1
|
Huang A, Van den Brink PJ, Van den Brink NW, Baas J. A dynamic energy budget (DEB) model to assess the sublethal effects of imidacloprid toward Gammarus pulex at different temperatures. CHEMOSPHERE 2024; 361:142511. [PMID: 38825249 DOI: 10.1016/j.chemosphere.2024.142511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Environmental ambient temperature significantly impacts the metabolic activities of aquatic ectotherm organisms and influences the fate of various chemicals. Although numerous studies have shown that the acute lethal toxicity of most chemicals increases with increasing temperature, the impact of temperature on chronic effects - encompassing both lethal and sublethal endpoints - has received limited attention. Furthermore, the mechanisms linking temperature and toxicity, potentially unveiled by toxicokinetic-toxicodynamic models (TKTD), remains inadequately explored. This study investigated the effects of environmentally relevant concentrations of the insecticide imidacloprid (IMI) on the growth and survival of the freshwater amphipod Gammarus pulex at two different temperatures. Our experimental design was tailored to fit a TKTD model, specifically the Dynamic Energy Budget (DEB) model. We conducted experiments spanning three and six months, utilizing small G. pulex juveniles. We observed effects endpoints at least five times, employing both destructive and non-destructive methods, crucial for accurate model fittings. Our findings reveal that IMI at environmental concentrations (up to 0.3 μg/L) affects the growth and survival of G. pulex, albeit with limited effects, showing a 10% inhibition compared to the control group. These limited effects, observed in both lethal and sublethal aspects, suggest a different mode of action at low, environmentally-relevant concentrations in long-term exposure (3 months), in contrast to previous studies which applied higher concentrations and found that sublethal effects occurred at significantly lower levels than lethal effects in an acute test setting (4 days). Moreover, after parameterizing the DEB model for various temperatures, we identified a lower threshold for both lethal and sublethal effects at higher temperatures, indicating increased intrinsic sensitivity. Overall, this study contributes to future risk assessments considering temperature as a crucial factor and exemplifies the integration of the DEB model into experimental design for comprehensive toxicity evaluations.
Collapse
Affiliation(s)
- Anna Huang
- Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Nico W Van den Brink
- Sub-department of Toxicology, Wageningen University, P.O. Box 8000, 6700, EA Wageningen, the Netherlands
| | - Jan Baas
- Wageningen Environmental Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
2
|
Raine NE, Rundlöf M. Pesticide Exposure and Effects on Non- Apis Bees. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:551-576. [PMID: 37827173 DOI: 10.1146/annurev-ento-040323-020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
3
|
Matyja K. Sublethal effects of binary mixtures of Cu 2+ and Cd 2+ on Daphnia magna: Standard Dynamic Energy Budget (DEB) model analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122142. [PMID: 37414122 DOI: 10.1016/j.envpol.2023.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Dynamic Energy Budget theory (DEB) describes mass and energy fluxes that occur in living organisms. DEB models were successfully used to assess the influence of stress, including toxic substances, and changes in pH and temperature, on different organisms. In this study, the Standard DEB model was used to evaluate the toxicity of copper and cadmium ions and their binary mixtures on Daphnia magna. Both metal ions have a significant influence on daphnia growth and reproduction. Different physiological modes of action (pMoA) were applied to primary DEB model parameters. Model predictions for chosen modes of interaction of mixture components were evaluated. The goodness of model fit and the model prediction was assessed to indicate the most likely pMoA and interaction mode. Copper and cadmium influence more than one DEB model primary parameter. Different pMoAs can result in similar model fits, and therefore it is difficult to identify pMoA only by evaluation of the goodness of fit of the model to the growth and reproduction data. Some critical discussion and ideas for model development are therefore provided.
Collapse
Affiliation(s)
- Konrad Matyja
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano, and Bioprocess Engineering, Ul. Norwida 4/6, 50-373, Wrocław, Poland.
| |
Collapse
|
4
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Cordeiro LM, Soares MV, da Silva AF, Dos Santos LV, de Souza LI, da Silveira TL, Baptista FBO, de Oliveira GV, Pappis C, Dressler VL, Arantes LP, Zheng F, Soares FAA. Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin. Neurotoxicology 2023:S0161-813X(23)00085-2. [PMID: 37302585 DOI: 10.1016/j.neuro.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Marcell Valandro Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Luiza Venturini Dos Santos
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Larissa Ilha de Souza
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tássia Limana da Silveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Obetine Baptista
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Vitória de Oliveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Pappis
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Valderi Luiz Dressler
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- State University of Minas Gerais, Department of Biomedical Sciences and Health, Zip code 37900-106, Passos, MG, Brazil
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Felix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Kuo YH, How CM, Huang CW, Yen PL, Yu CW, Chang CH, Liao VHC. Co-contaminants of ethinylestradiol and sulfamethoxazole in groundwater exacerbate ecotoxicity and ecological risk and compromise the energy budget of C. elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106473. [PMID: 36871484 DOI: 10.1016/j.aquatox.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Ethinylestradiol (EE2) and sulfamethoxazole (SMX) are among pharmaceuticals and personal care products (PPCPs) and regarded as emerging contaminants in groundwater worldwide. However, the ecotoxicity and potential risk of these co-contaminants remain unknown. We investigated the effects of early-life long-term co-exposure to EE2 and SMX in groundwater on life-history traits of Caenorhabditis elegans and determined potential ecological risks in groundwater. L1 larvae of wild-type N2 C. elegans were exposed to measured concentrations of EE2 (0.001, 0.75, 5.1, 11.8 mg/L) or SMX (0.001, 1, 10, 100 mg/L) or co-exposed to EE2 (0.75 mg/L, no observed adverse effect level derived from its reproductive toxicity) and SMX (0.001, 1, 10, 100 mg/L) in groundwater. Growth and reproduction were monitored on days 0 - 6 of the exposure period. Toxicological data were analyzed using DEBtox modeling to determine the physiological modes of action (pMoAs) and the predicted no-effect concentrations (PNECs) to estimate ecological risks posed by EE2 and SMX in global groundwater. Early-life EE2 exposure significantly inhibited the growth and reproduction of C. elegans, with lowest observed adverse effect levels (LOAELs) of 11.8 and 5.1 mg/L, respectively. SMX exposure impaired the reproductive capacity of C. elegans (LOAEL = 0.001 mg/L). Co-exposure to EE2 and SMX exacerbated ecotoxicity (LOAELs of 1 mg/L SMX for growth, and 0.001 mg/L SMX for reproduction). DEBtox modeling showed that the pMoAs were increased growth and reproduction costs for EE2 and increased reproduction costs for SMX. The derived PNEC falls within the range of detected environmental levels of EE2 and SMX in groundwater worldwide. The pMoAs for EE2 and SMX combined were increased growth and reproduction costs, resulting in lower energy threshold values than single exposure. Based on global groundwater contamination data and energy threshold values, we calculated risk quotients for EE2 (0.1 - 123.0), SMX (0.2 - 91.3), and combination of EE2 and SMX (0.4 - 341.1). Our findings found that co-contamination by EE2 and SMX exacerbates toxicity and ecological risk to non-target organisms, suggesting that the ecotoxicity and ecological risk of co-contaminants of pharmaceuticals should be considered to sustainably manage groundwater and aquatic ecosystems.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
7
|
Marn N, Hudina S, Haberle I, Dobrović A, Klanjšček T. Physiological performance of native and invasive crayfish species in a changing environment: insights from Dynamic Energy Budget models. CONSERVATION PHYSIOLOGY 2022; 10:coac031. [PMID: 35669378 PMCID: PMC9156854 DOI: 10.1093/conphys/coac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Crayfish are keystone species important for maintaining healthy freshwater ecosystems. Crayfish species native to Europe, such as Astacus astacus and Austropotamobius torrentium, are facing decline and are increasingly endangered by changing climate and invasions of non-native crayfish, such as Pacifastacus leniusculus and Procambarus virginalis. The success of these invasions largely depends on differences in ontogeny between the native species and the invaders and how changes in the environment will affect the ontogeny. Dynamic Energy Budget (DEB) models can be used to investigate such differences because the models capture dependence of metabolism, and therefore ontogeny, on environmental conditions. We develop DEB models for all four species and investigate key elements of ontogeny and metabolism affecting interspecific competition. We then use the DEB models to predict individual growth and reproduction in current and new conditions that are expected to arise from climate change. Although observations suggest that P. leniusculus poses the major threat to native species, our analysis identifies P. virginalis, in spite of its smaller size, as the superior competitor by a large margin-at least when considering metabolism and ontogeny. Our simulations show that climate change is set to increase the competitive edge of P. virginalis even further. Given the prospects of P. virginalis dominance, especially when considering that it is able to withstand and spread at least some crayfish plague strains that severely affect native species, additional research into P. virginalis is necessary.
Collapse
Affiliation(s)
- Nina Marn
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10002 Zagreb, Croatia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Ines Haberle
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10002 Zagreb, Croatia
| | - Ana Dobrović
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Tin Klanjšček
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10002 Zagreb, Croatia
| |
Collapse
|
8
|
Sherborne N, Jager T, Goussen B, Trijau M, Ashauer R. The application and limitations of exposure multiplication factors in sublethal effect modelling. Sci Rep 2022; 12:6031. [PMID: 35410996 PMCID: PMC9001712 DOI: 10.1038/s41598-022-09907-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThanks to growing interest and research in the field, toxicokinetic–toxicodynamic (TKTD) models are close to realising their potential in environmental risk assessment (ERA) of chemicals such as plant protection products. A fundamental application is to find a multiplicative scale factor which—when applied to an exposure profile—results in some specified effect relative to a control. The approach is similar to applying assessment factors to experimental results, common in regulatory frameworks. It also relies on the same core assumption: that increasing the scaling always produces more extreme effects. Unlike experimental approaches, TKTD models offer an opportunity to interrogate this assumption in a mathematically rigorous manner. For four well-known TKTD models we seek to prove that the approach guarantees a unique scale factor for any percentage effect. Somewhat surprisingly, certain model configurations may have multiple scale factors which result in the same percentage effect. These cases require a more cautious regulatory approach and generate open biological and mathematical questions. We provide examples of the violations and suggest how to deal with them. Mathematical proofs provide the strongest possible backing for TKTD modelling approaches in ERA, since the applicability of the models can be determined exactly.
Collapse
|
9
|
Lavaud R, Filgueira R, Augustine S. The role of Dynamic Energy Budgets in conservation physiology. CONSERVATION PHYSIOLOGY 2021; 9:coab083. [PMID: 34707875 PMCID: PMC8545044 DOI: 10.1093/conphys/coab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The contribution of knowledge, concepts and perspectives from physiological ecology to conservation decision-making has become critical for understanding and acting upon threats to the persistence of sensitive species. Here we review applications of dynamic energy budget (DEB) theory to conservation issues and discuss how this theory for metabolic organization of all life on earth (from bacteria to whales) is well equipped to support current and future investigations in conservation research. DEB theory was first invented in 1979 in an applied institution for environmental quality assessment and mitigation. The theory has since undergone extensive development and applications. An increasing number of studies using DEB modelling have provided valuable insights and predictions in areas that pertain to conservation such as species distribution, evolutionary biology, toxicological impacts and ecosystem management. We discuss why DEB theory, through its mechanistic nature, its universality and the wide range of outcomes it can provide represents a valuable tool to tackle some of the current and future challenges linked to maintaining biodiversity, ensuring species survival, ecotoxicology, setting water and soil quality standards and restoring ecosystem structure and functioning in a changing environment under the pressure of anthropogenic driven changes.
Collapse
Affiliation(s)
- Romain Lavaud
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ramón Filgueira
- Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Starrlight Augustine
- Akvaplan-niva, Fram High North Research Centre for Climate and the Environment, Tromsø 9296, Norway
| |
Collapse
|
10
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
11
|
Bart S, Jager T, Robinson A, Lahive E, Spurgeon DJ, Ashauer R. Predicting Mixture Effects over Time with Toxicokinetic-Toxicodynamic Models (GUTS): Assumptions, Experimental Testing, and Predictive Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2430-2439. [PMID: 33499591 PMCID: PMC7893709 DOI: 10.1021/acs.est.0c05282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 05/19/2023]
Abstract
Current methods to assess the impact of chemical mixtures on organisms ignore the temporal dimension. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models, which account for effects of toxicant exposure on survival in time. Starting from the classic assumptions of independent action and concentration addition, we derive equations for the GUTS reduced (GUTS-RED) model corresponding to these mixture toxicity concepts and go on to demonstrate their application. Using experimental binary mixture studies with Enchytraeus crypticus and previously published data for Daphnia magna and Apis mellifera, we assessed the predictive power of the extended GUTS-RED framework for mixture assessment. The extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration, and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action, specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture hazard assessments.
Collapse
Affiliation(s)
- Sylvain Bart
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | | | - Alex Robinson
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Elma Lahive
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - David J. Spurgeon
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Roman Ashauer
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- Syngenta
Crop Protection AG, Basel 4058, Switzerland
| |
Collapse
|
12
|
Sherborne N, Galic N, Ashauer R. Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition, model variants, application and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141027. [PMID: 32758729 DOI: 10.1016/j.scitotenv.2020.141027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Bioenergetic models, and specifically dynamic energy budget (DEB) theory, are gathering a great deal of interest as a tool to predict the effects of realistically variable exposure to toxicants over time on an individual animal. Here we use aquatic ecological risk assessment (ERA) as the context for a review of the different model variants within DEB and the closely related DEBkiss theory (incl. reserves, ageing, size & maturity, starvation). We propose a coherent and unifying naming scheme for all current major DEB variants, explore the implications of each model's underlying assumptions in terms of its capability and complexity and analyse differences between the models (endpoints, mathematical differences, physiological modes of action). The results imply a hierarchy of model complexity which could be used to guide the implementation of simplified model variants. We provide a decision tree to support matching the simplest suitable model to a given research or regulatory question. We detail which new insights can be gained by using DEB in toxicokinetic-toxicodynamic modelling, both generally and for the specific example of ERA, and highlight open questions. Specifically, we outline a moving time window approach to assess time-variable exposure concentrations and discuss how to account for cross-generational exposure. Where possible, we suggest valuable topics for experimental and theoretical research.
Collapse
Affiliation(s)
- Neil Sherborne
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, NC, United States of America
| | - Roman Ashauer
- Department of Environment and Geography, University of York, Wentworth Way, Heslington, York YO10 5NG, United Kingdom; Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH-4002, Switzerland
| |
Collapse
|
13
|
Jegede OO, Awuah KF, Renaud MJ, Cousins M, Hale BA, Siciliano SD. Single metal and metal mixture toxicity of five metals to Oppia nitens in five different Canadian soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122341. [PMID: 32092659 DOI: 10.1016/j.jhazmat.2020.122341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 02/15/2020] [Indexed: 05/24/2023]
Abstract
Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Kobby F Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Mathieu J Renaud
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada 8 Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Mark Cousins
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Beverley A Hale
- Department of Land Resource Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
14
|
|
15
|
Van Dievel M, Janssens L, Stoks R. Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:205-213. [PMID: 31132738 DOI: 10.1016/j.aquatox.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Ignoring natural stressors such as predation risk may contribute to the failure of ecological risk assessment of pesticides to protect freshwater biodiversity. To better understand combined effects of multiple stressors, bioenergetic responses are important as these inform about the balance between energy input and consumption, and provide a unifying mechanism to integrate the impact of multiple stressors with different modes of action. We studied in Enallagma cyathigerum damselfly larvae the single and combined effects of exposure to the pesticide chlorpyrifos and predation risk on life history (survival and growth rate) and bioenergetic response variables at the organismal level (assimilation and conversion efficiency) and the cellular level (cellular energy allocation CEA, energy storage Ea, and energy consumption Ec). Chlorpyrifos exposure almost halved the survival of the damselfly larvae, while predation risk had no effect on survival. Both exposure to the pesticide and to predation risk reduced larval growth rates. This was caused by a reduced conversion efficiency under chlorpyrifos exposure, and by a reduced assimilation efficiency under predation risk. Both chlorpyrifos and predation risk reduced the CEA because of a decreased Ea, and for chlorpyrifos also an increased Ec. The lower Ea was driven by reductions in the fat and glycogen contents. Effects of the pesticide and predation risk were consistently additive and for most variables the strongest response was detected when both stressors were present. The absence of any synergisms may be explained by the high mortality and hypometabolism caused by the pesticide. Our results indicate that CEA can be a sensitive biomarker to evaluate effects of not only contaminants but also natural stressors, such as predation risk, and their combined impact on organisms.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
16
|
More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernández-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GE, Manini P, Jeddi MZ, Dorne JLC, Hogstrand C. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 2019; 17:e05634. [PMID: 32626259 PMCID: PMC7009070 DOI: 10.2903/j.efsa.2019.5634] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This Guidance document describes harmonised risk assessment methodologies for combined exposure to multiple chemicals for all relevant areas within EFSA's remit, i.e. human health, animal health and ecological areas. First, a short review of the key terms, scientific basis for combined exposure risk assessment and approaches to assessing (eco)toxicology is given, including existing frameworks for these risk assessments. This background was evaluated, resulting in a harmonised framework for risk assessment of combined exposure to multiple chemicals. The framework is based on the risk assessment steps (problem formulation, exposure assessment, hazard identification and characterisation, and risk characterisation including uncertainty analysis), with tiered and stepwise approaches for both whole mixture approaches and component‐based approaches. Specific considerations are given to component‐based approaches including the grouping of chemicals into common assessment groups, the use of dose addition as a default assumption, approaches to integrate evidence of interactions and the refinement of assessment groups. Case studies are annexed in this guidance document to explore the feasibility and spectrum of applications of the proposed methods and approaches for human and animal health and ecological risk assessment. The Scientific Committee considers that this Guidance is fit for purpose for risk assessments of combined exposure to multiple chemicals and should be applied in all relevant areas of EFSA's work. Future work and research are recommended. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1589/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1602/full
Collapse
|
17
|
Goodchild CG, Simpson AM, Minghetti M, DuRant SE. Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:27-45. [PMID: 30259559 DOI: 10.1002/etc.4280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 09/20/2018] [Indexed: 05/21/2023]
Abstract
Adverse outcome pathways (AOPs) link toxicity across levels of biological organization, and thereby facilitate the development of suborganismal responses predictive of whole-organism toxicity and provide the mechanistic information necessary for science-based extrapolation to population-level effects. Thus far AOPs have characterized various acute and chronic toxicity pathways; however, the potential for AOPs to explicitly characterize indirect, energy-mediated effects from toxicants has yet to be fully explored. Indeed, although exposure to contaminants can alter an organism's energy budget, energetic endpoints are rarely incorporated into ecological risk assessment because there is not an integrative framework for linking energetic effects to organismal endpoints relevant to risk assessment (e.g., survival, reproduction, growth). In the present analysis, we developed a generalized bioenergetics-AOP in an effort to make better use of energetic endpoints in risk assessment, specifically exposure scenarios that generate an energetic burden to organisms. To evaluate empirical support for a bioenergetics-AOP, we analyzed published data for links between energetic endpoints across levels of biological organization. We found correlations between 1) cellular energy allocation and whole-animal growth, and 2) metabolic rate and scope for growth. Moreover, we reviewed literature linking energy availability to nontraditional toxicological endpoints (e.g., locomotor performance), and found evidence that toxicants impair aerobic performance and activity. We conclude by highlighting current knowledge gaps that should be addressed to develop specific bioenergetics-AOPs. Environ Toxicol Chem 2019;38:27-45. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Adam M Simpson
- Oklahoma State University, Stillwater, Oklahoma, USA
- Penn State Erie, The Behrend College, Erie, Pennsylvania, USA
| | | | - Sarah E DuRant
- Oklahoma State University, Stillwater, Oklahoma, USA
- University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
18
|
|
19
|
Desforges JPW, Sonne C, Dietz R. Using energy budgets to combine ecology and toxicology in a mammalian sentinel species. Sci Rep 2017; 7:46267. [PMID: 28387336 PMCID: PMC5384198 DOI: 10.1038/srep46267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022] Open
Abstract
Process-driven modelling approaches can resolve many of the shortcomings of traditional descriptive and non-mechanistic toxicology. We developed a simple dynamic energy budget (DEB) model for the mink (Mustela vison), a sentinel species in mammalian toxicology, which coupled animal physiology, ecology and toxicology, in order to mechanistically investigate the accumulation and adverse effects of lifelong dietary exposure to persistent environmental toxicants, most notably polychlorinated biphenyls (PCBs). Our novel mammalian DEB model accurately predicted, based on energy allocations to the interconnected metabolic processes of growth, development, maintenance and reproduction, lifelong patterns in mink growth, reproductive performance and dietary accumulation of PCBs as reported in the literature. Our model results were consistent with empirical data from captive and free-ranging studies in mink and other wildlife and suggest that PCB exposure can have significant population-level impacts resulting from targeted effects on fetal toxicity, kit mortality and growth and development. Our approach provides a simple and cross-species framework to explore the mechanistic interactions of physiological processes and ecotoxicology, thus allowing for a deeper understanding and interpretation of stressor-induced adverse effects at all levels of biological organization.
Collapse
Affiliation(s)
- Jean-Pierre W. Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
20
|
Panizzi S, Suciu NA, Trevisan M. Combined ecotoxicological risk assessment in the frame of European authorization of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:136-146. [PMID: 28012656 DOI: 10.1016/j.scitotenv.2016.10.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Organisms are frequently exposed to mixtures of chemical contaminants in the environment, causing a potential "cocktail effect", or combined effect. The joint action of different molecules with similar or different modes of action could result in a potentially unlimited number of additives, synergistic or antagonistic combinations. Since the large number of contaminants makes it impossible to perform ecotoxicity tests for each potential mixture, a robust approach for prospective environmental risk assessment of chemical mixtures is needed. A number of recent publications by the European Commission and the authorities in charge prove the increasing interest that is spreading in the European community towards the topic of the assessment of chemical mixtures. The current EU regulation for Plant Protection Products authorization (Reg. 1107/2009 EC) explicitly requires the evaluation of the potential combined effects of active substances. We reviewed current methods and limitations of mixture assessment of pesticides (7 fungicides and 4 herbicides) through the analysis of the approaches adopted to investigate possible risks for different non-target organisms. The Concentration Addition (CA) approach was the most used approach to predict multiple toxicity to non-target organisms. The guidance for birds and mammals first introduced standard procedures to assess the multiple toxicity based on on CA concept. The recent aquatic EFSA guidance introduced some requirements to evaluate potential mixture toxicity, while the current guidance requirements for terrestrial organisms still lack clear indications on how to conduct the assessment. Moreover, new indications come from the draft guidance for the assessment of terrestrial plants and in-soil organisms. However, the approval and implementation of these new guidelines are still at a developmental stage. Some final considerations are drawn on the future possibilities to improve risk assessment procedures so as to identify harmful effects of pesticides mixtures on non-target organisms.
Collapse
Affiliation(s)
- Silvia Panizzi
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Nicoleta Alina Suciu
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
21
|
Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, Desneux N, Biondi A, Zhang F, Wang S. Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1782-1793. [PMID: 27670666 DOI: 10.1007/s10646-016-1721-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The seven-spot ladybird beetle, Coccinella septempunctata, is a major natural enemy of aphids in the field and in greenhouses in China and is part of integrated pest management (IPM). Imidacloprid, a highly efficient insecticide that not only kills aphids at lethal concentrations, but also can cause various sublethal effects in nontarget organisms. To strengthen IPM and its sustainability, it is important assessing possible side effects on natural enemies. When the effects of sublethal concentrations (LC5 and 10%LC5) of imidacloprid on C. septempunctata were evaluated, the adult longevity was shortened by 23.97 and 28.68 %, and the fecundity reduced by 52.81 and 56.09 % compared to control population. In the F1 generation (i.e., the progeny of the exposed individuals), the juvenile development was slower by 1.44 days and 0.66 days, and the oviposition period was shortened by 10 and 13 days, respectively. The fecundity of the F1 generation decreased by 17.88, 44.03 and 51.69 % when exposed to 1%LC5, 10%LC5, and LC5, respectively. The results of demographical growth estimates showed that the intrinsic rate of increase (r m ) and net reproductive rate (R 0 ) were lower in C. septempunctata populations that had been exposed to sublethal concentrations of imidacloprid. The results emphasize the importance of assessing side effects of low imidacloprid concentrations on such predator species, even at the transgenerational level.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forest Science, Beijing, 100097, China
| | - Jing Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forest Science, Beijing, 100097, China
| | - Xiaojun Guo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forest Science, Beijing, 100097, China
| | - Hongying Chen
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing, 100125, China
| | - Mengmeng Qu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing, 100125, China
| | - Weigang Zhai
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing, 100125, China
| | - Nicolas Desneux
- INRA (French National Institute for Agricultural Research), UMR 1355-7254 Institut Sophia Agrobiotech, Univ. Nice Sophia Antipolis, CNRS, 400 Route des Chappes, Sophia-Antipolis, 06903, France
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, Catania, 95123, Italy
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forest Science, Beijing, 100097, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forest Science, Beijing, 100097, China.
| |
Collapse
|
22
|
Jusup M, Sousa T, Domingos T, Labinac V, Marn N, Wang Z, Klanjšček T. Physics of metabolic organization. Phys Life Rev 2016; 20:1-39. [PMID: 27720138 DOI: 10.1016/j.plrev.2016.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/26/2023]
Abstract
We review the most comprehensive metabolic theory of life existing to date. A special focus is given to the thermodynamic roots of this theory and to implications that the laws of physics-such as the conservation of mass and energy-have on all life. Both the theoretical foundations and biological applications are covered. Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work. To bridge the gap between the two aspects of the same theory, we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the general theory enables modular, self-consistent extensions that capture important features of the species and the problem in question. Perhaps the most difficult among the introduced concepts, the utilization (or mobilization) energy flow, is given particular attention in the form of an original and considerably simplified derivation. Specific examples illustrate a range of possible applications-from energy budgets of individual organisms, to population dynamics, to ecotoxicology.
Collapse
Affiliation(s)
- Marko Jusup
- Center of Mathematics for Social Creativity, Hokkaido University, 5-8 Kita Ward, Sapporo 060-0808, Japan.
| | - Tânia Sousa
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Tiago Domingos
- Maretec, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Velimir Labinac
- Department of Physics, University of Rijeka, R. Matejčić 2, 51000 Rijeka, Croatia
| | - Nina Marn
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zhen Wang
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tin Klanjšček
- Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
State of the art on public risk assessment of combined human exposure to multiple chemical contaminants. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Spurgeon D, Hesketh H, Lahive E, Svendsen C, Baas J, Robinson A, Horton A, Heard M. Chronic oral lethal and sub‐lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Soloneski S, Ruiz de Arcaute C, Larramendy ML. Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17811-21. [PMID: 27250090 DOI: 10.1007/s11356-016-6992-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
The acute toxicity of two herbicide formulations, namely, the 57.71 % dicamba (DIC)-based Banvel(®) and the 48 % glyphosate (GLY)-based Credit(®), alone as well as the binary mixture of these herbicides was evaluated on late-stage Rhinella arenarum larvae (stage 36) exposed under laboratory conditions. Mortality was used as an endpoint for determining acute lethal effects, whereas the single-cell gel electrophoresis (SCGE) assay was employed as genotoxic endpoint to study sublethal effects. Lethality studies revealed LC5096 h values of 358.44 and 78.18 mg L(-1) DIC and GLY for Banvel(®) and Credit(®), respectively. SCGE assay revealed, after exposure for 96 h to either 5 and 10 % of the Banvel(®) LC5096 h concentration or 5 and 10 % of the Credit(®) LC5096 h concentration, an equal significant increase of the genetic damage index (GDI) regardless of the concentration of the herbicide assayed. The binary mixtures of 5 % Banvel(®) plus 5 % Credit(®) LC5096 h concentrations and 10 % Banvel(®) plus 10 % Credit(®) LC5096 h concentrations induced equivalent significant increases in the GDI in regard to GDI values from late-stage larvae exposed only to Banvel(®) or Credit(®). This study represents the first experimental evidence of acute lethal and sublethal effects exerted by DIC on the species, as well as the induction of primary DNA breaks by this herbicide in amphibians. Finally, a synergistic effect of the mixture of GLY and DIC on the induction of primary DNA breaks on circulating blood cells of R. arenarum late-stage larvae could be demonstrated.
Collapse
Affiliation(s)
- Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2016; 6:147-172. [PMID: 27066112 PMCID: PMC4785608 DOI: 10.1002/wcms.1240] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models. WIREs Comput Mol Sci 2016, 6:147-172. doi: 10.1002/wcms.1240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Arwa B Raies
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| |
Collapse
|
27
|
Margerit A, Gomez E, Gilbin R. Dynamic energy-based modeling of uranium and cadmium joint toxicity to Caenorhabditis elegans. CHEMOSPHERE 2016; 146:405-412. [PMID: 26741545 DOI: 10.1016/j.chemosphere.2015.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Toxicokinetic - toxicodynamic energy-based models offer new alternatives to the commonly used approaches for the analysis of mixture toxicity data. Based on the Dynamic Energy Budget theory, DEBtox models enable the description of several endpoints over time simultaneously under the same framework. However, such model still has to be faced with experimental data in a multi-contamination context. In this study, the predictive capacities of a DEBtox model to describe the uranium and cadmium joint toxicity over the entire growth and reproduction period of the soil nematode Caenorhabditis elegans was examined. The two reference additivity approaches, Concentration Addition and Response addition, implemented in the DEBtox model were tested. Assuming no interaction between the two toxicants through Response addition, the DEBtox model allowed a rather accurate fit of the U and Cd joint effects on the growth and reproduction of C. elegans: an interaction between the two metals at the toxicokinetic or toxicodynamic level seems thus unlikely or has only minor consequences. Interestingly, this study underlines that even if the compounds of a mixture share the same DEBtox physiological mode of action (in this case a decrease in assimilation), the Response addition approach may provide a better fit of joint toxicity data than the Concentration addition approach. Moreover, the present work highlighted limitations in the model predictions which are related to the simplifications of the DEBtox framework and its adaptations to the physiology of C. elegans and which lead to an overestimation of the U and Cd joint toxicity in some cases.
Collapse
Affiliation(s)
- Adrien Margerit
- Biogeochemistry, Bioavailability and Radionuclide Transfer Laboratory (PRP-ENV/SERIS/L2BT), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| | - Elena Gomez
- UMR Hydrosciences - Université Montpellier 1, DSESP - Faculté de Pharmacie, BP 14491, No 15 Av Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Rodolphe Gilbin
- Biogeochemistry, Bioavailability and Radionuclide Transfer Laboratory (PRP-ENV/SERIS/L2BT), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| |
Collapse
|
28
|
|
29
|
Cedergreen N, Nørhave NJ, Svendsen C, Spurgeon DJ. Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor. PLoS One 2016; 11:e0140277. [PMID: 26784453 PMCID: PMC4718611 DOI: 10.1371/journal.pone.0140277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
A wealth of studies has investigated how chemical sensitivity is affected by temperature, however, almost always under different constant rather than more realistic fluctuating regimes. Here we compared how the nematode Caenorhabditis elegans responds to copper at constant temperatures (8-24°C) and under fluctuation conditions of low (±4°C) and high (±8°C) amplitude (averages of 12, 16, 20°C and 16°C respectively). The DEBkiss model was used to interpret effects on energy budgets. Increasing constant temperature from 12-24°C reduced time to first egg, life-span and population growth rates consistent with temperature driven metabolic rate change. Responses at 8°C did not, however, accord with this pattern (including a deviation from the Temperature Size Rule), identifying a cold stress effect. High amplitude variation and low amplitude variation around a mean temperature of 12°C impacted reproduction and body size compared to nematodes kept at the matching average constant temperatures. Copper exposure affected reproduction, body size and life-span and consequently population growth. Sensitivity to copper (EC50 values), was similar at intermediate temperatures (12, 16, 20°C) and higher at 24°C and especially the innately stressful 8°C condition. Temperature variation did not increase copper sensitivity. Indeed under variable conditions including time at the stressful 8°C condition, sensitivity was reduced. DEBkiss identified increased maintenance costs and increased assimilation as possible mechanisms for cold and higher copper concentration effects. Model analysis of combined variable temperature effects, however, demonstrated no additional joint stressor response. Hence, concerns that exposure to temperature fluctuations may sensitise species to co-stressor effects seem unfounded in this case.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Nils Jakob Nørhave
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - David J. Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| |
Collapse
|
30
|
Ananthasubramaniam B, McCauley E, Gust KA, Kennedy AJ, Muller EB, Perkins EJ, Nisbet RM. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1691-1710. [PMID: 26552275 DOI: 10.1890/14-0498.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ecological effects of environmental stressors are commonly evaluated using organismal or suborganismal data, such as standardized toxicity tests that characterize responses of individuals (e.g., mortality and reproduction) and a rapidly growing body of "omics" data. A key challenge for environmental risk assessment is relating such information to population dynamics. One approach uses dynamic energy budget (DEB) models that relate growth and reproduction of individuals to underlying flows of energy and elemental matter. We hypothesize that suborganismal information identifies DEB parameters that are most likely impacted by a particular stressor and that the DEB model can then project suborganismal effects on life history and population endpoints. We formulate and parameterize a model of growth and reproduction for the water flea Daphnia magna. Our model resembles previous generic bioenergetic models, but has explicit representation of discrete molts, an important feature of Daphnia life history. We test its ability to predict six endpoints commonly used in chronic toxicity studies in specified food environments. With just one adjustable parameter, the model successfully predicts growth and reproduction of individuals from a wide array of experiments performed in multiple laboratories using different clones of D. magna raised on different food sources. Fecundity is the most sensitive endpoint, and there is broad correlation between the sensitivities of fecundity and long-run growth rate, as is desirable for the default metric used in chronic toxicity tests. Under some assumptions, we can combine our DEB model with the Euler-Lotka equation to estimate longrun population growth rates at different food levels. A review of Daphnia gene-expression experiments on the effects of contaminant exposure reveals several connections to model parameters, in particular a general trend of increased transcript expression of genes involved in energy assimilation and utilization at concentrations affecting growth and reproduction. The sensitivity of fecundity to many model parameters was consistent with frequent generalized observations of decreased expression of genes involved in reproductive physiology, but interpretation of these observations requires further mechanistic modeling. We thus propose an approach based on generic DEB models incorporating few essential species-specific features for rapid extrapolation of ecotoxicogenomic assays for Daphnia-based population risk assessment.
Collapse
|
31
|
Sulmon C, van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:66-77. [PMID: 25813422 DOI: 10.1016/j.envpol.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 05/07/2023]
Abstract
Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning.
Collapse
Affiliation(s)
- Cécile Sulmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | - Joan van Baaren
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Francisco Cabello-Hurtado
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Françoise Hennion
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Cendrine Mony
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France; Biologisk Institut, Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark
| | - Claudia Gérard
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| |
Collapse
|
32
|
Whitehead A. Interactions between oil-spill pollutants and natural stressors can compound ecotoxicological effects. Integr Comp Biol 2013; 53:635-47. [PMID: 23842611 DOI: 10.1093/icb/ict080] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coastal estuaries are among the most biologically productive habitats on earth, yet are at risk from human activities including marine oil spills. The 2010 Deepwater Horizon oil spill contaminated hundreds of kilometers of coastal habitat, particularly in Louisiana's delta. Coastal estuaries are naturally dynamic habitats where periodic and stochastic fluctuations, for example in temperature, salinity, nutrients, and hypoxia, are common. Such environmental variability regularly imposes suboptimal conditions for which resident species must continually compensate by drawing on diverse physiological abilities. However, exposures to oil, in addition to their direct toxic effects, may interfere with functions that normally enable physiological compensation for suboptimal conditions. This review summarizes the panoply of naturally-encountered stressors that may interact with oil, including salinity, hypoxia, pathogens, and competition, and the mechanisms that may underlie these interactions. Combined effects of these stressors can amplify the costs of oil-exposures to organisms in the real world, and contribute to impacts on fitness, populations, and communities, that may not have been predicted from direct toxicity of hydrocarbons alone. These interactions pose challenges for accurate and realistic assessment of risks and of actual damage. To meet these challenges, environmental scientists and managers must capitalize on the latest understanding of the complexities of chemical effects of natural stressors on organisms, and adopt integrative and holistic measures of effect from the molecular to whole-animal levels, in order to anticipate, characterize, diagnose, and solve, ecotoxicological problems.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
33
|
Sokolova IM. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integr Comp Biol 2013; 53:597-608. [DOI: 10.1093/icb/ict028] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
34
|
Fischer BB, Pomati F, Eggen RIL. The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:253-9. [PMID: 23428756 DOI: 10.1016/j.scitotenv.2013.01.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 05/06/2023]
Abstract
The dynamics of abiotic and biotic environmental factors, like temperature and predation, can strongly influence the effects of anthropogenic chemical pollutants in natural systems. Responses to toxicants and their interactions with environmental factors can occur at varying temporal scales and at different levels of biological complexity (from cells to organisms, populations, communities and ecosystems). Environmental factors may affect tolerance to toxic pollutants under non-stressful conditions, and cause adverse multiple stressor effects under stressful conditions. Adaptive processes, however, have the potential to either mitigate (by co-tolerance) or increase (due to associated costs) the sensitivity of individuals, populations, and communities to pollutants through selection and evolution of traits (at the individual and population levels) and changes in species composition (at the community level). Responses to such multiple stressor effects on different biological levels and temporal scales are not considered in current risk assessment practices. We suggest that these effects should and can be addressed by: (i) designing ecotoxicological experiments with temporal exposure patterns that accommodate adaptive processes, (ii) using trait-based approaches to assess biological responses and natural selection in an integrated manner, and (iii) using energy allocation models to link responses at different levels of biological organization.
Collapse
Affiliation(s)
- Beat B Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | | | | |
Collapse
|
35
|
Kooijman SALM. Waste to hurry: dynamic energy budgets explain the need of wasting to fully exploit blooming resources. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2012.00098.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Løkke H, Ragas AMJ, Holmstrup M. Tools and perspectives for assessing chemical mixtures and multiple stressors. Toxicology 2012; 313:73-82. [PMID: 23238274 DOI: 10.1016/j.tox.2012.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 10/29/2012] [Accepted: 11/24/2012] [Indexed: 01/22/2023]
Abstract
The present paper summarizes the most important insights and findings of the EU NoMiracle project with a focus on (1) risk assessment of chemical mixtures, (2) combinations of chemical and natural stressors, and (3) the receptor-oriented approach in cumulative risk assessment. The project aimed at integration of methods for human and ecological risk assessment. A mechanistically based model, considering uptake and toxicity as a processes in time, has demonstrated considerable potential for predicting mixture effects in ecotoxicology, but requires the measurement of toxicity endpoints at different moments in time. Within a novel framework for risk assessment of chemical mixtures, the importance of environmental factors on toxicokinetic processes is highlighted. A new paradigm for applying personal characteristics that determine individual exposure and sensitivity in human risk assessment is suggested. The results are discussed in the light of recent developments in risk assessment of mixtures and multiple stressors.
Collapse
Affiliation(s)
- Hans Løkke
- Aarhus University, Department of Bioscience, Vejlsøvej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark.
| | | | | |
Collapse
|
37
|
Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2564-73. [PMID: 22260322 DOI: 10.1021/es2034125] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental risks of chemicals are still often assessed substance-by-substance, neglecting mixture effects. This may result in risk underestimations, as the typical exposure is toward multicomponent chemical "cocktails". We use the two well established mixture toxicity concepts (Concentration Addition (CA) and Independent Action (IA)) for providing a tiered outline for environmental hazard and risk assessments of mixtures, focusing on general industrial chemicals and assuming that the "base set" of data (EC50s for algae, crustaceans, fish) is available. As mixture toxicities higher than predicted by CA are rare findings, we suggest applying CA as a precautious first tier, irrespective of the modes/mechanisms of action of the mixture components. In particular, we prove that summing up PEC/PNEC ratios might serve as a justifiable CA-approximation, in order to estimate in a first tier assessment whether there is a potential risk for an exposed ecosystem if only base-set data are available. This makes optimum use of existing single substance assessments as more demanding mixture investigations are requested only if there are first indications of an environmental risk. Finally we suggest to call for mode-of-action driven analyses only if error estimations indicate the possibility for substantial differences between CA- and IA-based assessments.
Collapse
Affiliation(s)
- Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|