1
|
Zhang Y, Fan L, Hao Y, Dagher A, Jiang T, Bellec P. Connectome-constrained neural decoding reveals a representational hierarchy from perception to cognition to action. Sci Bull (Beijing) 2025; 70:478-482. [PMID: 39256082 DOI: 10.1016/j.scib.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Yu Zhang
- Zhejiang Lab, Hangzhou 311100, China.
| | - Lingzhong Fan
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Alain Dagher
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tianzi Jiang
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Pierre Bellec
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, H3W 1W6, Canada; Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
2
|
Zeng D, Li D, Li Q, He Y, Li S. Distinct cortical connectome organization of hippocampal subfields is associated with episodic memory. Sci Bull (Beijing) 2025; 70:33-37. [PMID: 38824119 DOI: 10.1016/j.scib.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Affiliation(s)
- Debin Zeng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Deyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reaility Technology and Systems, Beihang University, Beijing 100083, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Ji GJ, Cui Z, D'Arcy RCN, Liao W, Biswal BB, Zhang Q, Luo C, Zang YF, Ding Z, Zuo XN, Gore JC, Wang K. Imaging brain white matter function using resting-state functional MRI. Sci Bull (Beijing) 2024:S2095-9273(24)00794-1. [PMID: 39532560 DOI: 10.1016/j.scib.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Gong-Jun Ji
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Ryan C N D'Arcy
- BrainNET, Health and Technology District, Simon Fraser University, Surrey BC V3V 0E8, Canada
| | - Wei Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark NJ 07102, USA
| | - Qing Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Cheng Luo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Nashville TN 37232-2310, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville TN 37232-2310, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville TN 37212, USA.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; Anhui Institute of Translational Medicine, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China.
| |
Collapse
|
4
|
Liu H, Jing J, Jiang J, Wen W, Zhu W, Li Z, Pan Y, Cai X, Liu C, Zhou Y, Meng X, Wang Y, Li H, Jiang Y, Zheng H, Wang S, Niu H, Kochan N, Brodaty H, Wei T, Sachdev PS, Fan Y, Liu T, Wang Y. Exploring the link between brain topological resilience and cognitive performance in the context of aging and vascular risk factors: A cross-ethnicity population-based study. Sci Bull (Beijing) 2024; 69:2735-2744. [PMID: 38664095 DOI: 10.1016/j.scib.2024.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/07/2024] [Indexed: 09/09/2024]
Abstract
Brain aging is typically associated with a significant decline in cognitive performance. Vascular risk factors (VRF) and subsequent atherosclerosis (AS) play a major role in this process. Brain resilience reflects the brain's ability to withstand external perturbations, but the relationship of brain resilience with cognition during the aging process remains unclear. Here, we investigated how brain topological resilience (BTR) is associated with cognitive performance in the face of aging and vascular risk factors. We used data from two cross-ethnicity community cohorts, PolyvasculaR Evaluation for Cognitive Impairment and Vascular Events (PRECISE, n = 2220) and Sydney Memory and Ageing Study (MAS, n = 246). We conducted an attack simulation on brain structural networks based on k-shell decomposition and node degree centrality. BTR was defined based on changes in the size of the largest subgroup of the network during the simulation process. Subsequently, we explored the negative correlations of BTR with age, VRF, and AS, and its positive correlation with cognitive performance. Furthermore, using structural equation modeling (SEM), we constructed path models to analyze the directional dependencies among these variables, demonstrating that aging, AS, and VRF affect cognition by disrupting BTR. Our results also indicated the specificity of this metric, independent of brain volume. Overall, these findings underscore the supportive role of BTR on cognition during aging and highlight its potential application as an imaging marker for objective assessment of brain cognitive performance.
Collapse
Affiliation(s)
- Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jiyang Jiang
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW 2031, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Wei Wen
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW 2031, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yilong Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huaguang Zheng
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China
| | - Nicole Kochan
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW 2031, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Henry Brodaty
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW 2031, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, China
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW 2031, Australia; Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Medicine, Sydney NSW 2052, Australia
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 , China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
5
|
Li Y, Yang H, Gu S. Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks. Sci Bull (Beijing) 2024; 69:1738-1747. [PMID: 38490889 DOI: 10.1016/j.scib.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/27/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Cognitive neuroscience aims to develop computational models that can accurately predict and explain neural responses to sensory inputs in the cortex. Recent studies attempt to leverage the representation power of deep neural networks (DNNs) to predict the brain response and suggest a correspondence between artificial and biological neural networks in their feature representations. However, typical voxel-wise encoding models tend to rely on specific networks designed for computer vision tasks, leading to suboptimal brain-wide correspondence during cognitive tasks. To address this challenge, this work proposes a novel approach that upgrades voxel-wise encoding models through multi-level integration of features from DNNs and information from brain networks. Our approach combines DNN feature-level ensemble learning and brain atlas-level model integration, resulting in significant improvements in predicting whole-brain neural activity during naturalistic video perception. Furthermore, this multi-level integration framework enables a deeper understanding of the brain's neural representation mechanism, accurately predicting the neural response to complex visual concepts. We demonstrate that neural encoding models can be optimized by leveraging a framework that integrates both data-driven approaches and theoretical insights into the functional structure of the cortical networks.
Collapse
Affiliation(s)
- Yuanning Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Huzheng Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| |
Collapse
|
6
|
Sun L, Zhao T, Liang X, Xia M, Li Q, Liao X, Gong G, Wang Q, Pang C, Yu Q, Bi Y, Chen P, Chen R, Chen Y, Chen T, Cheng J, Cheng Y, Cui Z, Dai Z, Deng Y, Ding Y, Dong Q, Duan D, Gao JH, Gong Q, Han Y, Han Z, Huang CC, Huang R, Huo R, Li L, Lin CP, Lin Q, Liu B, Liu C, Liu N, Liu Y, Liu Y, Lu J, Ma L, Men W, Qin S, Qiu J, Qiu S, Si T, Tan S, Tang Y, Tao S, Wang D, Wang F, Wang J, Wang P, Wang X, Wang Y, Wei D, Wu Y, Xie P, Xu X, Xu Y, Xu Z, Yang L, Yuan H, Zeng Z, Zhang H, Zhang X, Zhao G, Zheng Y, Zhong S, He Y. Functional connectome through the human life span. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557193. [PMID: 37745373 PMCID: PMC10515818 DOI: 10.1101/2023.09.12.557193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The lifespan growth of the functional connectome remains unknown. Here, we assemble task-free functional and structural magnetic resonance imaging data from 33,250 individuals aged 32 postmenstrual weeks to 80 years from 132 global sites. We report critical inflection points in the nonlinear growth curves of the global mean and variance of the connectome, peaking in the late fourth and late third decades of life, respectively. After constructing a fine-grained, lifespan-wide suite of system-level brain atlases, we show distinct maturation timelines for functional segregation within different systems. Lifespan growth of regional connectivity is organized along a primary-to-association cortical axis. These connectome-based normative models reveal substantial individual heterogeneities in functional brain networks in patients with autism spectrum disorder, major depressive disorder, and Alzheimer's disease. These findings elucidate the lifespan evolution of the functional connectome and can serve as a normative reference for quantifying individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Qian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenxuan Pang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qian Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Pindong Chen
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Zhengjia Dai
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yao Deng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yuyin Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ruiwang Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, China
| | - Ching-Po Lin
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, China
- Department of Education and Research, Taipei City Hospital, Taipei, China
| | - Qixiang Lin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yong Liu
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jing Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji’nan, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Department of Psychology, Southwest University, Chongqing, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuehua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical Imaging, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | | | | | | | | | | | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
7
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Zhou Y, Chen X, Gu R, Xiang YT, Hajcak G, Wang G. Personalized identification and intervention of depression in adolescents: A tertiary-level framework. Sci Bull (Beijing) 2024; 69:867-871. [PMID: 38302329 DOI: 10.1016/j.scib.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Yuan Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao 999078, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao 999078, China
| | - Greg Hajcak
- School of Education and Counseling Psychology, Santa Clara University, Santa Clara CA 95053, USA
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Zhou ZX, Zuo XN. Population imaging cerebellar growth for personalized neuroscience. Nat Commun 2024; 15:2352. [PMID: 38499559 PMCID: PMC10948383 DOI: 10.1038/s41467-024-46545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Zi-Xuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, 100875, Beijing, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, 100875, Beijing, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, 100875, Beijing, China.
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, 100875, Beijing, China.
- National Basic Science Data Center, No 04 Zhongguancun South 4th Street, Haidian District, 100190, Beijing, China.
| |
Collapse
|
10
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Zhou ZX, Zuo XN. Editorial: Lifespan Connectome Gradients for a Road to Mental Health. J Am Acad Child Adolesc Psychiatry 2024; 63:25-28. [PMID: 37657499 DOI: 10.1016/j.jaac.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
The connectome, generally defined as a comprehensive map of the structural and/or functional connections of a complete set of neural elements, has been recognized to condense the mechanistic architecture of the brain and capture meaningful individual differences. Increasing efforts are being invested in exploring the associations between connectomes and behavior/symptoms to piece together guidelines from a systems/cognitive neuroscience perspective for reforming mental health care. This editorial sketches a road to mental health with lifespan connectome gradients (LCG), highlighting unique perspectives, prospects, and priorities.
Collapse
Affiliation(s)
- Zi-Xuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; National Basic Science Data Center, Beijing, China.
| |
Collapse
|
12
|
Fan XR, Wang YS, Chang D, Yang N, Rong MJ, Zhang Z, He Y, Hou X, Zhou Q, Gong ZQ, Cao LZ, Dong HM, Nie JJ, Chen LZ, Zhang Q, Zhang JX, Zhang L, Li HJ, Bao M, Chen A, Chen J, Chen X, Ding J, Dong X, Du Y, Feng C, Feng T, Fu X, Ge LK, Hong B, Hu X, Huang W, Jiang C, Li L, Li Q, Li S, Liu X, Mo F, Qiu J, Su XQ, Wei GX, Wu Y, Xia H, Yan CG, Yan ZX, Yang X, Zhang W, Zhao K, Zhu L, Zuo XN. A longitudinal resource for population neuroscience of school-age children and adolescents in China. Sci Data 2023; 10:545. [PMID: 37604823 PMCID: PMC10442366 DOI: 10.1038/s41597-023-02377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community ( https://ccnp.scidb.cn ) at the Science Data Bank.
Collapse
Affiliation(s)
- Xue-Ru Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Da Chang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ning Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Meng-Jie Rong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Zhe Zhang
- College of Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ye He
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaohui Hou
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Quan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhu-Qing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li-Zhi Cao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Changping Laboratory, Beijing, 102206, China
| | - Jing-Jing Nie
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qing Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Jia-Xin Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Lei Zhang
- School of Government, Shanghai University of Political Science and Law, Shanghai, 201701, China
| | - Hui-Jie Li
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Min Bao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jing Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xu Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jinfeng Ding
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xue Dong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Yi Du
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Chen Feng
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiaolan Fu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Kun Ge
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Bao Hong
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Xiaomeng Hu
- Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Wenjun Huang
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Chao Jiang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Li Li
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- Faculty of Arts and Science, New York University Shanghai, Shanghai, 200122, China
| | - Qi Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Su Li
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xun Liu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Fan Mo
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xue-Quan Su
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Gao-Xia Wei
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Yiyang Wu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Chao-Gan Yan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Zhi-Xiong Yan
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Wenfang Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Ke Zhao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Liqi Zhu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China.
- School of Education, Hunan University of Science and Technology, Hunan Xiangtan, 411201, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|