1
|
Martín-Díaz J, Lucena F, Blanch AR, Jofre J. Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. ENVIRONMENTAL RESEARCH 2020; 182:109133. [PMID: 32069755 DOI: 10.1016/j.envres.2020.109133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 05/22/2023]
Abstract
Solid or semisolid matrices polluted with fecal remnants can be highly loaded with pathogens, especially viruses, and play a substantial role in the persistence and dispersion of pathogens in the water cycle. Water quality regulations and guidelines are increasingly including bacteriophages infecting enteric bacteria as indicators of fecal and/or viral pollution. However, more data are needed about viral indicators in contaminated solids to develop effective sanitation strategies for the management of raw and treated sludge, fecal sludge, manures and slurries. Also, the exact role of sediments and soil in the transmission cycle of viral pathogens still needs to be determined. This review aims to provide an update on available data for concentrations of indicator bacteriophages in different solid matrices as well as their resistance to treatments and persistence in solids. The conclusion reached is that there is a need for improved and standardized methodologies for bacteriophage extraction, detection and enumeration in solids. Reports indicate that these contain higher levels of somatic coliphages in comparison with traditional bacterial indicators and F-specific RNA coliphages. Water body sediments and soil have been found to be notable reservoirs of somatic coliphages, which are more persistent in nature and resistant to sludge treatments than Escherichia coli and fecal coliforms and F-specific RNA coliphages. Thus, somatic coliphages show up as excellent complementary indicators for the prediction of pathogenic viruses in solids.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
2
|
Schutzius G, Nguyen M, Navab-Daneshmand T. Antibiotic resistance in fecal sludge and soil in Ho Chi Minh City, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34521-34530. [PMID: 31643014 DOI: 10.1007/s11356-019-06537-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the prevalence of antibiotic-resistant bacteria and genes in fecal sludge and soil in Ho Chi Minh City, Vietnam, and identified the factors contributing to the survival of antibiotic-resistant bacteria in soil. Sludge and soil samples (n = 24 and 55, respectively) were collected from residential septic systems and environmental reservoirs (i.e., canals, rivers, and parks) in twelve districts of Ho Chi Minh City and tested against a library of 12 antibiotic-resistant genes and 1 integron gene. The susceptibility of isolated Escherichia coli from sludge and soil (n = 104 and 129, respectively) was tested against nine antibiotics. Over 60% of sludge and soil samples harbored sul1, ere(A), intI1, cmIA, and tet(A) genes. The three most common phenotypic resistances found in E. coli isolated from sludge and soil were to ampicillin, tetracycline, and sulfamethoxazole/trimethoprim. In a temporal microcosm study of antibiotic-susceptible and multi-drug-resistant E. coli inoculated in soil, temperature (21.4 vs. 30 °C), resistance phenotype, and soil background microbial community were associated with E. coli decay rates over 73 days. This is the first study that provides insights into the high prevalence of antibiotic resistance in septic systems and environmental reservoirs in Ho Chi Minh City, Vietnam. Findings highlight that the fecal sludge and soil environments in Vietnam are likely reservoirs for dissemination of and human exposure to antibiotic resistance.
Collapse
Affiliation(s)
- Genevieve Schutzius
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA
| | - Mi Nguyen
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
3
|
Abstract
A central and critical step in the molecular detection of soil-transmitted helminths from environmental sources is the extraction of DNA from the eggs. In this study, we investigated the yield of DNA extracted from known quantities (500, 100, 50, 20, 10 and 5) of Ascaris suum eggs, as well as directly from wastewater and sludge samples containing Ascaris spp. eggs, using six commercial DNA extraction kits. The amount of DNA extracted was quantified with NanoDrop, Qubit and Ct values from quantitative polymerase chain reaction (qPCR) assay using CFX96 Touch™ real-time PCR equipment. The PowerLyzer Ultraclean Microbial DNA isolation kit and PowerSoil DNA isolation kit gave the highest yield of DNA based on the NanoDrop, Qubit and Ct values. However, the qPCR results indicate that in some of the kits, PCR inhibitors may have been carried over to the PCR reaction. DNA extraction kits that incorporate a bead-beating step as well as other mechanical eggshell disruption steps were superior in extracting DNA from Ascaris spp. eggs. Additionally, for the accurate quantification of extracted DNA, the use of Ct values from qPCR and Qubit readings gives better results compared to the NanoDrop readings. For efficient downstream applications, the use of DNA extraction kits with superior inhibitor removal technology is essential, in addition to a high yield of DNA.
Collapse
|
4
|
Amoah ID, Adegoke AA, Stenström TA. Soil-transmitted helminth infections associated with wastewater and sludge reuse: a review of current evidence. Trop Med Int Health 2018; 23:692-703. [PMID: 29779225 PMCID: PMC6055670 DOI: 10.1111/tmi.13076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To review current evidence on infections related to the concentration of soil-transmitted helminth (STH) eggs in wastewater, sludge and vegetables irrigated with wastewater or grown on sludge-amended soils. METHOD Search of Web of Science, Science Direct, PubMed and Google Scholar databases for publications reporting on STH egg concentration in wastewater, sludge and vegetables and for epidemiological studies on wastewater/sludge reuse and STH infections. RESULTS STH egg concentrations were variable but high in wastewater and sludge especially in developing countries. They ranged from 6 to 16 000 eggs/L in wastewater and from 0 to 23 000 eggs/g in sludge and far exceed limits set in the WHO guideline for wastewater/sludge reuse. Numbers of STH eggs on vegetables ranged from 0 to 100 eggs/g. The concentration of STH eggs in wastewater, sludge and vegetables therefore relates to risks of infection through different exposure routes. CONCLUSION Epidemiological evidence reveals an increased prevalence of STH infections associated with direct exposure to wastewater or sludge (farmers) and consumption of vegetables grown on soil treated with it. This calls for increased efforts to reduce the adverse health impact of wastewater and sludge reuse in line with the WHO multi-barrier approach.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Anthony Ayodeji Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
5
|
Chuah CJ, Ziegler AD. Temporal Variability of Faecal Contamination from On-Site Sanitation Systems in the Groundwater of Northern Thailand. ENVIRONMENTAL MANAGEMENT 2018; 61:939-953. [PMID: 29508021 DOI: 10.1007/s00267-018-1016-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/16/2018] [Indexed: 05/23/2023]
Abstract
We investigated the impacts of on-site sanitation systems to local groundwater. In this year-long study, we monitored the response of faecal contamination levels to hydroclimatological factors including rainfall and groundwater table. Concentration of faecal indicators-E. coli (ESC), Enterococcus (ENT), nitrate-in thirteen pairs of shallow and deep wells were determined every 7-14 days. All samples from shallow wells were tested positive for faecal contamination (ESC and ENT > 1 MPN/100 mL) but concentration varies. A maximum of 24,000 MPN/100 mL were recorded in some shallow wells. Water from deep wells showed lower susceptibility to contamination with only 4 and 23% of samples tested positive for ESC and ENT, respectively. Concentrations of ESC and ENT were lower too, with a maximum of 5 MPN/100 mL and 28 MPN/100 mL, respectively. Fluctuation in contamination among the wells was described by four archetypal responses to hydroclimatological forcing: (i) flushing during the onset of wet season, (ii) dilution over the course of the wet season, (iii) concentration during the dry season, and (iv) synoptic response to storms. Previous studies attempting to link the prevalence of faecal/waterborne diseases and temporal factors (e.g., dry vs wet season) have produced differing outcomes. Our study may help explain the relevant hydrological mechanisms leading to these varying observations. Presently, most communities in Thailand have access to 'improved' sanitation systems. However, due to the unsustainable implementation of these systems, the otherwise viable drinking-water resources in the form of the abundant local groundwater has become a genuine health hazard.
Collapse
Affiliation(s)
- C Joon Chuah
- Department of Geography, National University of Singapore, AS2, #03-01, 1 Arts Link, Kent Ridge, 117570, Singapore, Singapore.
- Institute of Water Policy, National University of Singapore, 469A Bukit Timah Rd, 259772, Singapore, Singapore.
| | - Alan D Ziegler
- Department of Geography, National University of Singapore, AS2, #03-01, 1 Arts Link, Kent Ridge, 117570, Singapore, Singapore
| |
Collapse
|
6
|
Amoah ID, Reddy P, Seidu R, Stenström TA. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12883-12895. [PMID: 29478163 PMCID: PMC5942351 DOI: 10.1007/s11356-018-1503-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 05/08/2023]
Abstract
Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Razak Seidu
- Water and Environmental Engineering Group, Institute for Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
7
|
Gyawali P. Infectious helminth ova in wastewater and sludge: A review on public health issues and current quantification practices. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:1048-1061. [PMID: 29488968 DOI: 10.2166/wst.2017.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Raw and partially treated wastewater has been widely used to maintain the global water demand. Presence of viable helminth ova and larvae in the wastewater raised significant public health concern especially when used for agriculture and aquaculture. Depending on the prevalence of helminth infections in communities, up to 1.0 × 103 ova/larvae can be presented per litre of wastewater and 4 gm (dry weight) of sludge. Multi-barrier approaches including pathogen reduction, risk assessment, and exposure reduction have been suggested by health regulators to minimise the potential health risk. However, with a lack of a sensitive and specific method for the quantitative detection of viable helminth ova from wastewater, an accurate health risk assessment is difficult to achieve. As a result, helminth infections are difficult to control from the communities despite two decades of global effort (mass drug administration). Molecular methods can be more sensitive and specific than currently adapted culture-based and vital stain methods. The molecular methods, however, required more and thorough investigation for its ability with accurate quantification of viable helminth ova/larvae from wastewater and sludge samples. Understanding different cell stages and corresponding gene copy numbers is pivotal for accurate quantification of helminth ova/larvae in wastewater samples. Identifying specific genetic markers including protein, lipid, and metabolites using multiomics approach could be utilized for cheap, rapid, sensitive, specific and point of care detection tools for helminth ova and larva in the wastewater.
Collapse
Affiliation(s)
- P Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Kenepuru Science Centre, Porirua 5240, New Zealand E-mail:
| |
Collapse
|
8
|
Amoah ID, Reddy P, Stenström TA. Effect of reagents used during detection and quantification of Ascaris suum in environmental samples on egg viability. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2389-2400. [PMID: 29144297 PMCID: PMC7797636 DOI: 10.2166/wst.2017.324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Soil-transmitted helminths (STHs) are a major health concern globally. Infection is mostly through contact with contaminated water, food or soil. Therefore to break the cycle of viable transmission STH eggs must be quantitatively detected in the environment. The effect of different reagents on the viability of Ascaris suum eggs during laboratory detection and quantification was assessed and different incubation solutions compared. Sulphuric acid gave a slightly higher recovery percentage of viable eggs (91.2%) than distilled water (90.0%) and 0.5% formalin (87.6%), although the difference was not statistically significant (p > 0.05). Acetoacetic acid, ethyl acetate, ammonium bicarbonate, zinc sulphate, magnesium sulphate and Tween 80, are reagents widely used in test protocols for the detection and quantification of STH eggs. Eggs were exposed to these reagents for different time durations. Acetoacetic acid resulted in the highest loss of viability (3.4 ± 0.7% viable), while magnesium sulphate resulted in the least effect (88.5 ± 1.2% viable). In conclusion the use of the selected reagents in the detection of these eggs was found to affect the viability of exposed eggs, especially during prolonged exposures. Therefore we recommended that eggs be exposed for ≤5 minutes, to reduce the risk of viability loss.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail: ; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
9
|
Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives. Acta Trop 2017; 169:187-201. [PMID: 28214519 DOI: 10.1016/j.actatropica.2017.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Ancylostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected based on their methodology and results sections. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.).
Collapse
|
10
|
Krithika D, Thomas AR, Iyer GR, Kranert M, Philip L. Spatio-temporal variation of septage characteristics of a semi-arid metropolitan city in a developing country. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7060-7076. [PMID: 28092008 DOI: 10.1007/s11356-016-8336-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
Septage is the solid sludge that accumulates in septic tanks over a period of time. Many of the developing countries in the world face the challenging task of septage management. Due to the high variability in the nature of septage, there is a need to study its physical and chemical characteristics in order to suggest a sustainable treatment methodology. The present study deals with the characterization of septage collected from different locations of Chennai city in India, in two different seasons (summer and winter). The characterization includes parameters such as solids, organics, inorganics, nutrients and heavy metals. Septage showed significant difference in concentrations of pollutants from one season to the other (p > 0.05). The average total solids concentration is found to be 1.6 times higher during winter season than compared to summer season. Average concentrations of solids were 2185 ± 1070 and 3555 ± 2935 mg/L during summer and winter, respectively. Liquid characterization of septage showed total chemical oxygen demands (COD) of 905 ± 603 mg/L (summer) and 1460 ± 1295 mg/L (winter). Similarly, average soluble biochemical oxygen demand (sBOD) was found to be 117 ± 54 mg/L during summer and 211 ± 220 mg/L during winter season. Studies also showed that septage was rich in nutrients such as total nitrogen (4-500 mg/L), ammoniacal nitrogen (2-129 mg/L), total phosphate (5-236 mg/L) and heavy metals such as copper, zinc, lead and manganese. Overall characterization indicates that the collected septage samples are highly variable in nature with respect to sources, season and locations of collection. As the septage is rich in organic matter and nutrients, it can be used as a resource like soil conditioner or as a substitute for chemical fertilizer in agriculture, after proper treatment, leading to a new evolution in sanitation.
Collapse
Affiliation(s)
- D Krithika
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Anu Rachel Thomas
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Gomathy R Iyer
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
11
|
Decrey L, Kazama S, Kohn T. Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation. Appl Environ Microbiol 2016; 82:4909-20. [PMID: 27260358 PMCID: PMC4968548 DOI: 10.1128/aem.01106-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Treatment of human excreta and animal manure (HEAM) is key in controlling the spread of persistent enteric pathogens, such as viruses. The extent of virus inactivation during HEAM storage and treatment appears to vary with virus genome type, although the reasons for this variability are not clear. Here, we investigated the inactivation of viruses of different genome types under conditions representative of HEAM storage or mesophilic digestion. The goals were to characterize the influence of HEAM solution conditions on inactivation and to determine the potential mechanisms involved. Specifically, eight viruses representing the four viral genome types (single-stranded RNA [ssRNA], double-stranded RNA [dsRNA], single-stranded DNA [ssDNA], and double-stranded DNA [dsDNA]) were exposed to synthetic solutions with well-controlled temperature (20 to 35°C), pH (8 to 9), and ammonia (NH3) concentrations (0 to 40 mmol liter(-1)). DNA and dsRNA viruses were considerably more resistant than ssRNA viruses, resulting in up to 1,000-fold-longer treatment times to reach a 4-log inactivation. The apparently slower inactivation of DNA viruses was rationalized by the higher stability of DNA than that of ssRNA in HEAM. Pushing the system toward harsher pH (>9) and temperature (>35°C) conditions, such as those encountered in thermophilic digestion and alkaline treatments, led to more consistent inactivation kinetics among ssRNA and other viruses. This suggests that the dependence of inactivation on genome type disappeared in favor of protein-mediated inactivation mechanisms common to all viruses. Finally, we recommend the use of MS2 as a conservative indicator to assess the inactivation of ssRNA viruses and the stable ΦX174 or dsDNA phages as indicators for persistent viruses. IMPORTANCE Viruses are among the most environmentally persistent pathogens. They can be present in high concentrations in human excreta and animal manure (HEAM). Therefore, appropriate treatment of HEAM is important prior to its reuse or discharge into the environment. Here, we investigated the factors that determine the persistence of viruses in HEAM, and we determined the main mechanisms that lead to their inactivation. Unlike other organisms, viruses can have four different genome types (double- or single-stranded RNA or DNA), and the viruses studied herein represent all four types. Genome type appeared to be the major determinant for persistence. Single-stranded RNA viruses are the most labile, because this genome type is susceptible to degradation in HEAM. In contrast, the other genome types are more stable; therefore, inactivation is slower and mainly driven by the degradation of viral proteins. Overall, this study allows us to better understand the behavior of viruses in HEAM.
Collapse
Affiliation(s)
- Loïc Decrey
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shinobu Kazama
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland New Industry Creation Hatchery Center (NICHe), Sendai, Miyagi, Japan
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Verbyla ME, Iriarte MM, Mercado Guzmán A, Coronado O, Almanza M, Mihelcic JR. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:429-437. [PMID: 26881733 DOI: 10.1016/j.scitotenv.2016.01.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda.
Collapse
Affiliation(s)
- M E Verbyla
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, United States.
| | - M M Iriarte
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - A Mercado Guzmán
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - O Coronado
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - M Almanza
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - J R Mihelcic
- Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, United States
| |
Collapse
|
13
|
Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry. Int J Hyg Environ Health 2014; 217:785-95. [PMID: 24933419 PMCID: PMC7106344 DOI: 10.1016/j.ijheh.2014.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
Abstract
Small-scale biogas digesters are widely promoted worldwide as a sustainable technology to manage livestock manure. In Vietnam, pig slurry is commonly applied to biogas digesters for production of gas for electricity and cooking with the effluent being used to fertilize field crops, vegetables and fish ponds. Slurry may contain a variety of zoonotic pathogens, e.g. Salmonella spp., which are able to cause disease in humans either through direct contact with slurry or by fecal contamination of water and foods. The objective of this study was to evaluate the survival of Salmonella spp. and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms with and 6 farms without toilet connected) located in Hanam province, Vietnam. Sampling of pig slurry and biogas effluent was done during two seasons. Results showed that the concentration of enterococci, E. coli, and Clostridium perfringens spores was overall reduced by only 1–2 log10-units in the biogas digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw and that indiscriminate discharge of effluent are likely to contaminate water recipients, e.g. drinking water sources, with pathogens. Relevant authorities should promote safe animal manure management practices to farmers and regulations be updated to ensure food safety and public health.
Collapse
|
14
|
Huong LQ, Madsen H, Anh LX, Ngoc PT, Dalsgaard A. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:53-57. [PMID: 24140681 DOI: 10.1016/j.scitotenv.2013.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 06/02/2023]
Abstract
Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems.
Collapse
Affiliation(s)
- Luu Quynh Huong
- National Institute of Veterinary Research, 86 Truong Chinh road, Dong Da district, Hanoi, Viet Nam; Department of Veterinary Diseases Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| | - Henry Madsen
- Department of Veterinary Diseases Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| | - Le Xuan Anh
- Hue Universities of Agriculture and Forestry, 120 Phung Hung Road, Hue, Viet Nam.
| | - Pham Thi Ngoc
- National Institute of Veterinary Research, 86 Truong Chinh road, Dong Da district, Hanoi, Viet Nam.
| | - Anders Dalsgaard
- Department of Veterinary Diseases Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Prevalence of Escherichia coli in surface waters of Southeast Asian cities. World J Microbiol Biotechnol 2013; 29:2115-24. [DOI: 10.1007/s11274-013-1376-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
|
16
|
Inactivation of pathogens in feces by desiccation and urea treatment for application in urine-diverting dry toilets. Appl Environ Microbiol 2013; 79:2156-63. [PMID: 23335764 DOI: 10.1128/aem.03920-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ecological sanitation technologies can be effective in providing health and environmental pollution control if they can efficiently reduce the pathogenicity of microorganisms carried in fecal material to safe levels. This study evaluated the sanitizing effects of different additives for dry treatment of feces from urine-diverting dry toilets, based on inactivation of Enterococcus faecalis, Salmonella enterica serovar Typhimurium, bacteriophages MS2 and ΦX, and Ascaris suum. The additives, ash (A) and oyster shell (O) in different amounts and urea (U) to optimize the process, were compared with no additive, solely urea, and sawdust as controls (C) and were covered ([x%O:A]) or uncovered (x%O:A). The main inactivation factors found were desiccation, ammonia content, and pH. S. Typhimurium and E. faecalis were more affected by the ammonia content. A combination of neutral to high pH and desiccation was most effective for inactivation of MS2, and desiccation was most effective for inactivation of ΦX and A. suum. The inactivation rate was modeled for all combinations studied. The most promising treatments were [150%O:A+U], 150%O:A+U, and 150%O:A. According to the models, these could inactivate, for example, 7 log(10) units of all bacteria and bacteriophages within 83, 125, and 183 days, respectively. The inactivation of A. suum was modeled, albeit the measured decay in egg viability was low.
Collapse
|