germany
| | - Michael J. Ziller
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
- Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Systasy Bioscience, Munich, Germany
| | - Philipp Homan
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, Ludwig Maximilian University Munich, Munich, Germany
| | - Florian J. Raabe
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
2
|
Boudriot E, Gabriel V, Popovic D, Pingen P, Yakimov V, Papiol S, Roell L, Hasanaj G, Xu S, Moussiopoulou J, Priglinger S, Kern C, Schulte EC, Hasan A, Pogarell O, Falkai P, Schmitt A, Schworm B, Wagner E, Keeser D, Raabe FJ. Signature of Altered Retinal Microstructures and Electrophysiology in Schizophrenia Spectrum Disorders Is Associated With Disease Severity and Polygenic Risk. Biol Psychiatry 2024; 96:792-803. [PMID: 38679358 DOI: 10.1016/j.biopsych.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Optical coherence tomography and electroretinography studies have revealed structural and functional retinal alterations in individuals with schizophrenia spectrum disorders (SSDs). However, it remains unclear which specific retinal layers are affected; how the retina, brain, and clinical symptomatology are connected; and how alterations of the visual system are related to genetic disease risk. METHODS Optical coherence tomography, electroretinography, and brain magnetic resonance imaging were applied to comprehensively investigate the visual system in a cohort of 103 patients with SSDs and 130 healthy control individuals. The sparse partial least squares algorithm was used to identify multivariate associations between clinical disease phenotype and biological alterations of the visual system. The association of the revealed patterns with individual polygenic disease risk for schizophrenia was explored in a post hoc analysis. In addition, covariate-adjusted case-control comparisons were performed for each individual optical coherence tomography and electroretinography parameter. RESULTS The sparse partial least squares analysis yielded a phenotype-eye-brain signature of SSDs in which greater disease severity, longer duration of illness, and impaired cognition were associated with electrophysiological alterations and microstructural thinning of most retinal layers. Higher individual loading onto this disease-relevant signature of the visual system was significantly associated with elevated polygenic risk for schizophrenia. In case-control comparisons, patients with SSDs had lower macular thickness, thinner retinal nerve fiber and inner plexiform layers, less negative a-wave amplitude, and lower b-wave amplitude. CONCLUSIONS This study demonstrates multimodal microstructural and electrophysiological retinal alterations in individuals with SSDs that are associated with disease severity and individual polygenic burden.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - David Popovic
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Pauline Pingen
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, Munich, Germany; Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simiao Xu
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph Kern
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany; Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Benedikt Schworm
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elias Wagner
- Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; Munich Center for Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
3
|
Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry 2024; 29:464-482. [PMID: 38081943 PMCID: PMC11116118 DOI: 10.1038/s41380-023-02340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension. METHODS Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023, using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020. RESULTS We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs. DISCUSSION Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual patient monitoring efforts.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.
- Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan
- Department of Community Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Xu XJ, Liu TL, He L, Pu B. Changes in neurotransmitter levels, brain structural characteristics, and their correlation with PANSS scores in patients with first-episode schizophrenia. World J Clin Cases 2023; 11:5215-5223. [PMID: 37621579 PMCID: PMC10445057 DOI: 10.12998/wjcc.v11.i22.5215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND In patients with schizophrenia, the brain structure and neurotransmitter levels change, which may be related to the occurrence and progression of this disease. AIM To explore the relationships between changes in neurotransmitters, brain structural characteristics, and the scores of the Positive and Negative Symptom Scale (PANSS) in patients with first-episode schizophrenia. METHODS The case group comprised 97 patients with schizophrenia, who were evaluated using the Canadian Neurological Scale and confirmed by laboratory tests at Ningbo Mental Hospital from January 2020 to July 2022. The control group comprised 100 healthy participants. For all participants, brain structural characteristics were explored by measuring brain dopamine (DA), glutamic acid (Glu), and gamma-aminobutyric acid (GABA) levels, with magnetic resonance imaging. The case group was divided into negative and positive symptom subgroups using PANSS scores for hierarchical analysis. Linear correlation analysis was used to analyze the correlations between neurotransmitters, brain structural characteristics, and PANSS scores. RESULTS Patients in the case group had higher levels of DA and lower levels of Glu and GABA, greater vertical and horizontal distances between the corpus callosum and the inferior part of the fornix and larger ventricle area than patients in the control group (P < 0.05). Patients with positive schizophrenia symptoms had significantly higher levels of DA, Glu, and GABA than those with negative symptoms (P < 0.05). In patients with positive schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical and horizontal distances between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05). In patients with negative schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical distance between the corpus callosum and the infrafornix, horizontal distance between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05). CONCLUSION In patients with first-episode schizophrenia, DA levels increased, Glu and GABA levels decreased, the thickness of the corpus callosum increased, and these variables were correlated with PANSS scores.
Collapse
Affiliation(s)
- Xian-Jia Xu
- The Fifth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Tang-Long Liu
- Department of Science and Education, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Liang He
- The Sixteenth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Ben Pu
- The Twelfth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
5
|
Xu XJ, Liu TL, He L, Pu B. Changes in neurotransmitter levels, brain structural characteristics, and their correlation with PANSS scores in patients with first-episode schizophrenia. World J Clin Cases 2023; 11:5209-5217. [DOI: 10.12998/wjcc.v11.i22.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND In patients with schizophrenia, the brain structure and neurotransmitter levels change, which may be related to the occurrence and progression of this disease.
AIM To explore the relationships between changes in neurotransmitters, brain structural characteristics, and the scores of the Positive and Negative Symptom Scale (PANSS) in patients with first-episode schizophrenia.
METHODS The case group comprised 97 patients with schizophrenia, who were evaluated using the Canadian Neurological Scale and confirmed by laboratory tests at Ningbo Mental Hospital from January 2020 to July 2022. The control group comprised 100 healthy participants. For all participants, brain structural characteristics were explored by measuring brain dopamine (DA), glutamic acid (Glu), and gamma-aminobutyric acid (GABA) levels, with magnetic resonance imaging. The case group was divided into negative and positive symptom subgroups using PANSS scores for hierarchical analysis. Linear correlation analysis was used to analyze the correlations between neurotransmitters, brain structural characteristics, and PANSS scores.
RESULTS Patients in the case group had higher levels of DA and lower levels of Glu and GABA, greater vertical and horizontal distances between the corpus callosum and the inferior part of the fornix and larger ventricle area than patients in the control group (P < 0.05). Patients with positive schizophrenia symptoms had significantly higher levels of DA, Glu, and GABA than those with negative symptoms (P < 0.05). In patients with positive schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical and horizontal distances between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05). In patients with negative schizophrenia symptoms, PANSS score was significantly positively correlated with DA, vertical distance between the corpus callosum and the infrafornix, horizontal distance between the corpus callosum and the infrafornix, and ventricular area, and was significantly negatively correlated with Glu and GABA (P < 0.05).
CONCLUSION In patients with first-episode schizophrenia, DA levels increased, Glu and GABA levels decreased, the thickness of the corpus callosum increased, and these variables were correlated with PANSS scores.
Collapse
Affiliation(s)
- Xian-Jia Xu
- The Fifth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Tang-Long Liu
- Department of Science and Education, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Liang He
- The Sixteenth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| | - Ben Pu
- The Twelfth Ward, Ningbo Psychiatric Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
6
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
7
|
Tursini K, Remy I, Le Cam S, Louis-Dorr V, Malka-Mahieu H, Schwan R, Gross G, Laprévote V, Schwitzer T. Subsequent and simultaneous electrophysiological investigation of the retina and the visual cortex in neurodegenerative and psychiatric diseases: what are the forecasts for the medicine of tomorrow? Front Psychiatry 2023; 14:1167654. [PMID: 37333926 PMCID: PMC10272854 DOI: 10.3389/fpsyt.2023.1167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Visual electrophysiological deficits have been reported in neurodegenerative disorders as well as in mental disorders. Such alterations have been mentioned in both the retina and the cortex, notably affecting the photoreceptors, retinal ganglion cells (RGCs) and the primary visual cortex. Interestingly, such impairments emphasize the functional role of the visual system. For this purpose, the present study reviews the existing literature with the aim of identifying key alterations in electroretinograms (ERGs) and visual evoked potentials electroencephalograms (VEP-EEGs) of subjects with neurodegenerative and psychiatric disorders. We focused on psychiatric and neurodegenerative diseases due to similarities in their neuropathophysiological mechanisms. Our research focuses on decoupled and coupled ERG/VEP-EEG results obtained with black-and-white checkerboards or low-level visual stimuli. A decoupled approach means recording first the ERG, then the VEP-EEG in the same subject with the same visual stimuli. The second method means recording both ERG and VEP-EEG simultaneously in the same participant with the same visual stimuli. Both coupled and decoupled results were found, indicating deficits mainly in the N95 ERG wave and the P100 VEP-EEG wave in Parkinson’s, Alzheimer’s, and major depressive disorder. Such results reinforce the link between the retina and the visual cortex for the diagnosis of psychiatric and neurodegenerative diseases. With that in mind, medical devices using coupled ERG/VEP-EEG measurements are being developed in order to further investigate the relationship between the retina and the visual cortex. These new techniques outline future challenges in mental health and the use of machine learning for the diagnosis of mental disorders, which would be a crucial step toward precision psychiatry.
Collapse
Affiliation(s)
- Katelyne Tursini
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Irving Remy
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
| | - Steven Le Cam
- CRAN, CNRS UMR 7039, Université de Lorraine, Nancy, France
| | | | | | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Grégory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
8
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
9
|
Abstract
Schizophrenia is increasingly recognized as a systemic disease, characterized by dysregulation in multiple physiological systems (eg, neural, cardiovascular, endocrine). Many of these changes are observed as early as the first psychotic episode, and in people at high risk for the disorder. Expanding the search for biomarkers of schizophrenia beyond genes, blood, and brain may allow for inexpensive, noninvasive, and objective markers of diagnosis, phenotype, treatment response, and prognosis. Several anatomic and physiologic aspects of the eye have shown promise as biomarkers of brain health in a range of neurological disorders, and of heart, kidney, endocrine, and other impairments in other medical conditions. In schizophrenia, thinning and volume loss in retinal neural layers have been observed, and are associated with illness progression, brain volume loss, and cognitive impairment. Retinal microvascular changes have also been observed. Abnormal pupil responses and corneal nerve disintegration are related to aspects of brain function and structure in schizophrenia. In addition, studying the eye can inform about emerging cardiovascular, neuroinflammatory, and metabolic diseases in people with early psychosis, and about the causes of several of the visual changes observed in the disorder. Application of the methods of oculomics, or eye-based biomarkers of non-ophthalmological pathology, to the treatment and study of schizophrenia has the potential to provide tools for patient monitoring and data-driven prediction, as well as for clarifying pathophysiology and course of illness. Given their demonstrated utility in neuropsychiatry, we recommend greater adoption of these tools for schizophrenia research and patient care.
Collapse
Affiliation(s)
- Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Joy J Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Kyle M Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Rajeev S Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
10
|
Lee IO, Skuse DH, Constable PA, Marmolejo-Ramos F, Olsen LR, Thompson DA. The electroretinogram b-wave amplitude: a differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J Neurodev Disord 2022; 14:30. [PMID: 35524181 PMCID: PMC9077889 DOI: 10.1186/s11689-022-09440-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Attention Deficit Hyperactivity Disorder (ADHD) is the most prevalent childhood neurodevelopmental disorder. It shares some genetic risk with Autism Spectrum Disorder (ASD), and the conditions often occur together. Both are potentially associated with abnormal glutamate and GABA neurotransmission, which can be modelled by measuring the synaptic activity in the retina with an electroretinogram (ERG). Reduction of retinal responses in ASD has been reported, but little is known about retinal activity in ADHD. In this study, we compared the light-adapted ERGs of individuals with ADHD, ASD and controls to investigate whether retinal responses differ between these neurodevelopmental conditions. Methods Full field light-adapted ERGs were recorded from 15 ADHD, 57 ASD (without ADHD) and 59 control participants, aged from 5.4 to 27.3 years old. A Troland protocol was used with a random series of nine flash strengths from −0.367 to 1.204 log photopic cd.s.m−2. The time-to-peak and amplitude of the a- and b-waves and the parameters of the Photopic Negative Response (PhNR) were compared amongst the three groups of participants, using generalised estimating equations. Results Statistically significant elevations of the ERG b-wave amplitudes, PhNR responses and faster timings of the b-wave time-to-peak were found in those with ADHD compared with both the control and ASD groups. The greatest elevation in the b-wave amplitudes associated with ADHD were observed at 1.204 log phot cd.s.m−2 flash strength (p < .0001), at which the b-wave amplitude in ASD was significantly lower than that in the controls. Using this measure, ADHD could be distinguished from ASD with an area under the curve of 0.88. Conclusions The ERG b-wave amplitude appears to be a distinctive differential feature for both ADHD and ASD, which produced a reversed pattern of b-wave responses. These findings imply imbalances between glutamate and GABA neurotransmission which primarily regulate the b-wave formation. Abnormalities in the b-wave amplitude could provisionally serve as a biomarker for both neurodevelopmental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09440-2.
Collapse
Affiliation(s)
- Irene O Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - David H Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul A Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, University of South Australia, Adelaide, Australia
| | - Ludvig R Olsen
- Department of Molecular Medicine (MOMA), Aarhus University, Aarhus, Denmark
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|