1
|
Guan Q, Wang Z, Zhang K, Liu Z, Zhou H, Cao D, Mao X. CRISPR/Cas9-mediated neuronal deletion of 5-lipoxygenase alleviates deficits in mouse models of epilepsy. J Adv Res 2024; 63:73-90. [PMID: 39048074 PMCID: PMC11379977 DOI: 10.1016/j.jare.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our previous work reveals a critical role of activation of neuronal Alox5 in exacerbating brain injury post seizures. However, whether neuronal Alox5 impacts the pathological process of epilepsy remains unknown. OBJECTIVES To prove the feasibility of neuron-specific deletion of Alox5 via CRISPR-Cas9 in the blockade of seizure onset and epileptic progression. METHODS Here, we employed a Clustered regularly interspaced short-palindromic repeat-associated proteins 9 system (CRISPR/Cas9) system delivered by adeno-associated virus (AAV) to specifically delete neuronal Alox5 gene in the hippocampus to explore its therapeutic potential in various epilepsy mouse models and possible mechanisms. RESULTS Neuronal depletion of Alox5 was successfully achieved in the brain. AAV delivery of single guide RNA of Alox5 in hippocampus resulted in reducing seizure severity, delaying epileptic progression and improving epilepsy-associated neuropsychiatric comorbidities especially anxiety, cognitive deficit and autistic-like behaviors in pilocarpine- and kainic acid-induced temporal lobe epilepsy (TLE) models. In addition, neuronal Alox5 deletion also reversed neuron loss, neurodegeneration, astrogliosis and mossy fiber sprouting in TLE model. Moreover, a battery of tests including analysis of routine blood test, hepatic function, renal function, routine urine test and inflammatory factors demonstrated no noticeable toxic effect, suggesting that Alox5 deletion possesses the satisfactory biosafety. Mechanistically, the anti-epileptic effect of Alox5 deletion might be associated with reduction of glutamate level to restore excitatory/inhibitory balance by reducing CAMKII-mediated phosphorylation of Syn ISer603. CONCLUSION Our findings showed the translational potential of AAV-mediated delivery of CRISPR-Cas9 system including neuronal Alox5 gene for an alternative promising therapeutic approach to treat epilepsy.
Collapse
Affiliation(s)
- Qiwen Guan
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China; Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo 454000, China
| | - Zhaojun Wang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Kai Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Honghao Zhou
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Danfeng Cao
- Academician Workstation and Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
3
|
Zheng B, Niu L, Xu H, Yang Y, Chen Y, Wang C, Chen W, Huang W. Engineering redirected NF-κB/OIP5 expression programs to enhance tumor responses to chemotherapy in bladder cancer. Sci Bull (Beijing) 2023; 68:3207-3224. [PMID: 37993335 DOI: 10.1016/j.scib.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Nuclear factor kappa-B (NF-κB), a pivotal transcriptional regulator, plays a crucial role in modulating downstream genes implicated in tumor drug resistance. We establish a programmable system within bladder cancer cells to tailor drug responses by employing a synthetic clustered regularly interspaced short palindromic repeats (CRISPR)-based expression strategy that emulates natural transcriptional regulators. Our investigation uncovers the functional significance of Opa-interacting protein 5 (OIP5), upregulated upon NF-κB activation, as a key regulator governing drug-resistance to vincristine (VCR) treatment in bladder cancer. Through engineered guide RNAs (sgRNAs) targeting OIP5 to integrate NF-κB aptamers, we construct a modular scaffold RNA that encodes both the target locus and regulatory functionality. This engineered CRISPR scaffold RNA effectively responds to VCR stimulus by binding with activated NF-κB. Intriguingly, it redirects NF-κB to attenuate OIP5 expression-a reversal of its original role-while concurrently obstructing multiple NF-κB-mediated drug resistance pathways. This dual action thwarts drug resistance development. Further enhancing therapeutic potential, we develop a versatile nanoparticle system capable of co-delivering CRISPR scaffold RNAs and VCR. This synergistic approach demonstrates potent anti-tumor effects in both in vitro and in vivo settings. Our nanoparticle-mediated combination presents a compelling proof-of-concept, showcasing the utility of engineered CRISPR-based synthetic expression programs to reconfigure cellular drug responses and heighten tumor cell susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haibo Xu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China
| | - Chenguang Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China.
| |
Collapse
|
4
|
Zhu L, Zheng D, Li R, Shen CJ, Cai R, Lyu C, Tang B, Sun H, Wang X, Ding Y, Xu B, Jia G, Li X, Gao L, Li XM. Induction of Anxiety-Like Phenotypes by Knockdown of Cannabinoid Type-1 Receptors in the Amygdala of Marmosets. Neurosci Bull 2023; 39:1669-1682. [PMID: 37368194 PMCID: PMC10603018 DOI: 10.1007/s12264-023-01081-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/08/2023] [Indexed: 06/28/2023] Open
Abstract
The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Di Zheng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Rui Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ruolan Cai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Chenfei Lyu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Binliang Tang
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hao Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaohui Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yu Ding
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Xu
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Guoqiang Jia
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xinjian Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Lixia Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, China/Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Guo M, Sun L. From rodents to humans: Rodent behavioral paradigms for social behavioral disorders. Brain Circ 2023; 9:154-161. [PMID: 38020957 PMCID: PMC10679632 DOI: 10.4103/bc.bc_48_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023] Open
Abstract
Social cognition guides social behavior. Subjects with proper social cognition should be able to: (1) have reasonable social motivation, (2) recognize other people and infer their intentions, and (3) weigh social hierarchies and other values. The choice of appropriate behavioral paradigms enables the use of rodents to study social behavior disorders in humans, thus enabling research to go deeper into neural mechanisms. This paper reviews commonly used rodent behavioral paradigms in studies of social behavior disorders. We focused specifically on sorting out ways to transfer the study of human social behavior to rodents through behavioral paradigms.
Collapse
Affiliation(s)
- Mingyue Guo
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| | - Le Sun
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Hou X, Zhang X, Zou H, Guan M, Fu C, Wang W, Zhang ZR, Geng Y, Chen Y. Differential and substrate-specific inhibition of γ-secretase by the C-terminal region of ApoE2, ApoE3, and ApoE4. Neuron 2023; 111:1898-1913.e5. [PMID: 37040764 DOI: 10.1016/j.neuron.2023.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023]
Abstract
Aberrant low γ-secretase activity is associated with most of the presenilin mutations that underlie familial Alzheimer's disease (fAD). However, the role of γ-secretase in the more prevalent sporadic AD (sAD) remains unaddressed. Here, we report that human apolipoprotein E (ApoE), the most important genetic risk factor of sAD, interacts with γ-secretase and inhibits it with substrate specificity in cell-autonomous manners through its conserved C-terminal region (CT). This ApoE CT-mediated inhibitory activity is differentially compromised in different ApoE isoforms, resulting in an ApoE2 > ApoE3 > ApoE4 potency rank order inversely correlating to their associated AD risk. Interestingly, in an AD mouse model, neuronal ApoE CT migrates to amyloid plaques in the subiculum from other regions and alleviates the plaque burden. Together, our data reveal a hidden role of ApoE as a γ-secretase inhibitor with substrate specificity and suggest that this precision γ-inhibition by ApoE may protect against the risk of sAD.
Collapse
Affiliation(s)
- Xianglong Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., B13, Pudongxinqu, Shanghai 201210, China.
| |
Collapse
|
8
|
Corrigendum to "Induction of core symptoms of autism spectrum disorders by in vivo CRISPR/Cas9-based gene editing in the brain of adolescent rhesus monkeys" [Sci. Bull. 66(9) (2021) 937-946]. Sci Bull (Beijing) 2023; 68:537. [PMID: 36842864 DOI: 10.1016/j.scib.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Wang N, Lv L, Huang X, Shi M, Dai Y, Wei Y, Xu B, Fu C, Huang H, Shi H, Liu Y, Hu X, Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front Mol Neurosci 2022; 15:1043018. [PMID: 36590912 PMCID: PMC9794862 DOI: 10.3389/fnmol.2022.1043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disease, and its diagnosis is dependent on behavioral manifestation, such as impaired reciprocal social interactions, stereotyped repetitive behaviors, as well as restricted interests. However, ASD etiology has eluded researchers to date. In the past decades, based on strong genetic evidence including mutations in a single gene, gene editing technology has become an essential tool for exploring the pathogenetic mechanisms of ASD via constructing genetically modified animal models which validates the casual relationship between genetic risk factors and the development of ASD, thus contributing to developing ideal candidates for gene therapies. The present review discusses the progress in gene editing techniques and genetic research, animal models established by gene editing, as well as gene therapies in ASD. Future research should focus on improving the validity of animal models, and reliable DNA diagnostics and accurate prediction of the functional effects of the mutation will likely be equally crucial for the safe application of gene therapies.
Collapse
Affiliation(s)
- Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
10
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|