1
|
Shen M, Liu Q, Sun J, Liang C, Xiong C, Hou C, Huang J, Cao L, Feng Y, Shang Z. Vapor deposition strategy for implanting isolated Fe sites into papermaking nanofibers-derived N-doped carbon aerogels for liquid Electrolyte-/All-Solid-State Zn-Air batteries. J Colloid Interface Sci 2024; 673:453-462. [PMID: 38878379 DOI: 10.1016/j.jcis.2024.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.
Collapse
Affiliation(s)
- Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qingqing Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chanjuan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Shang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Wang L, Zhao S, Zhang X, Xu Y, An Y, Li C, Yi S, Liu C, Wang K, Sun X, Zhang H, Ma Y. In Situ Construction of Bimetallic Selenides Heterogeneous Interface on Oxidation-Stable Ti 3C 2T x MXene Toward Lithium Storage with Ultrafast Charge Transfer Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403078. [PMID: 39221641 DOI: 10.1002/smll.202403078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Ti3C2Tx (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to Ti3C2Tx-derived TiO2 at the heterogeneous interface between Ti3C2Tx and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO2 on Ti3C2Tx with metallic TiSe2 interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe2 and TiSe2 generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe2/TiSe2/Ti3C2Tx heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s-1), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe2/TiSe2/Ti3C2Tx possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g-1). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China North Vehicle Research Institute, Beijing, 100072, China
| | - Shasha Zhao
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiong Zhang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Yanan Xu
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Yabin An
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Chen Li
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Sha Yi
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Cong Liu
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Xianzhong Sun
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Haitao Zhang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yanwei Ma
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Xie Y, Zhang H, Hu H, He Z. Large-Scale Production and Integrated Application of Micro-Supercapacitors. Chemistry 2024; 30:e202304160. [PMID: 38206572 DOI: 10.1002/chem.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Micro-supercapacitors, emerging as promising micro-energy storage devices, have attracted significant attention due to their unique features. This comprehensive review focuses on two key aspects: the scalable fabrication of MSCs and their diverse applications. The review begins by elucidating the energy storage mechanisms and guiding principles for designing high-performance devices. It subsequently explores recent advancements in scalable fabrication techniques for electrode materials and micro-nano fabrication technologies for micro-devices. The discussion encompasses critical application domains, including multifunctional MSCs, energy storage integration, integrated power generation, and integrated applications. Despite notable progress, there are still some challenges such as large-scale production of electrode material, well-controlled fabrication technology, and scalable integrated manufacture. The summary concludes by emphasizing the need for future research to enhance micro-supercapacitor performance, reduce production costs, achieve large-scale production, and explore synergies with other energy storage technologies. This collective effort aims to propel MSCs from laboratory innovation to market viability, providing robust energy storage solutions for MEMS and portable electronics.
Collapse
Affiliation(s)
- Yanting Xie
- School of Materials Science and Engineering, Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haitao Zhang
- School of Materials Science and Engineering, Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
| | - Haitao Hu
- Institute of Smart City and Intelligent Transportation, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhengyou He
- Institute of Smart City and Intelligent Transportation, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
4
|
Xiao J, Yu P, Gao H, Yao J. Endogenous Nb 2CT x/Nb 2O 5 Schottky heterostructures for superior lithium-ion storage. J Colloid Interface Sci 2023; 652:113-121. [PMID: 37591072 DOI: 10.1016/j.jcis.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Schottky heterostructures have significant advantages for exciting charge transfer kinetics at material interfaces. In this work, endogenous Nb2CTx/Nb2O5 Schottky heterostructures with a large active surface area were constructed using an in-situ architectural strategy. The semiconductor Nb2O5 has a low work function, and during the construction of Nb2CTx/Nb2O5 Schottky heterostructures, there was an interfacial electron transfer, which resulted in a built-in electric field. The electrochemical reaction kinetics of Nb2CTx/Nb2O5 Schottky heterostructures were enhanced due to the rapid transfer of charge driven by the electric field. The Nb2CTx/Nb2O5 Schottky heterostructures have a large active surface area, which contributes to excellent electrolyte diffusion kinetics. Therefore, Nb2CTx/Nb2O5 Schottky heterostructures have excellent lithium-ion storage capacity with 575 mAh/g after 200 cycles at 0.10 A/g, and 290 mAh/g after 1000 cycles at 2.00 A/g, without capacity fading. Furthermore, in-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy analyses reveal the mechanisms for structure evolution and lithium-ion storage optimization of Nb2CTx/Nb2O5 Schottky heterostructures during the electrochemical reaction. The construction of Schottky heterostructures with excited charge transport kinetics provides a novel idea for optimizing the lithium-ion storage activity of MXenes materials.
Collapse
Affiliation(s)
- Junpeng Xiao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China; School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Peng Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Hong Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Jing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
5
|
Deng X, Zheng R, Deng W, Hou H, Zou G, Ji X. Interfacial Mo-S-C Bond with High Reversibility for Advanced Alkali-Ion Capacitors: Strategies for High-Throughput Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300256. [PMID: 37330644 DOI: 10.1002/smll.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS2 , the scalable preparation of inexpensive MoS2-x @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS2 /C in previous work. More importantly, MoS2- x @CN electrode is endowed with impressive rate capability even at 5 A g-1 , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS2 materials. Obtaining the full SIC cell assembled by MoS2- x @CN anode and carbon cathode, the energy/power output is high up to 265.3 W h kg-1 at 250 W kg-1 . These advantages indicate the huge potentials of the designed MoS2- x @CN and of mineral-based cost-effective and abundant resources as anode materials in high-performance AICs.
Collapse
Affiliation(s)
- Xinglan Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Renji Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Bayhan Z, El-Demellawi JK, Yin J, Khan Y, Lei Y, Alhajji E, Wang Q, Hedhili MN, Alshareef HN. A Laser-Induced Mo 2 CT x MXene Hybrid Anode for High-Performance Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208253. [PMID: 37183297 DOI: 10.1002/smll.202208253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Indexed: 05/16/2023]
Abstract
MXenes, a fast-growing family of two-dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2 CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li-ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2 CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser-induced Mo2 CTx /Mo2 C (LS-Mo2 CTx ) hybrid anode has been developed, of which the Mo2 C nanodots boost redox kinetics, and the laser-reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser-induced Mo2 C nanodots and Mo2 CTx nanosheets enhance conductivity and stabilize the structure during charge-discharge cycling. The as-prepared LS-Mo2 CTx anode exhibits an enhanced capacity of 340 mAh g-1 vs 83 mAh g-1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energy storage applications.
Collapse
Affiliation(s)
- Zahra Bayhan
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Jehad K El-Demellawi
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Upstream Research Center (KURC), EXPEC Advanced Research Center (ARC), Saudi Aramco, Thuwal, 23955-6900, Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yusuf Khan
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eman Alhajji
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingxiao Wang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Sun X, Zhou N, Liu M. Adsorption desulfurization over porous carbons derived from ZIF-67 and AC. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Cheng W, Liu J, Hu J, Peng W, Niu G, Li J, Cheng Y, Feng X, Fang L, Wang MS, Redfern SAT, Tang M, Wang G, Gou H. Pressure-Stabilized High-Entropy (FeCoNiCuRu)S 2 Sulfide Anode toward Simultaneously Fast and Durable Lithium/Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301915. [PMID: 37189236 DOI: 10.1002/smll.202301915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.
Collapse
Affiliation(s)
- Wenbo Cheng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jie Liu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jun Hu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Wenfeng Peng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Guoliang Niu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Junkai Li
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Yong Cheng
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaolei Feng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leiming Fang
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Simon A T Redfern
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Gongkai Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Huiyang Gou
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| |
Collapse
|
10
|
Xiao J, Jin Q, Cang R, Gao H, Yao J. Carbon-coated MXene nanofiber as a free-standing electrode for high-performance lithium-ion storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Dubey P. A comprehensive overview of MXene‐based anode materials for univalent metal ions (Li
+
, Na
+
, and K
+
) and bivalent zinc ion capacitor application. ChemistrySelect 2023. [DOI: 10.1002/slct.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences Institute of Interdisciplinary Studies (IIDS) University of Allahabad Prayagraj 211002 Uttar Pradesh India
| |
Collapse
|
12
|
Jiang H, Zhang Y, Sheng F, Li W, Li J, Huang D, Guo P, Wang Y, Zhu H. Graphene Film with a Controllable Microstructure for Efficient Electrochemical Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13086-13096. [PMID: 36853078 DOI: 10.1021/acsami.2c22312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The agglomeration of graphene sheets and undesired pore size distribution usually lead to unsatisfactory electrochemical properties of reduced graphene oxide (RGO) film electrodes. Herein, crumpled exfoliated graphene (EG) sheets are adopted as the microstructure-regulating agent to tune the morphology and micro-/mesopore amounts with the aim of increasing active surface sites and ion transportation paths in electrodes. With the optimum ratio between EG and GO, the resulting 75%-EG/RGO shows significantly improved specific gravimetric capacitance (Cs) and rate capability when compared with pure RGO electrodes in a symmetrical supercapacitor system. Moreover, when coupling the 75%-EG/RGO cathode with a Zn anode to form a Zn ion hybrid supercapacitor (ZHS), the 75%-EG/RGO exhibits a much higher Cs of 327.39 F g-1 at 0.1 A g-1 and can maintain 91.7% capacitance after 8000 cycles. Systematic ex situ X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) measurements reveal that the charge storage mechanism is based on both reversible physical adsorption and dual ion uptake. Furthermore, the quasi-solid-state flexible ZHS also presents high capacitive performance and can maintain ∼100% capacitance under various bending states, demonstrating potential application in wearable electronics. This strategy opens up a new path for constructing high-performance graphene film electrodes.
Collapse
Affiliation(s)
- Hedong Jiang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Yaxin Zhang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Fei Sheng
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Wentao Li
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Jiake Li
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Dandan Huang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Pingchun Guo
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Yanxiang Wang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| | - Hua Zhu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, P. R. China
| |
Collapse
|
13
|
Hawes GF, Verma P, Uceda M, Karimi G, Noremberg BS, Pope MA. Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10570-10584. [PMID: 36795101 DOI: 10.1021/acsami.2c17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of inexpensive and widely available CO2 lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI). Herein, we demonstrate that incorporating microparticles of inexpensive, non-toxic, and widely abundant sodium salts such as NaCl and Na2SO4 into poly(furfuryl alcohol) (PFA) resins enables the formation of high-performance LIG. The embedded particles aid in carbonization and act as a template for pore formation. While increasing both the carbon yield and surface area of the electrodes, the salt also dopes the LIG formed with S or Cl. The combination of these effects results in a two- to four-order-of-magnitude increase in device areal capacitance, from 8 μF/cm2 for PFA/no salt at 5 mV/s to up to 80 mF/cm2 for some PFA/20% Na2SO4 samples at 0.05 mA/cm2, significantly higher than that of PI-based devices and most other LIG precursors.
Collapse
Affiliation(s)
- Gillian F Hawes
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Priyanka Verma
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Marianna Uceda
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Gholamreza Karimi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Bruno S Noremberg
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Michael A Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Wang C, Yang D, Zhang W, Qin Y, Huang S, Liu W, Qiu X, Yi C. Explosion Strategy Engineering Oxygen-Functionalized Groups and Enlarged Interlayer Spacing of the Carbon Anode for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4371-4384. [PMID: 36633362 DOI: 10.1021/acsami.2c21638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amorphous carbon monoliths with tunable microstructures are candidate anodes for future lithium-based energy storage. Enhancing lithium storage capability and solid-state diffusion kinetics are the precondition for practical applications. Transforming intrinsic oxygen-rich defects into active sites and engineering enlarged interlayer spacing are of great importance. Herein, a novel explosion strategy is designed based on oxalate pyrolysis producing CO and CO2 to successfully prepare lignin-derived carbon monolith (LSCM) with active carbonyl (C═O) groups and enlarged interlayer spacing. Explosion promotes the demethylation of methoxyl groups and cleavage of carboxyl groups to form C═O groups. CO2 etches carbon atoms in a short time to improve the heteroatom level, expanding the interlayer spacing. ZnC2O4 is decomposed at 400 °C, simultaneously producing CO and CO2, which constructs less C═O groups and large interlayer spacing. MgC2O4 is decomposed at 450 and 480 °C, staged-weakly producing CO and CO2, which constructs more C═O groups and larger interlayer spacing. CaC2O4 is decomposed at 480 and 700 °C, staged-uniformly producing CO and CO2, which constructs abundant C═O groups and largest interlayer spacing. The LSCM prepared by staged-uniform explosion exhibits high lithium storage capacity, superior rate capability, and cycling performance. The assembled lithium ion capacitor device achieves excellent energy/power densities of 78 Wh kg-1/100 W kg-1 and superior durability (capacitance retention of 8 4.6% after 20,000 cycles). This work gives a novel insight to engineer advanced oxygen-functionalized carbons for enhanced lithium storage.
Collapse
Affiliation(s)
- Caiwei Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Si Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| |
Collapse
|
15
|
Highly defective N-doped carbon/reduced graphene oxide composite cathode material with rapid electrons/ions dual transport channels for high energy density lithium-ion capacitor. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Feng M, Wang W, Hu Z, Fan C, Zhao X, Wang P, Li H, Yang L, Wang X, Liu Z. Engineering chemical-bonded Ti 3C 2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors. SCIENCE CHINA MATERIALS 2022; 66:944-954. [PMID: 36937247 PMCID: PMC10015531 DOI: 10.1007/s40843-022-2268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 06/18/2023]
Abstract
Lithium-ion capacitors (LICs) are promising energy storage devices because they feature the high energy density of lithium-ion batteries and the high power density of supercapacitors. However, the mismatch of electrochemical reaction kinetics between the anode and cathode in LICs makes exploring anode materials with fast ion diffusion and electron transfer channels an urgent task. Herein, the two-dimensional (2D) Ti3C2 MXene with controllable terminal groups was introduced into 1D carbon nanofibers to form a 3D conductive network by the electrospinning strategy. In such Ti3C2 MXene and carbon matrix composites (named KTi-400@CNFs), the 2D nanosheet structure endows Ti3C2 MXene with more active sites for Li+ ion storage, and the carbon framework is favorable to the conductivity of the composites. Impressively, Ti-O-C bonds are formed at the interface between Ti3C2 MXene and the carbon framework. Such chemical bonding in the composites builds a bridge for rapid electron transportation and quick ion diffusion in the longitudinal direction from layer to layer. As a result, the optimized KTi-400@CNFs composites maintain a good capacity of 235 mA h g-1 for 500 cycles at a current density of 5 A g-1. The LIC consisting of the KTi-400@CNFs//AC configuration achieves high energy density (114.3 W h kg-1) and high power density (12.8 kW kg-1). This paper provides guidance for designing 2D materials and the KTi-400@CNFs composites with such a unique structure and superior electrochemical performance have great potential in the next-generation energy storage fields. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s40843-022-2268-9 and is accessible for authorized users.
Collapse
Affiliation(s)
- Min Feng
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Wanli Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Zhaowei Hu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Cheng Fan
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Xiaoran Zhao
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Peng Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Huifang Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| | - Lei Yang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xiaojun Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, 266061 China
| |
Collapse
|
17
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
18
|
Solvent-assisted assembly of reduced graphene oxide/MXene-polypyrrole composite film for flexible supercapacitors. J Colloid Interface Sci 2022; 630:817-827. [DOI: 10.1016/j.jcis.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
19
|
|
20
|
Wu W, Zhao C, Liu H, Liu T, Wang L, Zhu J. Hierarchical architecture of two-dimensional Ti3C2 nanosheets@Metal-Organic framework derivatives as anode for hybrid li-ion capacitors. J Colloid Interface Sci 2022; 623:216-225. [DOI: 10.1016/j.jcis.2022.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
21
|
Qiu Y, Wei X, Liu N, Song Y, Bi L, Long X, Chen Z, Wang S, Liao J. Plasma-Induced Amorphous N-Nano Carbon Shell for Improving Structural Stability of LiNi0.8Co0.1Mn0.1O2 Cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Yang Q, Feng Q, Xu X, Liu Y, Yang X, Yang F, Li J, Zhan H, Wang Q, Wu S. NiCoSe 4nanoparticles derived from nickel-cobalt Prussian blue analogues on N-doped reduced graphene oxide for high-performance asymmetric supercapacitors. NANOTECHNOLOGY 2022; 33:345401. [PMID: 35576893 DOI: 10.1088/1361-6528/ac6ff2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Synthesis of NiHCCo precursors via simple co-precipitation and nickel-cobalt tetraselenide composites grown on nitrogen-doped reduced graphene oxide (NiCoSe4/N-rGO) were fabricated using solvothermal method. The introduction of N-rGO used as a template effectively prevented agglomeration of NiCoSe4nanoparticles and provided more active sites, which greatly increased the electrochemical and electrical conductivity for NiCoSe4/N-rGO. NiCoSe4/N-rGO-20 presents a remarkably elevated specific capacity of 120 mA h g-1under current density of 1 A g-1. NiCoSe4/N-rGO-20 demonstrates an excellent cycle life and achieves a remarkable 83% retention rate over 3000 cycles with 10 A g-1. NiCoSe4/N-rGO-20//N-rGO asymmetric supercapacitor was constructed based on the NiCoSe4/N-rGO-20 as an anode, N-rGO as cathode by using 2 mol l-1KOH as an electrolyte. NiCoSe4/N-rGO-20//N-rGO ASC demonstrates an ultra-big energy density of 14 Wh kg-1and good circulation stability in the power density of 902 W kg-1. It is doubled in comparison to the NiCoSe4/N-rGO-20//rGO asymmetric supercapacitor (7 Wh kg-1). The NiCoSe4/N-rGO-20//N-rGO ASC capacity retention is still up to 93% over 5000 cycles (5 A g-1). The results reveal that this device would be a prospective cathode material of supercapacitors in actual applications.
Collapse
Affiliation(s)
- Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Qiaoliang Feng
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People's Republic of China
| | - Xin Xu
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People's Republic of China
| | - Yang Liu
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Xuexue Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Fawang Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Jiankun Li
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Huiying Zhan
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, People's Republic of China
| | - Qianshan Wang
- Lanzhou Huibang Biotechnology Co. LTD, Lanzhou, People's Republic of China
| | - Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental-Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, People's Republic of China
| |
Collapse
|
24
|
Yao J, Shi M, Li W, Han Q, Wu M, Yang W, Wang E, Zhao M, Lu X. Fluorinated Ether‐Based Electrolyte for Supercapacitors with Increased Working Voltage and Suppressed Self‐discharge. ChemElectroChem 2022. [DOI: 10.1002/celc.202200223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Yao
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Mingwei Shi
- Chinese Academy of Sciences Institute of Nanoenergy and Nanosystems CHINA
| | - Wenshi Li
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Qiankun Han
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Maosheng Wu
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Wei Yang
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Engui Wang
- Guangxi University School of Resources, Environment and Materials CHINA
| | - Man Zhao
- Chinese Academy of Sciences Beijing Institute of Nanoenergy and Nanosystems CHINA
| | - Xianmao Lu
- Beijing Institute of Nanoenergy & Nanosystems Xueyuan Road #30Tiangong Tower C 100083 Beijing CHINA
| |
Collapse
|
25
|
Yi Y, Zeng Z, Lian X, Dou S, Sun J. Homologous Nitrogen-Doped Hierarchical Carbon Architectures Enabling Compatible Anode and Cathode for Potassium-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107139. [PMID: 35098652 DOI: 10.1002/smll.202107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Potassium-ion hybrid capacitors (PIHCs) have been considered as an emerging device to render grid-scale energy storage. Nevertheless, the sluggish kinetics at the anode side and limited capacity output at the cathode side remain daunting challenges for the overall performances of PIHCs. Herein, an exquisite "homologous strategy" to devise multi-dimensional N-doped carbon nanopolyhedron@nanosheet anode and activated N-doped hierarchical carbon cathode targeting high-performance PIHCs is reported. The anode material harnessing a dual-carbon structure and the cathode candidate affording a high specific surface area (2651 m2 g-1 ) act in concert with a concentrated ether-based electrolyte, resulting in an excellent half cell performance. The related storage mechanism is systematically revealed by in situ electrokinetic characterizations. More encouragingly, the thus-derived PIHC full cell demonstrates a favorable energy output (157 Wh kg-1 ), showing distinct advantages over the state-of-the-art PIHC counterparts.
Collapse
Affiliation(s)
- Yuyang Yi
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Zhihan Zeng
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xueyu Lian
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
26
|
Qin L, Zhu S, Cheng C, Wu D, Wang G, Hou L, Yuan C. Single-Crystal Nano-Subunits Assembled Accordion-Shape WNb 2 O 8 Framework with High Ionic/Electronic Conductivities towards Li-Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107987. [PMID: 35122469 DOI: 10.1002/smll.202107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recently, Li-ion capacitors (LICs) have drawn tremendous attention due to their high energy/power density along with long cycle life. Nevertheless, the slow kinetics and stability of the involved anodes as bottleneck barriers always result in the modest properties of devices. The exploration of advanced anodes with both high ionic and electronic conductivities as well as structural stability thus becomes more significant for practical applications of LICs. Herein, a single-crystal nano-subunits assembled hierarchical accordion-shape WNb2 O8 micro-/nano framework is first designed via a one-step scalable strategy with the multi-layered Nb2 CTx as a precursor. The underlying solid solution Li-storage mechanism of the WNb2 O8 just with a volumetric expansion of ≈1.5% is proposed with in situ analysis. Benefiting from congenitally crystallographic merits, single-crystalline characteristic, and open accordion-like architecture, the resultant WNb2 O8 as a robust anode platform is endowed with fast electron/ion transport capability and multi-electron redox contributions from W/Nb, and accordingly, delivers a reversible capacity of ≈135.5 mAh g-1 at a high rate of 2.0 A g-1 . The WNb2 O8 assembled LICs exhibit an energy density of ≈33.0 Wh kg-1 at 9 kW kg-1 , coupled with remarkable electrochemical stability. The work provides meaningful insights into the rational design and construction of advanced bimetallic niobium oxides for next-generation LICs.
Collapse
Affiliation(s)
- Li Qin
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Shuhao Zhu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Chao Cheng
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Dongxu Wu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Guangyuan Wang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
27
|
Yu L, Xiong Z, Zhang W, Wang D, Shi H, Wang C, Niu X, Wang C, Yao L, Yan X. SnO2/SnS2 heterostructure@ MXene framework as high performance anodes for hybrid lithium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Zhang P, Wang C, Wei S, Shou H, Zhu K, Cao Y, Xu W, Guo X, Wu X, Chen S, Song L. 3D V 2CT x-rGO Architectures with Optimized Ion Transport Channels toward Fast Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61258-61266. [PMID: 34913669 DOI: 10.1021/acsami.1c19596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) MXene materials show great potential in energy storage devices. However, the self-restacking of MXene nanosheets and the sluggish lithium-ion (Li+) kinetics greatly hinder their rate capability and cycling stability. Herein, we interlink 2D V2CTx MXene nanosheets with rGO to construct a 3D porous V2CTx-rGO composite. X-ray spectroscopy study reveals the close interfacial contact between V2CTx and rGO via electron transfer from V to C atoms. Benefiting from the close combination and optimized ion transport channel, V2CTx-rGO offers a high-rate Li+ storage performance and excellent cycling stability over 2000 cycles with negligible capacity attenuation. Moreover, it exhibits a dominant mechanism of intercalation pseudocapacitance and efficient Li+ transport proved by density functional theory calculation. This rationally designed 3D V2CTx-rGO has implications for the study of the MXene composite's structure and energy storage devices with high rate and stability.
Collapse
Affiliation(s)
- Pengjun Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yuyang Cao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
29
|
Tang Y, Li H, Zhang R, Guo W, Yu M. Co 3ZnC@NC Material Derived from ZIF-8 for Lithium-Ion Capacitors. ACS OMEGA 2021; 6:28528-28537. [PMID: 34746548 PMCID: PMC8567260 DOI: 10.1021/acsomega.1c02271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Metal-organic framework (MOF)-derived carbon materials were widely reported as the anodes of lithium-ion capacitors (LICs). However, tunning the structure and electrochemical performance of the MOF-derived carbon materials is still challenging. Herein, metal carbide materials of Co3ZnC@NC-8:2 were obtained by the pyrolysis of the MOF materials of Co0.2Zn0.8ZIF-8 (Zn/Co ratio of 8:2). A half-cell assembled with the Co3ZnC@NC-8:2 electrode exhibits a discharge capacity of the electrode material of 598 mAh g-1 at a current density of 0.1 A g-1. After 100 cycles, the retention rate of discharge specific capacity is about 90%. The high performance of Co3ZnC@NC-8:2 is ascribed to its high crystalline degree and well-defined structure, which facilitates the intercalation/deintercalation of lithium ions and buffers the volume change during the charge/discharge process. The high capacitance contribution ratio calculated by cyclic voltammetry (CV) curves at different scanning rates indicates the pseudocapacitance storage mechanism. LICs constructed from the Co3ZnC@NC-8:2 material have a rectangular CV curve, while the charge-discharge curve has a symmetrical triangular shape. This study indicates that MOF-derived carbon is one of the promising materials for high-performance LICs.
Collapse
Affiliation(s)
- Yongfu Tang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Haiwei Li
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ruonan Zhang
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Wenfeng Guo
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Meiqi Yu
- Hebei Key Laboratory of Applied
Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
30
|
Zhao M, Shi M, Zhou H, Zhang Z, Yang W, Ma Q, Lu X. Self-discharge of supercapacitors based on carbon nanosheets with different pore structures. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
|