1
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
He T, Lykov N, Luo X, Wang H, Du Z, Chen Z, Chen S, Zhu L, Zhao Y, Tzeng C. Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. Int J Mol Sci 2023; 24:ijms24032053. [PMID: 36768377 PMCID: PMC9917166 DOI: 10.3390/ijms24032053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Zhao
- Correspondence: (Y.Z.); (C.T.)
| | | |
Collapse
|
3
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
4
|
He S, Cui S, Song W, Jiang Y, Chen H, Liao D, Lu X, Li J, Chen X, Peng L. Interleukin-17 Weakens the NAFLD/NASH Process by Facilitating Intestinal Barrier Restoration Depending on the Gut Microbiota. mBio 2022; 13:e0368821. [PMID: 35266816 PMCID: PMC9040850 DOI: 10.1128/mbio.03688-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Interleukin-17 (IL-17) is associated with nonalcoholic fatty liver disease (NAFLD) and gut microbiota, and how IL-17 mediates the NAFLD/nonalcoholic steatohepatitis (NASH) process depending on the gut microbiota is unclear. We found that T helper 17 (TH17) cells were decreased in the small intestine in a methionine choline-deficient (MCD) diet-induced NASH model. IL-17-deficient (Il17-/-) mice showed alterations in intestinal microbiota, including the inhibition of probiotic growth and the overgrowth of certain pathogenic bacteria, and were prone to higher endotoxemia levels and more severe gastrointestinal barrier defects than wild-type (WT) mice. Furthermore, TH17 cells were responsible for restoring the intestinal barrier after administration of recombinant IL-17 to Il17-/- mice or injection of CD4+ T cells into a Rag1-/- mouse model. Additionally, transplantation of the microbiota from WT mice to Il17-/- mice restored the intestinal barrier. Notably, microbiota-depleted Il17-/- mice were resistant to MCD diet-induced intestinal barrier impairment. Fecal microbiota transplantation from Il17-/- mice to microbiota-depleted mice aggravated intestinal barrier impairment and then promoted the development of NASH. Collectively, this study showed that host IL-17 could strengthen intestinal mucosal barrier integrity and reduce dysbiosis-induced intestinal injury and secondary extraintestinal organ injury induced by a special diet. IMPORTANCE The morbidity of NASH has increased, with limited effective treatment options. IL-17 plays a protective role in the gut mucosa in high-fat-diet (HFD)-related metabolic disorders, and HFD-related microbiota dysbiosis is responsible for a decreased number of T helper 17 (TH17) cells in the lamina propria. The mechanism by which IL-17 mediates the NAFLD/NASH process depending on the gut microbiota is unclear. In our study, IL-17 originating from TH17 cells maintained intestinal barrier integrity and determined the outcomes of diet-related disease, which may be a target strategy for NAFLD/NASH.
Collapse
Affiliation(s)
- Shuying He
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shudan Cui
- Shenzhen People's Hospital, Shenzhen, China
| | - Wen Song
- Southern Medical University, Guangzhou, China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dongjiang Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinpeng Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Okamura Y, Kinoshita M, Kono T, Sakai M, Hikima JI. Deficiency of interleukin-17 receptor A1 induces microbiota disruption in the intestine of Japanese medaka, Oryzias latipes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100885. [PMID: 34339936 DOI: 10.1016/j.cbd.2021.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
The mutual relationship between the intestinal immune system and the gut microbiota has received a great deal of attention. In mammals, interleukin-17A and F (IL-17A/F) are inflammatory cytokines and key regulators of the gut microbiota. However, in teleosts, the function of IL-17A/F in controlling the gut microbiota is poorly understood. We attempted to elucidate the importance of teleost IL-17 signaling in controlling gut microbiota. We previously established a knockout (KO) of IL-17 receptor A (RA) 1, a receptor for IL-17A/F, in the Japanese medaka (Oryzias latipes) using the CRISPR-Cas9 system and performed 16S rRNA-based metagenomic analyses using the anterior and posterior sections of the intestinal tract. The number of observed OTUs in the anterior intestine was significantly decreased in IL-17RA1 KO medaka compared to that in the wild-type (WT). Furthermore, β-diversity analysis (weighted UniFrac) revealed considerably different bacterial composition in the anterior intestine of IL-17RA1 KO compared to WT, with similar findings in α-diversity. Notably, the pathogen Plesiomonas shigelloides was significantly increased in the posterior intestine of IL-17RA1 KO medaka. These findings indicate that signaling via IL-17RA1 is required to maintain a healthy gut microbiota in teleosts and mammals. The involvement of IL-17RA1 in controlling the gut microbiota has been demonstrated, resulting in microbiome dysbiosis in IL-17RA1 KO medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
6
|
Wang G, Zhu G, Chen C, Zheng Y, Ma F, Zhao J, Lee YK, Zhang H, Chen W. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Benef Microbes 2021; 12:267-281. [PMID: 34109894 DOI: 10.3920/bm2020.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulation on gut microbiota and short-chain fatty acids (SCFAs) are believed to be a pathway to suppress the development of metabolic syndrome. In this study, three Lactobacillus strains derived from the human gut were investigated for their effects on alleviation of metabolic disorders. These strains were individually administered to metabolic disorder rats induced by high-fat-high-sucrose (HFHS) diet. Each strain exhibited its own characteristics in attenuating the impaired glucose-insulin homeostasis, hepatic oxidative damage and steatosis. Correlation analysis between SCFAs and host metabolic parameters suggested that Lactobacillus protective effects on metabolic disorders are partly mediated by recovery of SCFAs production, especially the faecal acetic acid. Correspondingly, it indicated that probiotics restore the gut microbiota dysbiosis in different extent, thereby protect against metabolic disorders in a manner that is associated with microbiota, but not totally reverse the changed composition of microbiota to the normal state. Thus, Lactobacillus strains partly protect against diet-induced metabolic syndrome by microbiota modulation and acetate elevation.
Collapse
Affiliation(s)
- G Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - G Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - C Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - Y Zheng
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - F Ma
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R
| | - Y-K Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|
7
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
8
|
Song Y, Qi Z, Zhang Y, Wei J, Liao X, Li R, Dong C, Zhu L, Yang Z, Cai Z. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139304. [PMID: 32438171 DOI: 10.1016/j.scitotenv.2020.139304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with decreased cardiac function, especially in high risk populations such as obese ones. In this study, impacts of PM2.5 exposure on cardiac function were investigated by using the diet-induced obesity mice model. Mice were fed with normal diet or high-fat diet (HFD) for four weeks and then exposed to phosphate-buffered solution or Taiyuan winter PM2.5 (0.25 mg/kg body/day) through intratracheal instillation for another four weeks. Among physiological indices recorded, heart rate and blood pressure were increased after PM2.5 exposure in the heart of the obese mice. Metabolomics and lipidomics were applied to explore molecular alterations in response to the co-treatment of PM2.5 and HFD. Our results demonstrated both direct impacts on cardiac function and indirect effects resulted from the injury of other organs. Inflammation of lung and hypothalamus may be responsible for the elevation of phenylalanine metabolism in serum and its downstream products: epinephrine and norepinephrine, the catecholamines involves in regulating cardiac system. In intracardiac system, the co-treatment led to imbalance of energy metabolism, in addition to oxidative stress and inflammation. In contrast to the upregulation of glucose and fatty acids uptake and CoA synthesis, levels of ATP, acetyl-CoA and the intermediates in glycolysis pathway decreased in the heart. The results indicated that energy metabolism disorder was possibly one of the important contributing factors to the more severe adverse effects of the combined treatment of HFD and PM2.5.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
9
|
The cutaneous and intestinal microbiome in psoriatic disease. Clin Immunol 2020; 218:108537. [PMID: 32679247 DOI: 10.1016/j.clim.2020.108537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis (PsO) and psoriatic arthritis (PsA) are chronic immune-mediated inflammatory diseases of multifactorial etiology. In addition to genetic and environmental factors, evidence supports involvement of a dysregulated human microbiome in the pathogenesis of psoriatic disease. In particular, alterations in the composition of the microbiome, termed dysbiosis, can result in downstream proinflammatory effects in the gut, skin, and joints. Both the cutaneous and intestinal microbial populations are implicated in the pathogenesis of psoriatic disease, although exact mechanisms are unclear. Herein, we review the relationship between the human microbiome and psoriatic disease. Further insight into the functions of the microbiome may allow for greater understanding of inflammatory disease processes and identification of additional therapeutic targets.
Collapse
|
10
|
Okamura Y, Morimoto N, Ikeda D, Mizusawa N, Watabe S, Miyanishi H, Saeki Y, Takeyama H, Aoki T, Kinoshita M, Kono T, Sakai M, Hikima JI. Interleukin-17A/F1 Deficiency Reduces Antimicrobial Gene Expression and Contributes to Microbiome Alterations in Intestines of Japanese medaka ( Oryzias latipes). Front Immunol 2020; 11:425. [PMID: 32256492 PMCID: PMC7092794 DOI: 10.3389/fimmu.2020.00425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals, interleukin (IL)-17A and F are hallmark inflammatory cytokines that play key roles in protection against infection and intestinal mucosal immunity. In the gastrointestinal tract (GI), the induction of antimicrobial peptide (AMP) production via Paneth cells is a fundamental role of IL-17A and F in maintaining homeostasis of the GI microbiome and health. Although mammalian IL-17A and F homologs (referred to as IL-17A/F1-3) have been identified in several fish species, their function in the intestine is poorly understood. Additionally, the fish intestine lacks Paneth cells, and its GI structure is very different from that of mammals. Therefore, the GI microbiome modulatory mechanism via IL-17A/F genes has not been fully elucidated. In this study, Japanese medaka (Oryzias latipes) were used as a teleost model, and IL-17A/F1-knockout (IL-17A/F1-KO) medaka were established using the CRISPR/Cas9 genome editing technique. Furthermore, two IL-17A/F1-deficient medaka strains were generated, including one strain containing a 7-bp deletion (-7) and another with an 11-bp addition (+11). After establishing F2 homozygous KO medaka, transcriptome analysis (RNA-seq) was conducted to elucidate IL-17A/F1-dependent gene induction in the intestine. Results of RNA-seq and real-time PCR (qPCR) demonstrated down-regulation of immune-related genes, including interleukin-1β (IL-1β), complement 1q subunit C (C1qc), transferrin a (Tfa), and G-type lysozyme (LyzG), in IL-17A/F1-KO medaka. Interestingly, protein and lipid digestive enzyme genes, including phospholipase A2, group IB (pla2g1b), and elastase-1-like (CELA1), were also downregulated in the intestines of IL-17A/F1-KO medaka. Furthermore, to reveal the influence of these downregulated genes on the gut microbiome in IL-17A/F1-KO, 16S rRNA-based metagenomic sequencing analysis was conducted to analyze the microbiome constitution. Under a non-exposed state, the intestinal microbiome of IL-17A/F1-KO medaka differed at the phylum level from wild-type, with significantly higher levels of Verrucomicrobia and Planctomycetes. Additionally, at the operational taxonomic unit (OTU) level of the human and fish pathogens, the Enterobacteriaceae Plesiomonas shigelloides was the dominant species in IL-17A/F1-KO medaka. These findings suggest that IL-17A/F1 is involved in the maintenance of a healthy gut microbiome.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Saeki
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nao and Life Innovation, Waseda University, Tokyo, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
Wang R, Li S, Jin L, Zhang W, Liu N, Wang H, Wang Z, Wei P, Li F, Yu J, Lu S, Chen Y, Li Z, Wu C. Four-week administration of nicotinemoderately impacts blood metabolic profile and gut microbiota in a diet-dependent manner. Biomed Pharmacother 2019; 115:108945. [DOI: 10.1016/j.biopha.2019.108945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
|
12
|
Wu Q, Zhong H, Zhai Y, Jia Y, Yin Z, Chen M, Yang H, Wang PG. Gut microbiota have blood types as human. Sci Bull (Beijing) 2018; 63:1311-1313. [PMID: 36658897 DOI: 10.1016/j.scib.2018.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qizheng Wu
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Hui Zhong
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Yafei Zhai
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Yanjiong Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Min Chen
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China.
| | - Hengwen Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| | - Peng George Wang
- The State Key Laboratory of Microbial Technology and National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
13
|
Zhu G, Ma F, Wang G, Wang Y, Zhao J, Zhang H, Chen W. Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences. Food Funct 2018; 9:3509-3522. [PMID: 29892745 DOI: 10.1039/c8fo00100f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Host gut microbiota dysbiosis occurs for multiple reasons and is often accompanied by chronic inflammation induced by a high-fat-high-sucrose (HFHS) diet and related metabolic disorders. Intervention with probiotics is a novel strategy for amelioration of metabolic syndrome, which is believed to regulate the gut microbiota composition to some extent. We investigated the relationship amongst bifidobacteria treatment, HFHS diet-induced metabolic disorders and the gut microbiota composition. Seven strains of bifidobacteria from four species were individually administered to rats fed a HFHS diet for 12 weeks. Various bifidobacteria strains showed various effects on the recovery of metabolic disorders and gut microbiota dysbiosis, and these effects seemed to be inter- or intra-species specific. Bifidobacterium longum, B. adolescentis and B. bifidum seemed to affect the blood glucose balance, whilst two strains of B. breve showed extremely different effects in this area. However, only one strain of B. longum and the B. adolescentis displayed significant regulation of blood lipid levels. The protective effects of bifidobacteria on the pancreas were strongly correlated with those on blood glucose. Furthermore, the influence of bifidobacteria on gut microbiota dysbiosis also showed a potential relationship with symptoms of metabolic disorders. Of these seven strains, B. adolescentis Z25 displayed an outstanding ability to alleviate metabolic syndrome, including glucose and lipid metabolism disorders, tissue damage and gut microbiota dysbiosis. This strain, coupled with other prebiotics and probiotics, could be used as a potential treatment approach for metabolic syndrome induced by a HFHS diet.
Collapse
Affiliation(s)
- Guangsu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
| | | | | | | | | | | | | |
Collapse
|