1
|
Somtrakoon K, Chouychai W. Enhancing growth and phytoremediation efficiency of Pennisetum purpureum cv. Mahasarakham in weathered PAH-contaminated soil through thidiazuron application. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2336-2347. [PMID: 39145743 DOI: 10.1080/15226514.2024.2389561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are phytotoxic, which can limit their phytoremediation. When the ability of plants to phytoremediation PAHs is compromised, the application of plant growth regulators can enhance the growth of the plants. This study aimed to determine the best plant growth regulator (1-naphthalene acetic acid, 6-benzyladenine, or thidiazuron) to enhance the phytoremediation ability of sweet grass (Pennisetum purpureum cv. Mahasarakham) when grown in weather PAH-contaminated soil. In a greenhouse study, 0.01 mg/l thidiazuron resulted in the highest growth of sweet grass when compared to the other tested plant growth regulators (dry shoot weight 24.11 ± 1.28 g and dry root weight 0.70 ± 0.02 g). Sweet grass was grown in soil contaminated with PAH, which demonstrated the toxicity to sweet grass by reducing the total chlorophyll (1.01 µg/g fresh weight) and carotenoid (0.28 µg/g fresh weight) contents with proline increased (6.63 µg/g fresh weight). Meanwhile, total chlorophyll, carotenoid, and proline content in leaves of sweet grass grown in non-contaminated soil were 1.68, 0.44, and 5.23 µg/g fresh weight, respectively. When sweet grass was used to phytoremediate PAHs, there were reductions in acenaphthylene (4.69 ± 0.50%), acenaphthene (10.69 ± 1.47%), and phenanthrene (3.61 ± 0.07%), which compared to levels of over 30% in non-planted soil. For the three PAHs, the bioconcentration factors were 1.6 to 2.4, but the translocation factors were below 1, showing limited movement to the aerial parts of the plant, thereby suggesting that the main mechanism is rhizoremediation. Sweet grass is an excellent candidate for PAH remediation, especially when thidiazuron is applied to relieve plant stress.
Collapse
Affiliation(s)
- Khanitta Somtrakoon
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
| | - Waraporn Chouychai
- Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, Thailand
| |
Collapse
|
2
|
de Freitas AR, Fávaris NAB, Alexandre RS, da Silva Souza T, Galter IN, Baptista JO, de Lima PAM, de Mello T, Otoni WC, Lopes JC. Germination, cytotoxicity, and mutagenicity in Lactuca sativa L. and Passiflora alata Curtis in response to sewage sludge application. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:628-637. [PMID: 37269409 DOI: 10.1007/s10646-023-02673-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
The physical and chemical characteristics of the soil can influence plant growth. When sewage sludge (SS) is applied as a soil fertilizer, the accumulation of non-essential elements contained in it can be toxic for plants. The aim of this study was to understand the effect of SS dosage on the cell cycle of Lactuca sativa L. meristematic cells and on the initial growth of L. sativa and Passiflora alata Curtis. Nine concentrations of SS + distilled water (mg dm-3) corresponding to 0, 20, 40, 60, 80, 120, 160, 320, and 520 t ha-1 were tested in four replicates of 25 seeds. Chemical analysis showed an increase in pH of the sludge from 0 to 80 t ha-1 SS followed by its stabilization thereafter. The highest electrical conductivity was observed at 520 t ha-1 SS. SS negatively affected the germination and initial growth of seedlings from P. alata and L. sativa. Cytogenetic analysis on 6000 L. sativa meristematic cells for each treatment revealed that SS could adversely affect the genetic stability of this species. SS concentrations above 120 t ha-1 adversely affected the germination and early seedling growth of L. sativa and P. alata. At high concentrations (120 t ha-1), SS induced genetic lesions in L. sativa, along with chromosomal and nuclear alterations.
Collapse
Affiliation(s)
- Allan Rocha de Freitas
- Faculty of the Future, Department of Agronomy, Rua Duarte Peixoto, Coqueiro, 259, 36900-000, Manhuaçu, MG, Brazil
| | - Nathália Aparecida Bragança Fávaris
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Rodrigo Sobreira Alexandre
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Tatiana da Silva Souza
- Center for Exact, Natural and Health Sciences, Department of Biology, Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Iasmini Nicoli Galter
- Center for Exact, Natural and Health Sciences, Department of Biology, Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Julcinara Oliveira Baptista
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Paula Aparecida Muniz de Lima
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| | - Tamyris de Mello
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil.
| | - Wagner Campos Otoni
- Center for Biological Sciences and Health, Federal University of Viçosa/UFV, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, MG, Brazil
| | - José Carlos Lopes
- Center for Agricultural Sciences and Engineering (UFES-CCAE), Federal University of Espírito Santo, Alto Universitário, s/n, 29500-000, Alegre, ES, Brazil
| |
Collapse
|
3
|
Souza MCO, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157774. [PMID: 35932867 DOI: 10.1016/j.scitotenv.2022.157774] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 05/06/2023]
Abstract
The increase and indiscriminate use of personal care products, food products, fertilizers, pesticides, and health products, among others, have resulted/are resulting in extensive environmental contamination. Most of these products contain traces of widespread chemicals, usually known as emerging pollutants (EPs) or pollutants of emerging concern (PEC). The Latin American (LA) region comprises 20 countries with different social and cultural aspects, with 81 % of the population living in urban areas. The LA region has some countries on the top list of users/consumers of EPs, from pesticides and fertilizers to personal care products. However, there is a gap in information related to the distribution of EPs in the environment of this region, with very few existing review texts exploring this issue. Therefore, this present paper advances this approach. An exhaustive literature review, with the selection of 176 documents, provided unique up-to-date information on the presence/distribution of 17 classes of legacy or emerging pollutants in different food and environmental matrices (soil, sediment, water, and air). The study shows that the wide distribution and recorded levels of these pollutants in the continental environment are potential risks to human health, mainly through food and drinking water ingestion. Polycyclic aromatic hydrocarbons are pollutants of deep public concern since they show carcinogenic properties. Several classes of pollutants, like endocrine disruptors, have caused harmful effects on humans and the environment. Besides that, pharmaceutical products and pesticides are compounds of high consumption worldwide, being environmental contamination a real and ongoing possibility. Finally, gaps and future research needs are deeply pointed out.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain.
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain
| | - José Luis Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Catalonia, Spain
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Zhao Z, He W, Wu R, Xu F. Distribution and Relationships of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils and Plants near Major Lakes in Eastern China. TOXICS 2022; 10:toxics10100577. [PMID: 36287857 PMCID: PMC9607041 DOI: 10.3390/toxics10100577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
The distributions and correlations among polycyclic aromatic hydrocarbons (PAHs) in soils and plants were analyzed. In this study, 9 soil samples and 44 plant samples were collected near major lakes (Hongze Lake, Luoma Lake, Chaohu, Changhu, Danjiangkou Reservoir, Wuhan East Lake, Longgan Lake, Qiandao Lake and Liangzi Lake) in eastern China. The following results were obtained: The total contents of PAHs in soil varied from 99.17 to 552.10 ng/g with an average of 190.35 ng/g, and the total contents of PAHs in plants varied from 122.93 to 743.44 ng/g, with an average of 274.66 ng/g. The PAHs in soil were dominated by medium- and low-molecular-weight PAHs, while the PAHs in plants were dominated by low-molecular-weight PAHs. The proportion of high-molecular-weight PAHs was the lowest in both soil and plants. Diagnostic ratios and principal component analysis (PCA) identified combustion as the main source of PAHs in soil and plants. The plant PAH monomer content was negatively correlated with Koa. Acenaphthylene, anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene and dibenzo[a,h]anthracene were significantly correlated in plants and soil. In addition, no significant correlation between the total contents of the 16 PAHs and the content of high-, medium-, and low-molecular-weight PAHs in plants and soil was found. Bidens pilosa L. and Gaillardia pulchella Foug in the Compositae family and cron in the Poaceae family showed relatively stronger accumulation of PAHs, indicating their potential for phytoremediation.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing100083, China
| | - Ruilin Wu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Correspondence:
| |
Collapse
|
5
|
Hubai K, Kováts N, Sainnokhoi TA, Teke G. Accumulation pattern of polycyclic aromatic hydrocarbons using Plantago lanceolata L. as passive biomonitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7300-7311. [PMID: 34476695 PMCID: PMC8763834 DOI: 10.1007/s11356-021-16141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Biomonitors are considered a cheap alternative of active air samplers, especially where spatial pattern of air quality is to be monitored, requiring numerous parallel measurements. Of higher plants, Plantago lanceolata L. has been proven a good monitor species with proper accumulation capacity. While biomonitoring studies are difficult to compare due to inherent errors such as the diverse plant material used in different studies, the No. 227 OECD GUIDELINE FOR THE TESTING OF CHEMICALS: Terrestrial Plant Test: Vegetative Vigour Test provides a tool to test extract of aerosol samples under controlled laboratory conditions. In our study, this guideline was followed to experimentally treat Plantago with the aqueous extract of a diesel exhaust sample. Accumulation pattern of polyaromatic hydrocarbons (PAHs) was assessed and compared to samples collected in the field. Unlike most studies reported in the literature, both in the experimentally treated and field Plantago samples, high ratio of high molecular weight PAHs was experienced. Distribution pattern of accumulated PAHs showed strong correlation between the experimentally treated sample and most of the field plantain samples, underlying the usefulness of laboratory treatments for bioaccumulation studies.
Collapse
Affiliation(s)
- Katalin Hubai
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Nora Kováts
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| | - Tsend-Ayush Sainnokhoi
- Centre of Natural Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
- School of Veterinary Medicine, Mongolian University of Life Sciences, Khan-Uul district, Zaisan, Ulaanbaatar, 17042, Mongolia
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, 8184, Hungary
| |
Collapse
|
6
|
Gemeiner H, Menegário AA, Williams PN, Matavelli Rosa AE, Santos CA, Pedrobom JH, Elias LP, Chang HK. Lability and bioavailability of Co, Fe, Pb, U and Zn in a uranium mining restoration site using DGT and phytoscreening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57149-57165. [PMID: 34085201 DOI: 10.1007/s11356-021-14605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.
Collapse
Affiliation(s)
- Hendryk Gemeiner
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Amauri Antonio Menegário
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
| | - Paul N Williams
- Institute for Global Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, UK
| | - Amália E Matavelli Rosa
- Indústrias Nucleares do Brasil S.A. - INB Rodovia Poços de Caldas - Andradas, km 20,6 (BR 146, km 540), Caldas, MG, 37780-000, Brazil
| | - Cristiane A Santos
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jorge Henrique Pedrobom
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Hung Kiang Chang
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Geology and Basin Studies Laboratory (LEBAC), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
7
|
Wang J, Zhang H, Bao H, Li J, Li J, Xing W, Hong H, Wu F. Dynamic distribution and accumulation of PAHs in winter wheat during whole plant growth: Field investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110886. [PMID: 32585487 DOI: 10.1016/j.ecoenv.2020.110886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A field investigation was conducted to study the dynamic distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in winter wheat in the surrounds of a coal-fired power plant. During March to June 2019, various tissues of winter wheat and the corresponding rhizosphere soil were collected for determination of PAHs. A clear spatial downward trend was found in concentration of Σ15PAHs in rhizosphere soil and wheat grain (194-237 μg kg-1 DM) with the increasing distance from the coal-fired power plant. Moreover, Σ15PAHs concentration in rhizosphere soil (1081 μg kg-1 DM), root (464 μg kg-1 DM) and stem (365 μg kg-1 DM) of winter wheat at regreening stage and leaf (323 μg kg-1 DM) at anthesis stage were significantly (p < 0.001) higher than that (895, 432, 287 and 265 μg kg-1 DM) at maturity stage, respectively. From regreening to maturity stage, root concentration factors (RCF) of 3- and 4-ring PAHs exhibited an increasing trend but the 5-ring PAHs showed an apparently downward trend. However, stem concentration factors (SCF) of 3- and 4-ring PAHs showed a decrease trend while the 5- and 6-ring showed first down and then stable trend. There were positive linear relationship between logKow and logSCF at anthesis (r = 0.681, p < 0.05) and maturity stage (r = 0.751, p < 0.05). Based on linear regression analysis, PAHs in grain mainly came from the transfer of vegetative tissues, and the contribution of PAHs from stem and leaf to grain was higher than that from root. In addition, the present study also found that the physicochemical properties of PAHs play a crucial role in transfer of PAHs from root to vegetative tissues and then to grain. The present research provided more comprehensive information on the fate of PAHs in winter wheat and the safety of the agricultural products.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - He Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, PR China
| | - Jia Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Teke G, Hubai K, Diósi D, Kováts N. Assessment of Foliar Uptake and Accumulation of Airborne Polyaromatic Hydrocarbons Under Laboratory Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:444-448. [PMID: 32152686 PMCID: PMC7145778 DOI: 10.1007/s00128-020-02814-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
Urban horticulture and community gardening have become more and more popular in the past years, however, the risk of bioaccumulation of atmospheric polyaromatic hydrocarbons (PAHs) in vegetables grown in polluted areas cannot be neglected. In our study, the No. 227 OECD GUIDELINE FOR THE TESTING OF CHEMICALS: Terrestrial Plant Test: Vegetative Vigour Test was followed to assess foliar uptake of PAHs from aqueous extract of an urban aerosol. Using lettuce (Lactuca sativa) as a test organism, significant accumulation was experienced. The highest bioconcentration factors (BCFs) were experienced for naphthalene and for anthracene, pyrene and fluoranthene showed the lowest bioaccumulation potential. BCF of each PAH showed strong correlation with molecular weight. The standard protocol defined by the Guideline made it possible to assess bioaccumulation pattern under controlled laboratory conditions.
Collapse
Affiliation(s)
- Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfuzfo, 8184, Hungary
| | - Katalin Hubai
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Dorina Diósi
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Nora Kováts
- Institute of Environmental Sciences, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
| |
Collapse
|
9
|
Bagheri M, Al-Jabery K, Wunsch DC, Burken JG. A deeper look at plant uptake of environmental contaminants using intelligent approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:561-569. [PMID: 30245412 DOI: 10.1016/j.scitotenv.2018.09.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Uptake of contaminants from the groundwater is one pathway of interest, and efforts have been made to relate root exposure to transloation throughout the plant, termed the transpiration stream concentration factor (TSCF). This work utilized machine learning techniques and statistcal analysis to improve the understanding of plant uptake and translocation of emerging contaminants. Neural network (NN) was used to develop a reliable model for predicting TSCF using physicochemical properties of compounds. Fuzzy logic was as a technique to examine the simultaneous impact of properties on TSCF, and interactions between compound properties. The significant and effective compound properties were determined using stepwise and forward regression as two widely used statiscal techniques. Clustering was used for detecting the hidden structures in the plant uptake data set. The NN predicted the TSCF with improved accuracy compared to mechanistic models. We also delivered new insight to compound properteis and their importance in transmembrane migration. The sensitivity analysis indicated that log Kow, molecular weight, hydrogen bond donor, and rotatable bonds are the most important properties. The results of fuzzy logic demonstrated that the relationship between molecular weight and log Kow with TSCF are both bell-shape and sigmoidal. The employed clustering algorithms all discovered two major distinct clusters in the data set.
Collapse
Affiliation(s)
- Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| | - Khalid Al-Jabery
- Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| | - Donald C Wunsch
- Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| | - Joel G Burken
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States.
| |
Collapse
|
10
|
Garcia LP, Gomes FML, Tfouni S, Vicente E, Savi GD, Santos K, Scussel VM. Polycyclic aromatic hydrocarbons in commercial brands of dry whole soybeans for direct human consumption. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2017; 10:15-20. [PMID: 27710179 DOI: 10.1080/19393210.2016.1240244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A total of 13 polycyclic aromatic hydrocarbons (PAHs) were surveyed in dry whole soybeans (Glycine max L.) sold for human consumption. The analysed samples were commercialised in vegetarian shops and food stores in Southern Brazil regions. The determination of PAHs levels was carried out by high performance liquid chromatography (HPLC)with fluorescence detection. PAHs were present in 89.7% of the samples. Chrysene (Chy) and 5 methyl chrysene (5MeChy) were the main PAHs detected (76.9% and 71.8%, respectively) followed by dibenzo(ai)pyrene (DaiP), however in a much less percentage of samples (23.1%). Apart from those PAHs, also benzo(a)antracene (BaA), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF) and benzo(a)pyrene(BaP) were found. The ΣPAH levels in the positive samples ranged from 0.80 to 38.78 µg kg-1, with exception of one sample that reached 204.46 µg kg-1 (ΣPAHs of six compounds). Despite the present contamination there are no maximum limits set for PAHs in soybeans.
Collapse
Affiliation(s)
- Laura Pereira Garcia
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Fernanda M L Gomes
- b Food Science and Quality Center , Food Technology Institute , Campinas , Brazil
| | - Silvia Tfouni
- b Food Science and Quality Center , Food Technology Institute , Campinas , Brazil
| | - Eduardo Vicente
- b Food Science and Quality Center , Food Technology Institute , Campinas , Brazil
| | - Geovana D Savi
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Karolina Santos
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| | - Vildes M Scussel
- a Laboratory of Mycotoxicology and Food Contaminants, Food Science and Technology Department, Center of Agricultural Sciences , Federal University of Santa Catarina , Florianopolis , Brazil
| |
Collapse
|
11
|
de Paula M, Diniz CAR. Generalized linear regression models incorporating original outcome distributions. COMMUN STAT-THEOR M 2016. [DOI: 10.1080/03610926.2014.948726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Kasaraneni VK, Oyanedel-Craver V. Polycyclic Aromatic Hydrocarbon Contamination in Soils of San Mateo Ixtatán, Guatemala: Occurrence, Sources, and Health Risk Assessment. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1635-1643. [PMID: 27695758 DOI: 10.2134/jeq2015.11.0585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure to high concentrations of carcinogenic pollutants in soils and sediments can result in increased health risks. Determining the levels and sources of contamination in developing communities is important for helping to reduce pollution and mitigate the risk of exposure. In the Mayan community of San Mateo Ixtatán, Guatemala, 24 samples of topsoil from urban, peri-urban, and agricultural sites and six samples of river sediment were collected and analyzed for 17 polycyclic aromatic hydrocarbons (PAHs). The sum of the concentrations of these PAHs at the urban and peri-urban sites ranged from 460 to 3251 μg kg (mean, 1401 μg kg), whereas at agricultural sites the range was 350 to 2087 μg kg (mean, 1038 μg kg). Analysis to identify and apportion the source showed that the PAHs emitted from wood stoves contributed 71 and 76% of the total PAHs in urban and agricultural areas soils, respectively. The calculated incremental lifetime cancer risk due to the ingestion of soil, dermal contact, and dietary intake through corn consumption was greater than the acceptable level of 10 established by the USEPA. Our findings suggest that the residents of rural communities can be at increased cancer risk despite little or no industrial activity in the local area. Alternate domestic fuel sources should be considered to reduce the health risk in local communities.
Collapse
|
13
|
de Lima RF, Dionello RG, Peralba MDCR, Barrionuevo S, Radunz LL, Reichert Júnior FW. PAHs in corn grains submitted to drying with firewood. Food Chem 2016; 215:165-70. [PMID: 27542463 DOI: 10.1016/j.foodchem.2016.07.164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Grain drying using firewood as fuel for air heating, with direct fire, is still widely used in Brazil. The combustion of organic material, such as wood, can generate polycyclic aromatic hydrocarbons (PAHs) which are known to have carcinogenic potential. In the present work corn grain drying was carried out at three drying air temperatures: 60°C, 60/80°C and 80°C. Following the drying process, the presence and quantification of PAH in the corn grains was investigated. After extracting the PAHs of the matrix, the material was subjected to analysis by gas chromatography with mass detector. he results showed the presence of seven compounds: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene.
Collapse
Affiliation(s)
- Rafael Friedrich de Lima
- Universidade Federal do Rio Grande do Sul - UFRGS - Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, CEP 91540-000 Porto Alegre, RS, Brazil.
| | - Rafael Gomes Dionello
- Universidade Federal do Rio Grande do Sul - UFRGS - Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, CEP 91540-000 Porto Alegre, RS, Brazil.
| | - Maria do Carmo Ruaro Peralba
- Universidade Federal do Rio Grande do Sul - UFRGS - Instituto de Química, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Simone Barrionuevo
- Universidade Federal do Rio Grande do Sul - UFRGS - Instituto de Química, Av. Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| | - Lauri Lourenço Radunz
- Universidade Federal da Fronteira Sul, câmpus Erechim Rodovia ERS, Km 135, 200, CEP 99700-000, RS, Brazil.
| | | |
Collapse
|
14
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Gao H, Liu Y, Guan W, Li Q, Liu N, Gao Z, Fan J. Hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3748-3755. [PMID: 25263415 DOI: 10.1007/s11356-014-3620-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
The objective of this study is to investigate the hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil using in vivo and in vitro experiments on mice and rat. Soil samples were collected from a wastewater-irrigated area and groundwater-irrigated area, i.e. clean water-irrigated area as control group. The organic contaminants were extracted using an ultrasonic oscillator. In vivo experiment was performed by contamination of hepatocytes of rat using the organic extract, and comet assay was used to analyse the DNA damage of hepatocytes. For in vitro experiment, mice were first gavaged with extracts, and then the indicators for kidney functions, liver functions and oxidative damage of tissues were investigated. The result shows, for in vitro experiments, compared with clean water-irrigated area groups, the average DNA tailing length for the wastewater-irrigated area group is larger, and for the wastewater-irrigated area groups with extract concentration 0.6 g/ml and 0.9 g/ml, the tailing rate increases significantly (P < 0.05). For in vivo experiments, the change of weight across each group shows no significant difference (P < 0.05). Compared with clean water-irrigated groups, the liver indices have decreased for all groups of the wastewater-irrigated area, while both kidney and liver indices decreased for wastewater-irrigated area high-dose group (P < 0.05 or P < 0.01). The total proteins for wastewater-irrigated low-dose group and Gamma-glutamyl transpeptidase, creatinine for high-dose group all increased (P < 0.01). Compared with the reagent control group, total superoxide dismutase activity of liver for wastewater-irrigated groups and glutathione peroxidase activity for high-dose group, malondialdehyde content all decreased (P < 0.05 or P < 0.01); glutathione peroxidase activity of kidney tissue for wastewater-irrigated high-dose group decreased (P < 0.01). The result shows that the joint toxicity in extracts of wastewater-irrigated soil is able to cause DNA damage of hepatocytes in rats, changes of liver functions in mice and lead to oxidative damage of liver and kidney.
Collapse
Affiliation(s)
- Hongxia Gao
- Hebei Province Key Laboratory of Occupational Health and Safety/School of Public Health, Hebei United University, Lubei, Tangshan, 063000, Hebei, China,
| | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Li X, Wang J, Wang X, Sun J, Su Z, Zhang H, Li P. Profiles ofMycobacteriumcommunities under polycyclic aromatic hydrocarbon contamination stress in the Shenfu Irrigation Area, northeast China. Can J Microbiol 2013; 59:694-700. [DOI: 10.1139/cjm-2013-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indigenous Mycobacterium communities play an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs), but little is known about Mycobacterium distribution in situ at PAH-contaminated sites. In this study, the diversity and distribution of Mycobacterium communities were investigated in sediments and soils at sites upstream, midstream, and downstream of an oil-sewage irrigation channel, using denaturing gradient gel electrophoresis (DGGE). The results show that heavy PAH contamination in upstream sites negatively affected Mycobacterium community diversity compared with midstream and downstream sites in all 3 sample types (sediments, corn field soils, and rice field soils). There was a correlation between the distribution of Mycobacterium communities and PAH contamination, as indicated by canonical correspondence analysis. Mycobacterium diversity and distribution was found to vary between the 3 sample types.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Xu Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Jian Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Xiujuan Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Jian Sun
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Zhencheng Su
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Huiwen Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| | - Peijun Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, People’s Republic of China
| |
Collapse
|
17
|
ZEIGLER CHRISTIAN, SCHANTZ MICHELE, WISE STEPHEN, ROBBAT ALBERT. Mass Spectra and Retention Indexes for Polycyclic Aromatic Sulfur Heterocycles and Some Alkylated Analogs. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|