1
|
Liu H, Zeng W, Lai Z, He M, Lin C, Ouyang W, Liu X. Comparison of antimony and arsenic behaviour at the river-lake junction in the middle of the Yangtze River Basin. J Environ Sci (China) 2024; 136:189-200. [PMID: 37923429 DOI: 10.1016/j.jes.2023.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/07/2023]
Abstract
As typical metalloid toxic elements widely distributed in environmental media, the geochemical behaviour of antimony (Sb) and arsenic (As) affects environmental safety. We selected the surface waters and sediments at the river-lake junction of Dongting Lake as the research objects, analysed the concentration and chemical partitioning of Sb and As, assessed its contamination and ecological risk levels, and discussed its sources and potential influencing factors. The concentrations of dissolved Sb and As in surface waters were low (< 5.46 µg/L), and the concentrations of Sb and As in surface sediments were 2.49-22.65 mg/kg and 11.10-136.34 mg/kg, respectively. Antimony and As in sediments were mainly enriched in the fraction of residues, but the proportion of As in bioavailability was significantly higher than that of Sb. Although the contamination level of Sb was higher than that of As, the risk assessment code (RAC) showed that the ecological risk level of As was higher than that of Sb. Rainwater erosion and mining activities (in the midstream of Zijiang River) were the main contaminated sources of Sb, while As was affect mainly by rainwater erosion. The contamination and ecological risk of Sb in the inlet of the Zijiang River should receive considerable attention, while those of As in the inlet of the Xiangjiang River should also be seriously considered. This study highlights the need for multi-index-based assessments of contamination and ecological risk and the importance of further studies on the environmental behaviour of metalloids in specific hydrological conditions, such as river-lake junctions.
Collapse
Affiliation(s)
- Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Ou C, Zhu X, Hu L, Wu X, Yu W, Wu Y. Source apportionment of soil contamination based on multivariate receptor and robust geostatistics in a typical rural–urban area, Wuhan city, middle China. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study topsoil samples were collected from 57 sites of Dongxihu District which is a typical Chinese urban–rural combination area, to analyze the causes and effects of 6 heavy elements. (Ni, Pb, As, Cu, Cd, and Hg) Pollution of Enrichment factor, multivariate statistics, geostatistics were adopted to study the spatial pollution pattern and to identify the priority pollutants and regions of concern and sources of studied metals. Most importantly, the study area was creatively divided into central urban, semi-urbanized, and rural areas in accordance with the characteristics of urban development and land use. The results show that the pollution degree of potential ecological risk assessment is Hg>Ni>Cu>As>Cd>Pb, and semi-urban regions> city center> rural areas. Results based on the proposed integrated source identification method indicated that As was probably sourced from agricultural sources (33.99%), Pb was associated with atmospheric deposition (50.11%), Cu was related to industrial source 1 (45.97%), Cd was mainly derived from industrial source 2 (42.97%) and Hg come mainly from industrial source 3 (56.22%). The pollution in semi-urban areas in urbanization need more attention.
Collapse
Affiliation(s)
- ChangHong Ou
- Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan430073, China
- Research Center for Environment and policy, Zhongnan University of Economics and Law, Wuhan430073, China
| | - Xi Zhu
- Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan430073, China
- Research Center for Environment and policy, Zhongnan University of Economics and Law, Wuhan430073, China
| | - Lin Hu
- Wuhan Research institute of Environment Protection Science, Wuhan420100, China
| | - Xiaoxu Wu
- Wuhan Research institute of Environment Protection Science, Wuhan420100, China
| | - Weixian Yu
- Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan430073, China
- Research Center for Environment and policy, Zhongnan University of Economics and Law, Wuhan430073, China
| | - YiQian Wu
- Department of Environmental Engineering, Zhongnan University of Economics and Law, Wuhan430073, China
- Research Center for Environment and policy, Zhongnan University of Economics and Law, Wuhan430073, China
| |
Collapse
|
4
|
Watanabe M, Miura S, Hasegawa S, Koshikawa MK, Takamatsu T, Kohzu A, Imai A, Hayashi S. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:539-546. [PMID: 29715658 DOI: 10.1016/j.scitotenv.2018.04.307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L-1, those in 31 catchments consistently exceeded 1 mgN L-1, indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere.
Collapse
Affiliation(s)
- Mirai Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shingo Miura
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Buyodo Co., Ltd., 1-3-25 Himonya, Meguro, Tokyo 152-0003, Japan
| | - Shun Hasegawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masami K Koshikawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takejiro Takamatsu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akio Imai
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Seiji Hayashi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
5
|
Ashaiekh MA, Eltayeb MAH, Ali AH, Ebrahim AM, Salih I, Idris AM. Spatial distribution of total and bioavailable heavy metal contents in soil from agricultural, residential, and industrial areas in Sudan. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1419491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Ali H. Ali
- Department of Chemistry, Faculty of Education, University of Khartoum, Sudan
| | - Ammar M. Ebrahim
- Sudan Atomic Energy Commission (SAEC), Khartoum, Sudan
- Institute of Research and Consultancy, King Faisal University, Hofuf, Saudi Arabia
| | - Isam Salih
- Sudan Atomic Energy Commission (SAEC), Khartoum, Sudan
- Department of Physics, Taibah University, Medina, Saudi Arabia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Nishina K, Watanabe M, Koshikawa MK, Takamatsu T, Morino Y, Nagashima T, Soma K, Hayashi S. Varying sensitivity of mountainous streamwater base-flow [Formula: see text]concentrations to N deposition in the northern suburbs of Tokyo. Sci Rep 2017; 7:7701. [PMID: 28794453 PMCID: PMC5550466 DOI: 10.1038/s41598-017-08111-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Ecosystems of suburban landscapes (i.e., forest, inland water ecosystem) are threatened by high nitrogen (N) loadings derived from urban air pollutants. Forest ecosystems under high chronic N loadings tend to leach more N via streams. In the northern suburbs of Tokyo, N deposition loading on terrestrial ecosystems has increased over the past 30 years. In this region, we investigated nitrate concentrations in 608 independent small forested catchment water samples from northeastern suburbs of Tokyo. The nitrate concentrations varied from 0.07 to 3.31 mg-N L-1 in this region. We evaluated the effects of N deposition and catchment properties (e.g., meteorological and topographic factors, vegetation and soil types) on nitrate concentrations. In the random forest model, simulated N deposition rates from an atmospheric chemistry transportation model explained most of the variance of nitrate concentration. To evaluate the effects of afforestation management in the catchment, we followed a model-based recursive partitioning method (MOB). MOB succeeded in data-driven identification of subgroups with varying sensitivities to N deposition rate by vegetation composition in the catchment. According to MOB, the catchment with dominant coniferous coverage that mostly consisted of plantation with old tree age tended to have strong sensitivity of nitrate concentrations to N deposition loading.
Collapse
Affiliation(s)
- Kazuya Nishina
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Mirai Watanabe
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Masami K. Koshikawa
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Takejiro Takamatsu
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Yu Morino
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Tatsuya Nagashima
- National Institute for Environmental Studies, Center for Regional Environmental Research, Tsukuba, 305-8506 Japan
| | - Kunika Soma
- Ibaraki Kasumigaura Environmental Science Center, Tsuchiura, 300-0023 Japan
| | - Seiji Hayashi
- National Institute for Environmental Studies, Fukushima Branch, Miharu, 963-7700 Japan
| |
Collapse
|
7
|
Nakata H, Nakayama SMM, Oroszlany B, Ikenaka Y, Mizukawa H, Tanaka K, Harunari T, Tanikawa T, Darwish WS, Yohannes YB, Saengtienchai A, Ishizuka M. Monitoring Lead (Pb) Pollution and Identifying Pb Pollution Sources in Japan Using Stable Pb Isotope Analysis with Kidneys of Wild Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E56. [PMID: 28075384 PMCID: PMC5295307 DOI: 10.3390/ijerph14010056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
Abstract
Although Japan has been considered to have little lead (Pb) pollution in modern times, the actual pollution situation is unclear. The present study aims to investigate the extent of Pb pollution and to identify the pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Wild brown (Rattus norvegicus, n = 43) and black (R. rattus, n = 98) rats were trapped from various sites in Japan. Mean Pb concentrations in the kidneys of rats from Okinawa (15.58 mg/kg, dry weight), Aichi (10.83), Niigata (10.62), Fukuoka (8.09), Ibaraki (5.06), Kyoto (4.58), Osaka (4.57), Kanagawa (3.42), and Tokyo (3.40) were above the threshold (2.50) for histological kidney changes. Similarly, compared with the previous report, it was regarded that even structural and functional kidney damage as well as neurotoxicity have spread among rats in Japan. Additionally, the possibility of human exposure to a high level of Pb was assumed. In regard to stable Pb isotope analysis, distinctive values of stable Pb isotope ratios (Pb-IRs) were detected in some kidney samples with Pb levels above 5.0 mg/kg. This result indicated that composite factors are involved in Pb pollution. However, the identification of a concrete pollution source has not been accomplished due to limited differences among previously reported values of Pb isotope composition in circulating Pb products. Namely, the current study established the limit of Pb isotope analysis for source identification. Further detailed research about monitoring Pb pollution in Japan and the demonstration of a novel method to identify Pb sources are needed.
Collapse
Affiliation(s)
- Hokuto Nakata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - Balazs Oroszlany
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa.
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Kazuyuki Tanaka
- Technical Research Laboratory, Ikari Corporation, Chiba 260-0844, Japan.
| | - Tsunehito Harunari
- Technical Research Laboratory, Ikari Corporation, Chiba 260-0844, Japan.
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Corporation, Chiba 260-0844, Japan.
| | - Wageh Sobhy Darwish
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
- Department of Chemistry, College of Natural and Computational Science, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| | - Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
8
|
Yang J, Yang F, Yang Y, Xing G, Deng C, Shen Y, Luo L, Li B, Yuan H. A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:760-769. [PMID: 27038207 DOI: 10.1016/j.envpol.2016.03.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
To study the effects of long-term mining activities on the agricultural soil quality of Mengnuo town in Yunnan province, China, the heavy metal and soil enzyme activities of soil samples from 47 sites were examined. The results showed that long-term mining processes led to point source heavy metal pollution and Pb, Cd, Zn and As were the primary metal pollutants. Polyphenoloxidase was found the most sensitive soil enzyme activity and significantly correlated with almost all the metals (P < 0.05). Amylase (for C cycling), acid phosphatase (for P cycling) and catalase (for redox reaction) activities showed significantly positive correlations (P < 0.05) with Pb, Cd, Zn and As contents. The correlations between soil enzymes activities and Cd, Pb and Zn contents were verified in microcosm experiments, it was found that catalase activity had significant correlations (P < 0.05) with these three metals in short-term experiments using different soils under different conditions. Based on both field investigation and microcosm simulation analysis, oxidoreductases activities (rather than a specific enzyme activity) were suggested to be used as "core enzyme", which could simply and universally indicate the heavy metal pollution degrees of different environments. And hydrolases (for C, N, P and S recycling) could be used as a supplement to improve correlation accuracy for heavy metal indication in various polluted environments.
Collapse
Affiliation(s)
- JinShui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - FengLong Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yang Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - GuanLan Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - ChunPing Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - YaTing Shen
- National Research Center of Geoanalysis, Beijing 100037, China.
| | - LiQiang Luo
- National Research Center of Geoanalysis, Beijing 100037, China.
| | - BaoZhen Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - HongLi Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Yu H, He ZW, Kong B, Weng ZY, Shi ZM. The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:381-398. [PMID: 26055456 DOI: 10.1007/s10653-015-9725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.
Collapse
Affiliation(s)
- Huan Yu
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China.
| | - Zheng-Wei He
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
- The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China
| | - Bo Kong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhong-Yin Weng
- The Second Surveying, Mapping and Geoinformation Engineering Institute, Chengdu, 610100, China
| | - Ze-Ming Shi
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
10
|
Nakamura K, Kuwatani T, Kawabe Y, Komai T. Extraction of heavy metals characteristics of the 2011 Tohoku tsunami deposits using multiple classification analysis. CHEMOSPHERE 2016; 144:1241-1248. [PMID: 26469936 DOI: 10.1016/j.chemosphere.2015.09.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Tsunami deposits accumulated on the Tohoku coastal area in Japan due to the impact of the Tohoku-oki earthquake. In the study reported in this paper, we applied principal component analysis (PCA) and cluster analysis (CA) to determine the concentrations of heavy metals in tsunami deposits that had been diluted with water or digested using 1 M HCl. The results suggest that the environmental risk is relatively low, evidenced by the following geometric mean concentrations: Pb, 16 mg kg(-1) and 0.003 ml L(-1); As, 1.8 mg kg(-1) and 0.004 ml L(-1); and Cd, 0.17 mg kg(-1) and 0.0001 ml L(-1). CA was performed after outliers were excluded using PCA. The analysis grouped the concentrations of heavy metals for leaching in water and acid. For the acid case, the first cluster contained Ni, Fe, Cd, Cu, Al, Cr, Zn, and Mn; while the second contained Pb, Sb, As, and Mo. For water, the first cluster contained Ni, Fe, Al, and Cr; and the second cluster contained Mo, Sb, As, Cu, Zn, Pb, and Mn. Statistical analysis revealed that the typical toxic elements, As, Pb, and Cd have steady correlations for acid leaching but are relatively sparse for water leaching. Pb and As from the tsunami deposits seemed to reveal a kind of redox elution mechanism using 1 M HCl.
Collapse
Affiliation(s)
- Kengo Nakamura
- Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Tatsu Kuwatani
- Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshishige Kawabe
- National Institute of Advanced Industrial Science and Technology, Higashi1-1-1, Tsukuba, Ibaraki 305-8567, Japan
| | - Takeshi Komai
- Graduate School of Environmental Sciences, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
11
|
Nishikiori T, Watanabe M, Koshikawa MK, Takamatsu T, Ishii Y, Ito S, Takenaka A, Watanabe K, Hayashi S. Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:611-616. [PMID: 25302448 DOI: 10.1016/j.scitotenv.2014.09.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
Cryptomeria japonica trees in the area surrounding Fukushima, Japan, intercepted (137)Cs present in atmospheric deposits soon after the Fukushima nuclear accident in March 2011. To study the uptake and translocation of (137)Cs in C. japonica leaves, we analyzed activity concentrations of (137)Cs and the concentration ratios of (137)Cs to (133)Cs ((137)Cs/(133)Cs) in old and new leaves of C. japonica collected from a forest on Mount Tsukuba between 9 and 15 months after the accident. Both isotopes were also analyzed in throughfall, bulk precipitation and soil extracts. Water of atmospheric and soil origin were used as proxies for deciphering the absorption from leaf surfaces and root systems, respectively. Results indicate that 20-40% of foliar (137)Cs existed inside the leaf, while 60-80% adhered to the leaf surface. The (137)Cs/(133)Cs ratios inside leaves that had sprouted before the accident were considerably higher than that of the soil extract and lower than that of throughfall and bulk precipitation. Additionally, more than 80% of (137)Cs in throughfall and bulk precipitation was present in the dissolved form, which is available for foliar uptake, indicating that a portion of the (137)Cs inside old leaves was presumably absorbed from the leaf surface. New leaves that sprouted after the accident had similar (137)Cs/(133)Cs ratios to that of the old leaves, suggesting that internal (137)Cs was translocated from old to new leaves. For 17 species of woody plants other than C. japonica, new leaves that sprouted after the accident also contained (137)Cs, and their (137)Cs/(133)Cs ratios were equal to or higher than that of the soil extract. These results suggested that foliar uptake and further translocation of (137)Cs is an important vector of contamination in various tree species during or just after radioactive fallout.
Collapse
Affiliation(s)
- Tatsuhiro Nishikiori
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Mirai Watanabe
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masami K Koshikawa
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takejiro Takamatsu
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yumiko Ishii
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shoko Ito
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akio Takenaka
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Keiji Watanabe
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Seiji Hayashi
- Center for Regional Environment Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|