1
|
Ivantsova E, Martyniuk CJ. Environmental presence and toxicological outcomes of the herbicide pendimethalin in teleost fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:531-545. [PMID: 38896413 DOI: 10.1007/s10646-024-02767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Herbicides are often detected in aquatic ecosystems due to residential and agricultural applications and can harm aquatic organisms once deposited into water systems. Pendimethalin is part of the dinitroaniline chemical family and is applied to crops like corn, legumes, potatoes, and soybeans. The potential toxicity of pendimethalin to aquatic species is understudied compared to other widely studied herbicides, like atrazine and glyphosate. The objectives of this review were to (1) collate information on sub-lethal responses to pendimethalin exposure in fish, (2) evaluate how exposure studies relate to environmental concentrations, and (3) identify putative bioindicators for exposure studies. Overall, studies reporting pendimethalin in water systems worldwide indicate a range of 100-300 ng/L, but levels have been reported as high as ~15 µg/g in sediment. In teleost fish, studies demonstrate developmental toxicity, immunotoxicity, and behavioral disruptions. The strongest evidence for pendimethalin-induced toxicity involves oxidative stress, although studies often test toxicity at higher concentrations than environmentally relevant levels. Using the Comparative Toxicogenomics Database, pathway analysis reveals linkages to neurotoxicity and mechanisms of neurodegeneration like "Ubiquitin Dependent Protein Degradation", "Microtubule Cytoskeleton", "Protein Oxidation and Aggregation in Aging", and "Parkinson's Disease". Other prominent pathways included those related to mTOR signaling and reproduction. Thus, two potential mechanisms underlying pendimethalin-induced toxicity in fish include the neural and reproductive systems. This review synthesizes current data regarding environmental fate and ecotoxicology of pendimethalin in teleost fish and points to some putative physiological and molecular responses that may be beneficial for assessing toxicity of the herbicide in future investigations.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
3
|
Vommaro ML, Giglio A. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116565. [PMID: 38870738 DOI: 10.1016/j.ecoenv.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Public concern about the effects of pesticides on non-target organisms has increased in the recent years. Nevertheless, there is a limited number of studies that address the actual toxic effects of herbicides on insects. This study investigated the side effects of herbicides on non-target organisms inhabiting agroecosystems and performing essential ecological and economic functions such as crop pollination. We analysed morphological alterations in the gut, Malpighian tubules and circulating haemocytes of Apis mellifera workers as markers of exposure effects. A commercial formulation of a pendimethalin-based herbicide (PND) was administered orally under laboratory conditions at a realistic concentration admitted in the field (330gL-1 of active ingredient., 4 L ha-1 for cereal and vegetable crops). The worker bees were exposed to a single application of PND for a period of one week, to simulate the exposure that can occur when foraging bees accidentally drink drops of contaminated water upon treatments. Histopathological analyses of the midgut, ileum and Malpighian tubules showed alterations over time (from 24 to 72 h after the beginning of exposure) such as loss of epithelial organisation, cellular vacuolisation and altered pyknotic nuclei as well as disruption of the peritrophic membrane over time. Semiquantitative analyses of the midgut showed a significant increase in the organ injury index 24 and 72 h after the initial exposure in PND-exposed bees compared to control bees. In addition, a change in positivity to Gram staining was observed in the midgut histological sections. A recovery of cytotoxic effects was observed one week after the initial exposure, which was favoured by the periodic renewal of the intestinal epithelium and the herbicide dissipation time. Cytochemical staining with Giemsa of haemocytes from PND-treated workers over 24 and 72 h showed significant nuclear alterations such as lobed or polymorphic nuclei and micronuclei compared to bees in the control group. These results show that the dose of PND used to protect crops from weeds can lead to significant cytotoxic and genotoxic effects in non-target organisms such as honey bees. In croplands, the sublethal effects on cell morphology can impair vital physiological processes such as nutrition, osmoregulation, and resistance to pathogens, contributing to the decline in biodiversity and abundance of species that play a prominent ecological role, such as pollinators.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
4
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
5
|
Lee S, Saravanan M, Kim SA, Rhee JS. Long-term exposure to antifouling biocide chlorothalonil modulates immunity and biochemical and antioxidant parameters in the blood of olive flounder. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109337. [PMID: 35351616 DOI: 10.1016/j.cbpc.2022.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
In this study, the potential effects of 30-day exposure to environmentally relevant concentrations of chlorothalonil (0, 5, 10, and 20 μg L-l) were tested in the blood of the economically important olive flounder, Paralichthys olivaceus, using biochemical endpoints. Significant decreases in the enzymatic activities of immunity markers, alternative complements, and lysozymes were detected in the fish exposed to 10 or 20 μg L-l of chlorothalonil at day 20 or 30. The total immunoglobulin content was lowered in response to 20 μg L-l chlorothalonil at day 10 and 20, even when later exposed to 5 μg L-l at day 30. Among the essential blood components, the cortisol level was increased in response to chlorothalonil throughout the study with a decrease in white blood cells, while no changes were observed in hemoglobin, red blood cells, total protein concentration, and glucose in all exposures. The enzymatic activities of the three hepatic toxicity markers, alanine transferases, aspartate transaminase, and alkaline phosphatase, increased by 10 and/or 20 μg L-l of chlorothalonil. Significant oxidative stress was induced by chlorothalonil in the fish exposed to 10 or 20 μg L-l of chlorothalonil, as revealed by increased malondialdehyde and fluctuating glutathione levels with increase in the enzymatic activities of antioxidant defense system, including catalase and superoxide dismutase, during exposure. Taken together, these results suggest that long-term exposure to environmentally relevant concentrations of chlorothalonil can affect susceptibility to pathogens through immunosuppression, hepatic toxicity, and oxidative stress in olive flounder. These results can contribute to the monitoring of aquatic environments and ecotoxicological research through the measurement of blood components against waterborne chlorothalonil.
Collapse
Affiliation(s)
- Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Manoharan Saravanan
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Sung-Ah Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Yellow Sea Research Institute, Incheon 21999, South Korea.
| |
Collapse
|
6
|
Merola C, Fabrello J, Matozzo V, Faggio C, Iannetta A, Tinelli A, Crescenzo G, Amorena M, Perugini M. Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154414. [PMID: 35278537 DOI: 10.1016/j.scitotenv.2022.154414] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Pendimethalin (PND) is a dinitroaniline preemergent herbicide widely used to control grasses and weeds. The present study aimed to evaluate the PND potential effects on the development of zebrafish early-life stages. The research focuses first on acute toxicity, followed by the integration of toxicity results through histopathology, oxidative status, and neurotoxicity evaluation of sublethal and environmentally relevant concentrations. Zebrafish larvae exposed to PND showed mortality and developed sublethal alterations including impaired fin development, lordosis, scoliosis, blood congestion, impaired blood flow, and reduced heartbeat. PND exposure (0.5 mg/L) affects musculoskeletal development leading to delayed and reduced ossification of the vertebral centra in the developing vertebral column and disruption of muscle morphology. Herbicide exposure (0.5 mg/L and 0.05 mg/L) led also to biochemical changes of antioxidant enzymes, increasing the activity of CAT, GR, and GPx, while no effects were observed on the activity of SOD and GST in zebrafish larvae. Lastly, AChE activity, a biochemical marker of neurotoxicity, was also increased in zebrafish larvae exposed to 0.5 mg/L of PND. These results confirm the developmental toxicity of PND in zebrafish early-life stages, pointing out the potential role of oxidative stress in the onset of sublethal alterations.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Annamaria Iannetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Antonella Tinelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada p.le per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada p.le per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
7
|
Le Du-Carrée J, Cabon J, Morin T, Danion M. Immunological and metabolic effects of acute sublethal exposure to glyphosate or glyphosate-based herbicides on juvenile rainbow trout, Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147162. [PMID: 34088035 DOI: 10.1016/j.scitotenv.2021.147162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is a commonly used agrochemical active substance co-formulated in glyphosate-based herbicides (GBHs) whose environmental safety is still a subject of debate in the European Union. We evaluated the effects of acute sublethal exposure to glyphosate on rainbow trout by measuring changes in their metabolic and hemato-immunologic functions and their ability to survive a viral challenge. Juvenile fish were exposed for 96 h to 500 μg L-1 of glyphosate through the active substance alone or two GHBs, Roundup Innovert® and Viaglif Jardin®, and fish were then infected with the infectious hematopoietic necrosis virus. Red and white blood cell counts (RBCC and WBCC), as well as several enzymatic activities (citrate synthase, CS; cytochrome-c oxidase, CCO; lactate dehydrogenase, LDH; glucose-6-phosphate dehydrogenase, G6PDH; acetylcholinesterase, AChE), were measured 96 h after chemical contamination (S1), and 96 h post-viral infection (S2). Mortality rates were monitored, and virus titers at the mortality peaks and seropositivity of the survivors were analyzed at 60 days post-viral infection (S3). Cumulative mortalities, viral titers, and seropositivity induced by virus infection were similar among conditions. Hematological analysis revealed significant increases of 30% for RBCC for Roundup at S1, and of 22% for WBCC at S2. No changes were observed in metabolic enzyme activities at S1. At S2, CCO and G6PDH activities were significantly higher than controls in all the chemically contaminated groups (+61 to 62% and +65 to 138%, respectively). LDH and AChE activities were increased for the Viaglif (p = 0.07; +55%) and for glyphosate and Roundup conditions (p < 0.05, +62 to 79%), respectively. Rainbow trout acutely exposed to glyphosate or GBHs presented no major physiological changes. Viral infection revealed disruptions, potentially modulated by co-formulants, of hematological and metabolic parameters, showing that it is essential to consider the stressful natural environment of fish in the chemical assessment.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| |
Collapse
|
8
|
Nassar AMK, Abdel-Halim KY, Abbassy MA. Mitochondrial biochemical and histopathological defects induced by the herbicide pendimethalin in tilapia fish (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108949. [PMID: 33309702 DOI: 10.1016/j.cbpc.2020.108949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
The mitochondrial defects were evaluated after administering tilapia fish, Oreochromis niloticus to sublethal doses (1.02 and 5.10 mg kg-1) of the herbicide pendimethalin (PD). All treatments exhibited a decrease in the cytochrome contents of gills, liver, and brain samples after 12, 24, and 48 h compared with the untreated individuals. However, malondialdehyde (MDA) levels were significantly increased in gills and liver samples. Also, the histopathological profiles showed significant swelling in mitochondria and intracellular spaces in cytoplasm of gills samples. The mitochondrial defects in the treated fish showed a slight decline in cytoplasm/mitochondria ratio (0.92-fold) compared to the control. In hepato-sections of treated fish, destructed mitochondria with less dense matrix as well as some vacuolated mitochondria with matrix disoriented cristae were noted. Similar patterns were observed in brain sections, where destructed axons and a significant decline in cytoplasm/mitochondria ratio (0.52-fold) were found. Therefore, the use of mitochondrial defects and histopathological alterations might represent good markers to assess the impact of herbicides on aquatic organisms. Moreover, the disorganization of cell components is considered an important sign of organ dysfunction.
Collapse
Affiliation(s)
- Atef M K Nassar
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, El-Beheira, PO Box 59, Egypt.
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC), 12618 Dokki, Giza, Egypt
| | - Moustafa A Abbassy
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, El-Beheira, PO Box 59, Egypt
| |
Collapse
|
9
|
Du-Carrée JL, Morin T, Danion M. Impact of chronic exposure of rainbow trout, Oncorhynchus mykiss, to low doses of glyphosate or glyphosate-based herbicides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105687. [PMID: 33264693 DOI: 10.1016/j.aquatox.2020.105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is an herbicidal active substance (AS) entering in the composition of a large diversity of pesticide products (glyphosate-based herbicides; GBH) used in modern intensive agriculture. This compound has a favorable environmental safety profile but was suspected to induce deleterious effects in aquatic organisms, with a potential effect of some associated co-formulants. This study aimed to assess the impact of direct and chronic exposure to glyphosate on the health status of rainbow trout, Oncorhynchus mykiss. A total of 36 genitors were exposed daily for 10 months to a dose of glyphosate representative of environmental concentrations (around 1 μg L-1) using the AS alone or two GBHs formulations (i.e. Roundup Innovert® and Viaglif Jardin®) and findings were compared to an unexposed control group (n=12). The effects of chemical exposure on the reproductive capacities, hemato-immunologic functions, energetic metabolism, oxidative stress and specific biomarkers of exposure were analyzed over a period of 4 months covering spawning. A limited mortality between 15% and 30% specific to the spawning occurred under all conditions. No differences were observed in reproduction parameters i.e. mean weights, relative fertility and fecundity. Red blood cell count, hematocrit index, mean corpuscular volume and white blood cell counts were similar for all the sampling dates. Significant changes were observed two months before spawning with a 70% decrease of the proportion of macrophages in trout exposed to Viaglif only and a reduction of 35% of the phagocytic activity in fish exposed to the two GBHs. Trends towards lower levels of expression of tumor necrosis factor-α (between 38% and 66%) were detected one month after the spawning for all contaminated conditions but without being statistically significant. Biomarkers of exposure, i.e. acetylcholine esterase and carbonic anhydrase activities, were not impacted and none of the chemical contaminants disturbed the oxidative stress or metabolism parameters measured. These results suggest that a 10 months exposure of rainbow trout to a concentration of 1 μg L-1 of glyphosate administered using the pure active substance or two GBHs did not significantly modify their global health including during the spawning period. The immunological disturbances observed will need to be further explored because they could have a major impact in response to infectious stress.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| |
Collapse
|
10
|
Louboutin L, Cabon J, Vigouroux E, Morin T, Danion M. Comparative analysis of the course of infection and the immune response in rainbow trout (Oncorhynchus mykiss) infected with the 5 genotypes of infectious hematopoietic necrosis virus. Virology 2021; 552:20-31. [DOI: 10.1016/j.virol.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
|
11
|
Salbego J, Seben D, Sippert LR, Gressler LT, Arruda da Cunha J, Zanella R, de Almeida Vaucher R, Marchesan E, Baldisserotto B, Loro VL, Golombieski JI. Toxicological response of silver catfish ( Rhamdia quelen) after acute exposure to a commercial insecticide containing thiamethoxam. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:749-755. [PMID: 32558613 DOI: 10.1080/03601234.2020.1782115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study assessed the hematological, enzymatic and osmoregulatory responses of silver catfish (Rhamdia quelen) exposed to sublethal concentrations (1.125 and 3.750 µg/L) of a commercial thiamethoxam-containing insecticide used on rice crops. Groups of 6 fish per tank (in triplicate, n = 3, total 54 fish) were exposed for up to 96 h to different concentrations of the compound. After this period, fish were placed in clean water for 48 h. Two fish from each tank (6 per treatment) that had been exposed to the insecticide for 24 h were anesthetized with eugenol and blood was collected to evaluate hematological and biochemical parameters. Blood, liver and muscle were collected for determination of metabolic parameters, plasma cortisol, Cl-, Na+ and K+ levels and H+-ATPase and Na+/K+-ATPase activity in the gill. H+-ATPase activity was higher in fish exposed to 1.125 µg/L insecticide at 24 h compared to control (0.0 µg/L). Differences in cortisol levels were evidenced throughout the experimental period. These results indicated that exposure to the insecticide changed the hematological, biochemical and metabolic profile of the animals, suggesting concern about environmental safety. Therefore, we discourage the use of this pesticide in areas that come into contact with water bodies inhabited by fish.
Collapse
Affiliation(s)
- Joseânia Salbego
- Department of Physiology and Pharmacology, UFSM, Santa Maria, RS, Brazil
| | - Débora Seben
- Department of Environmental Engineering and Technology, UFSM - Universidade Federal de Santa Maria, Frederico Westphalen, RS, Brazil
| | - Leticia Raquel Sippert
- Department of Environmental Engineering and Technology, UFSM - Universidade Federal de Santa Maria, Frederico Westphalen, RS, Brazil
| | | | | | - Renato Zanella
- Department of Biochemistry and Molecular Biology, UFSM, Santa Maria, RS, Brazil
| | - Rodrigo de Almeida Vaucher
- Center of Chemical, Pharmaceutical and Food Sciences, UFPel - Universidade Federal de Pelotas, Capão do Leão, RS, Brazil
| | - Enio Marchesan
- Department of Plant Science, UFSM, Santa Maria, RS, Brazil
| | | | - Vania Lucia Loro
- Department of Biochemistry and Molecular Biology, UFSM, Santa Maria, RS, Brazil
| | - Jaqueline Ineu Golombieski
- Department of Environmental Engineering and Technology, UFSM - Universidade Federal de Santa Maria, Frederico Westphalen, RS, Brazil
| |
Collapse
|
12
|
Cabon J, Almeras F, Baud M, Pallandre L, Morin T, Louboutin L. Susceptibility of pike Esox lucius to VHSV and IHNV and potential transmission to rainbow trout Oncorhynchus mykiss. DISEASES OF AQUATIC ORGANISMS 2020; 139:175-187. [PMID: 32495744 DOI: 10.3354/dao03474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Determining the origin of recurrent outbreaks of fish diseases occurring on fish farms is essential for disease prevention and control measures. In this study, we investigated the potential reservoir role of wild fish species living near salmonid farms which were regularly found to be positive for viral hemorrhagic septicemia virus (VHSV). In addition to VHSV, infectious hematopoietic necrosis virus (IHNV) was also isolated from several pike Esox lucius samples collected from a pond near the salmonid farms of interest. All isolates of VHSV and IHNV analyzed had 100% identical partial glycoprotein gene sequences. VHSV pike strain OO128-25 belonged to the Ia genotype and shared 99.1 to 99.5% nucleotide identity with strains recently isolated from the farms. IHNV pike strain OO121-8, European genotype, appeared to be different from strains from France characterized since the first isolation in 1987. Isolates representative of both viral species were highly virulent in rainbow trout Oncorhynchus mykiss. OO128-25 induced 65% mortality in pike fingerlings, whereas only weak mortality was observed with OO121-8, despite characteristic symptoms in infected fish. High levels of specific antibodies to VHSV and IHNV were detected in adult pike in the absence of clinical signs. Infection of rainbow trout in contact with experimentally VHSV- or IHNV-infected pike fingerlings indicates possible horizontal transmission. These results suggest that pike could act as a reservoir for VHSV and IHNV in the wild, providing additional evidence to explain viral persistence and resurgence in certain areas.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, National Reference Laboratory for Regulated Fish Diseases, 29280 Plouzané, France
| | | | | | | | | | | |
Collapse
|
13
|
Nagy K, Duca RC, Lovas S, Creta M, Scheepers PTJ, Godderis L, Ádám B. Systematic review of comparative studies assessing the toxicity of pesticide active ingredients and their product formulations. ENVIRONMENTAL RESEARCH 2020; 181:108926. [PMID: 31791711 DOI: 10.1016/j.envres.2019.108926] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 05/24/2023]
Abstract
Humans are exposed to complex chemical mixtures, such as pesticides. Although the need for the assessment of health and environmental hazards deriving from the interactions between various substances found in commercial pesticide formulations is becoming increasingly recognized, the approval of pesticide products is still mostly limited to determining the toxicity of the individual ingredients ignoring the possible combined effects in mixtures. The objective of this study was to systematically review the literature of in vitro and in vivo studies that simultaneously examine the toxicity of pesticide product formulations and their declared active ingredients to compare their toxicity to human health and to the environment. Two electronic databases were searched for studies that assessed the health effects of active pesticide ingredients and their product formulations. The literature search was performed with a combination of the following terms: "pesticide", "formulation", "commercial product", "commercial pesticide" and "health". After screening by predefined inclusion and exclusion criteria, quality and reliability assessment of eligible publications was conducted by use of the ToxRTool. Two investigators independently screened the identified publications and extracted results from eligible studies. Our search yielded 36 toxicity studies; 23 studies investigated herbicides, 15 examined insecticides and 4 focused on fungicides. Twenty-four studies reported increased toxicity of the product formulations versus their active ingredients, which, in most cases, were attributed to the presence of adjuvants in the formulations. A significant number (n = 10) of studies focused on the comparative testing of glyphosate and glyphosate-based herbicides, and six of them concluded that Roundup, the dominant product formulation of glyphosate, is more toxic than the active ingredient alone. We identified only 8 studies demonstrating reduced toxicity of product formulations in relation to the active ingredient that might be due to a potential antagonistic effect between the constituents. The results of this review demonstrate the inadequacy of current EU testing requirements for assessing the health hazards of pesticide product formulations based mainly on the evaluation of the individual ingredients and of at least one representative use and formulation. Ignoring the possible risks deriving from the interaction between the active and other ingredients of various commercial pesticide product formulations might result in the misinterpretation of its toxicological profile. At EU level efforts are currently made to address this issue. In this context, we recommend that all product formulations should be fully assessed during the authorization process.
Collapse
Affiliation(s)
- Károly Nagy
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Szabolcs Lovas
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary; Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Matteo Creta
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, 3001, Heverlee, Belgium
| | - Balázs Ádám
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Dupuy C, Cabon J, Louboutin L, Le Floch S, Morin T, Danion M. Cellular, humoral and molecular responses in rainbow trout (Oncorhynchus mykiss) exposed to a herbicide and subsequently infected with infectious hematopoietic necrosis virus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105282. [PMID: 31509759 DOI: 10.1016/j.aquatox.2019.105282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems are now chronically polluted by a cocktail of many chemical substances. There is now clear evidence of associations between exposure to pollutants and greater susceptibility to pathogens. The aim of the present study was to characterize the defense capacities of rainbow trout (Oncorhynchus mykiss), chronically exposed to pendimethalin (PD), to subsequent experimental challenge with the infectious hematopoietic necrosis virus (IHNV). Immunological responses were examined at different organizational levels, from individuals to gene expression. No negative effects of PD were noted on the Fulton index nor on the liver or spleen somatic indices (LSI; SSI) before viral infection, but the infectious stress seems to generate a weak but significant decrease in Fulton and LSI values, which could be associated with consumption of energy reserves. During the viral challenges, the distribution of cumulative mortality was slightly different between infected groups. The impact of the virus on fish previously contaminated by PD started earlier and lasted longer than controls. The proportion of seropositive fish was lower in the fish group exposed to PD than in the control group, with similar quantities of anti-IHNV antibodies secreted in positive fish, regardless of the treatment. While no significant differences in C3-1 expression levels were detected throughout the experiment, TNF1&2, TLR3, Il-1β and IFN expression levels were increased in all infected fish, but the difference was more significant in fish groups previously exposed to herbicide. On the other hand, β-def expression was decreased in the pendimethalin-IHNV group compared to that in fish only infected by the virus (control-IHNV group).
Collapse
Affiliation(s)
- Célie Dupuy
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200, Brest, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France.
| |
Collapse
|
15
|
Hamed HS, El-Sayed YS. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:71-82. [PMID: 29982916 DOI: 10.1007/s10695-018-0535-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
To assess the ameliorative effects of Moringa oleifera (MO) leaf extract on haematological and biochemical changes, liver DNA damage and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus) exposed to a sublethal concentration (0.52 mg/l) of pendimethalin (PM). Tilapia fish were allocated into four equal groups in tri-replicates as follows: first group was the control group, second group was treated with MO (20 ml/30 l water), third group was exposed to 0.52 mg PM/l and fourth group was exposed to 0.52 mg PM/l and treated with MO leaf extract (20 ml/30 l water) for 28 days. At the end of this period, blood and liver tissue samples were collected and haematological and biochemical changes, hepatic DNA fragmentation and oxidative stress biomarkers were analysed. Pendimethalin caused significant reduction in haematological profile [White blood cells (WBCs) and red blood cells (RBCs) counts, haemoglobin (Hb) concentration and haematocrit (Ht) level]; meanwhile, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, uric acid, glucose, cortisol, cholesterol and lactate dehydrogenase (LDH) were significantly increased. On the other hand, serum total protein, albumin, globulin and acetylcholinesterase (AChE) were decreased. Significant reduction in hepatic superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC) and glutathione peroxidase (GSH-Px) levels and marked increments of hepatic malondialdehyde (MDA) and DNA fragmentation were observed in PM-exposed fish compared to the control group. The addition of Moringa oleifera leaf extract into the water could overcome the negative impacts of pendimethalin and normalise the examined parameters nearly to the control values. Moringa oleifera was used for the first time to protect tilapia fish against PM-induced toxicity. The present study revealed that Moringa oleifera has potent antioxidant and antigenotoxic actions against pendimethalin toxicity.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt.
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
16
|
Marchand A, Tebby C, Beaudouin R, Hani YMI, Porcher JM, Turies C, Bado-Nilles A. Modelling the effect of season, sex, and body size on the three-spined stickleback, Gasterosteus aculeatus, cellular innate immunomarkers: A proposition of laboratory reference ranges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:337-349. [PMID: 30121033 DOI: 10.1016/j.scitotenv.2018.07.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Innate immunomarkers reflect both environmental contamination and fish health status, providing useful information in environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnoses. The aim of this study was to evaluate the impact of three confounding factors (season, sex and body size) on three-spined stickleback innate immunomarkers in laboratory conditions. Results shown strong seasonal variations in stickleback innate immunomarkers, with higher immune capacities in late winter-early spring and a disturbance during the spawning period in late spring-summer. Sex and body size had a season dependant effect on almost all tested immunomarkers. Reference ranges were established in laboratory-controlled conditions (i.e. laboratory reference ranges) and compared with data obtained from in vivo chemical expositions. The predictive power of the statistical model depended on the immunomarker, but the control data of the in vivo experiments, realized in same laboratory conditions, were globally well include in the laboratory reference ranges. Moreover, some statistical effects of the in vivo exposures were correlated with an augmentation of values outside the reference ranges, indicating a possible harmful effect for the organisms. As confounding factors influence is a major limit to integrate immunomarkers in biomonitoring programs, modelling their influence on studied parameter may help to better evaluated environmental contaminations.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Cleo Tebby
- INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France; INERIS, Unit of Models for Ecotoxicology and Toxicology (METO), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Younes M I Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
17
|
Danion M, Le Floch S, Cabon J, Louboutin L, Morin T. Transchem project - Part II: Transgenerational effects of long-term exposure to pendimethalin at environmental concentrations on the early development and viral pathogen susceptibility of rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:126-135. [PMID: 30025381 DOI: 10.1016/j.aquatox.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
In the Transchem project, rainbow trout genitors were exposed to environmental concentrations of pendimethalin over a period of 18 months and two new first generations of offspring, F1_2013 and F1_2014, were obtained. We investigated the impact of direct chemical exposure on juveniles as well as the potential cumulative transgenerational and direct effects on the larval development and on the pathogen susceptibility of offspring. Depending on the chemical treatment or not of the adults, their offspring were distributed in the tanks of our experimental system, in two batches i.e. juveniles from the control genitors (G-) and others from the contaminated ones (G+), and then, half of the tanks were exposed daily to pendimethalin (Off+) while the others were used as controls (Off-). Viral challenges were performed on the offspring, before and after three months of direct chemical exposure, with strains of infectious hematopoietic necrosis virus (IHNV), viral haemorrhagic septicemia virus (VHSV) and sleeping disease alphavirus (SDV). Direct and transgenerational macroscopic effects were observed on offspring, with a percentage of abnormalities in offspring derived from the genitors exposed to pendimethalin (G+) significantly higher compared to those from the genitors from non-exposed group (G-). Before the direct chemical exposure, similar kinetics of mortality was observed between the offspring from the contaminated or control genitors after VHSV infection. With IHNV, the G+ group died in a slightly larger proportion compared to the G- group and seroconversion was greater for the G- group. For the SDV challenge, the mortality was delayed for the G+ offspring compared to the G- and seroconversion reached 65% in the G+ group compared to 45% in the G-, with similar antibody titres. After three months of direct chemical exposure, kinetics of mortality induced by IHNV infection were similar for all groups studied. Infection with SDV resulted in a cumulative mortality of 40% for the G- groups (Off- and Off+), significantly higher than those observed from the contaminated genitors G+. Proportion of seropositivity for SDV varied from 24 to 47% depending on the group, with very low quantities of secreted antibodies. Lastly, the direct exposure of offspring could impact the capacity of fish to adapt their haematological parameters to environmental and physiological changes, and underlines the potential toxic effects on the next generations.
Collapse
Affiliation(s)
- Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France.
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joelle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| |
Collapse
|
18
|
Danion M, Le Floch S, Pannetier P, Van Arkel K, Morin T. Transchem project - Part I: Impact of long-term exposure to pendimethalin on the health status of rainbow trout (Oncorhynchus mykiss L.) genitors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:207-215. [PMID: 30025873 DOI: 10.1016/j.aquatox.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Pendimethalin is a herbicide active substance commonly used in terrestrial agricultural systems and is thus detected at high concentrations in the surface water of several European countries. Previous studies reported several histopathological changes, enzymatic antioxidant modulation and immunity disturbance in fish exposed to this pesticide. The objective of this work was to investigate the direct effects of long-term exposure to environmental concentrations of pendimethalin over a period of 18 months in rainbow trout (Oncorhynchus mykiss) genitors. To do so, an experimental system consisting of eight similar 400 L tanks with a flow-through of fresh river water was used to perform daily chemical contamination. Fish were exposed to 850 ng/L for one hour and the pendimethalin concentration was then gradually diluted during the day to maintain optimal conditions for the fish throughout the experiment and to achieve a mean theoretical exposure level of around 100 ng L-1 per day. Every November, males and females were stripped to collect eggs and sperm and two new first generations of offspring were obtained. Kinetic sampling revealed differences in immune system parameters and antioxidative defences in the contaminated trout compared to the controls, due to pesticide exposure combined with seasonal changes related to gamete maturation. Moreover, reproductive capacity was significantly affected by exposure to the herbicide; a time lag of more than five weeks was observed for egg maturation in contaminated females and high bioconcentrations of pendimethalin were measured in eggs and sperm. Chemical transfer from genitors to offspring via gametes may affect embryo development and negatively impact the early stages of development.
Collapse
Affiliation(s)
- Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France.
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Pauline Pannetier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Kim Van Arkel
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| |
Collapse
|
19
|
Ansari SM, Saquib Q, Attia SM, Abdel-Salam EM, Alwathnani HA, Faisal M, Alatar AA, Al-Khedhairy AA, Musarrat J. Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochem Cell Biol 2017; 149:127-141. [PMID: 29151145 DOI: 10.1007/s00418-017-1622-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/22/2023]
Abstract
Pendimethalin (PM) is a dinitroaniline herbicide extensively applied against the annual grasses and broad-leaved weeds. There is no report available on PM-induced low-dose genotoxicity in human primary cells and in vivo test models. Such data gap has prompted us to evaluate the genotoxic potential of PM in human lymphocytes and rats. PM selectively binds in the minor groove of DNA by forming covalent bonds with G and C nitrogenous bases, as well as with the ribose sugar. PM induces micronucleus formation (MN) in human lymphocytes, indicating its clastogenic potential. Comet assay data showed 35.6-fold greater DNA damage in PM (200 μM)-treated human lymphocytes. Rat bone-marrow cells, at the highest dose of 50 mg/kg b w/day of PM also exhibited 10.5-fold greater DNA damage. PM at 200 μM and 50 mg/kg b w/day induces 193.4 and 229% higher reactive oxygen species generation in human lymphocytes and rat bone-marrow cells. PM-treated human lymphocytes and rat bone-marrow cells both showed dysfunction of mitochondrial membrane potential (ΔΨ m). PM exposure results in the appearance of 72.2 and 35.2% sub-G1 apoptotic peaks in human lymphocytes and rat bone-marrow cells when treated with 200 μM and 50 mg/kg b w/day of PM. Rats exposed to PM also showed imbalance in antioxidant enzymes and histological pathology. Overall, our data demonstrated the genotoxic and apoptotic potentials of PM in human and animal test models.
Collapse
Affiliation(s)
- Sabiha M Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Eslam M Abdel-Salam
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hend A Alwathnani
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Javed Musarrat
- School of Biosciences and Biodiversity, Baba Ghulam Shah Badshah University, Rajouri, Jammu And Kashmir, India.,Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| |
Collapse
|
20
|
Marchand A, Porcher JM, Turies C, Chadili E, Palluel O, Baudoin P, Betoulle S, Bado-Nilles A. Evaluation of chlorpyrifos effects, alone and combined with lipopolysaccharide stress, on DNA integrity and immune responses of the three-spined stickleback, Gasterosteus aculeatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:333-339. [PMID: 28756254 DOI: 10.1016/j.ecoenv.2017.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Organism immune defences might be weakened by pollutants, largely detected in aquatic ecosystems, leading to the facilitation for opportunistic pathogens to infect organisms. In this context, destabilization of fish non-specific immune parameters and erythrocyte DNA integrity was tested, on a model fish species, the three-spined stickleback (Gasterosteus aculeatus), after exposure to chlorpyrifos (CPF). Alone, pesticide exposure induced a genotoxic potential (chlorpyrifos at 1.75 and 0.88µg/L) in addition to a decrease in phagocytosis capacity and a stimulation of respiratory burst. Then, to mimic pathogenic infection, fish exposure to chlorpyrifos was combined with lipopolysaccharides (LPS) stress. In this second experiment, an increase of DNA damage was observed in fish exposed to a lower concentration of chlorpyrifos and LPS. Moreover, at the higher concentration of chlorpyrifos, an early destabilization of innate immunity was observed as suggested by the absence of an increase of lysosomal presence in fish injected with LPS. This study highlighted the usefulness of stress on stress responses to better understand the impact of contaminants on the organism's health.
Collapse
Affiliation(s)
- Adrien Marchand
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Patrick Baudoin
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, Moulin de la Housse, B.P. 1039, 51687 Reims, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, BP 2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
21
|
Bessa da Silva M, Abrantes N, Rocha-Santos TAP, Duarte AC, Freitas AC, Gomes AM, Carvalho AP, Marques JC, Gonçalves F, Pereira R. Effects of dietary exposure to herbicide and of the nutritive quality of contaminated food on the reproductive output of Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:1-7. [PMID: 27541481 DOI: 10.1016/j.aquatox.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Risk assessment of pesticides has been based on direct toxic effects on aquatic organisms. Indirect effects data are taken into account but with limitations, as it is frequently difficult to predict their real impacts in the ecosystems. In this context the main aim of this work was to assess how the exposure to the herbicide pendimethalin (Prowl(®)), under environmentally relevant concentrations, may compromise the nutritional composition of food for a relevant group of primary consumers of freshwater food webs-the daphnids, thus affecting their reproduction performance and subsequently the long-term sustainability of active populations of this grazer. Therefore, Daphnia magna individuals were chronically exposed in a clean medium to a control diet (NCF - i.e., non-contaminated green algae Raphidocelis subcapitata) and to a contaminated diet (CF - i.e., the same monoalgal culture grown in a medium enriched with pendimethalin in a concentration equivalent to the EC20 for growth inhibition of algae), during which reproductive endpoints were assessed. The algae were analysed for protein, carbohydrate and fatty acid content. The chemical composition of R. subcapitata in the CF revealed a slight decrease on total fatty acid levels, with a particular decrease of essential ω9 monounsaturated fatty acids. In contrast, the protein content was high in the CF. D. magna exposed to CF experienced a 16% reduction in reproduction, measured as the total number of offspring produced per female. Additionally, an internal pendimethalin body burden of 4.226μgg(-1) was accumulated by daphnids fed with CF. Hence, although it is difficult to discriminate the contribution of the pesticide (as a toxic agent transferred through the food web) from that of the food with a poor quality-compromised by the same pesticide, there are no doubts that, under environmentally relevant concentrations of pesticides, both pathways may compromise the populations of freshwater grazers in the long term, with consequences in the control of the primary productivity of these systems.
Collapse
Affiliation(s)
- M Bessa da Silva
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - N Abrantes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - T A P Rocha-Santos
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Duarte
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A C Freitas
- CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Departament of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A M Gomes
- Center of Biotechnology and Fine Chemistry, Portuguese Catholic University, Rua Arquiteto Lobão Vital, 2511, 4202-401 Porto, Portugal
| | - A P Carvalho
- Instituto Superior de Engenharia do Porto, Porto Polytechnic Institute, REQUIMTE/LAQV, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - J C Marques
- MARE (Marine and Environmental Sciences Centre), Faculty of Science and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - F Gonçalves
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM (Centre of Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - R Pereira
- CIIMAR (Interdisciplinary Centre of Marine and Environmental Research), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departament of Biology & GreenUP/CITAB-UP, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
22
|
Golombieski JI, Sutili FJ, Salbego J, Seben D, Gressler LT, da Cunha JA, Gressler LT, Zanella R, Vaucher RDA, Marchesan E, Baldisserotto B. Imazapyr+imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:91-99. [PMID: 26896896 DOI: 10.1016/j.ecoenv.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Imazapyr (IMY) and imazapic (IMI) are imidazolinone herbicides which have been associated in a commercial formulation (Kifix(®)). To date, there are no studies on the toxicity of an IMY+IMI herbicide in fish. This work aimed to assess the acute toxicity (24 and 96 h) of IMY+IMI (0, 0.488 and 4.88 µg/L) towards Rhamdia quelen through hematological, biochemical, immunological, ionoregulatory and enzymatic indexes. Red blood cell count was lower at 4.88 than at 0.488 µg/L (24 and 96 h); mean corpuscular volume was lower than control at both concentrations (24 h) and at 0.488 µg/L (96 h); lymphocytes declined at 4.88 µg/L comparing to control (96 h); and monocytes increased at 4.88 µg/L (96 h) in comparison with the respective control and with 4.88 µg/L at 24h. Aspartate aminotransferase was higher at 0.488 µg/L (96 h) than the respective control and the respective concentration at 24 h; uric acid reduced at 4.88 µg/L comparing with 0.488 µg/L (96 h); and cortisol was lower at 4.88 µg/L compared to 0.488 µg/L and control (96 h). Herbicide exposure lowered plasma bactericidal activity at both concentrations (24 h) and at 0.488 µg/L (96 h); and plasma complement activity declined at 4.88 µg/L comparing with 0.488 µg/L and control (96 h), and was lower at all concentrations at 96 h than at 24 h. Plasma K(+) levels were higher at 4.88µg/L than in the remaining groups (24 and 96h); and Na(+) levels decreased at 4.88 µg/L compared to control (96 h). Na(+)/K(+)-ATPase and H(+)-ATPase activities in gills were lower at 4.88 µg/L comparing with control (24 h) and with the respective concentration at 96 h; and AChE activity in brain was higher at 0.488 and 4.88 µg/L than control (24 h) and the respective concentrations at 96 h, while in muscle it was higher at 0.488 and 4.88 µg/L than control (96 h) and the respective concentrations at 24 h. The present findings demonstrate that, despite IMY+IMI targets the animal-absent AHAS enzyme, such formulation displayed an acute toxic effect upon R. quelen homeostasis by impacting on vital functions such as immune defense, metabolism, ionoregulation and neurotransmission.
Collapse
Affiliation(s)
- Jaqueline Ineu Golombieski
- Department of Agricultural and Environmental Sciences, Federal University of Santa Maria (UFSM)/CESNORS, Linha 7 de Setembro, BR 386, Km 40, Frederico Westphalen, 98400-000 RS, Brazil.
| | - Fernando Jonas Sutili
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Joseânia Salbego
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Débora Seben
- Department of Agricultural and Environmental Sciences, Federal University of Santa Maria (UFSM)/CESNORS, Linha 7 de Setembro, BR 386, Km 40, Frederico Westphalen, 98400-000 RS, Brazil.
| | - Luciane Tourem Gressler
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | - Jéssyka Arruda da Cunha
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| | | | - Renato Zanella
- Department of Chemistry, UFSM, Avenida Roraima 1000, SM, 97105-900 RS, Brazil.
| | - Rodrigo de Almeida Vaucher
- Graduate Program in Nanoscience, Franciscan University, Rua dos Andradas 1614, SM, 97010-032 RS, Brazil.
| | - Enio Marchesan
- Department of Plant Science, UFSM, Avenida Roraima 1000, SM, 97105-900 RS, Brazil.
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, UFSM, Avenida Roraima 1000, Santa Maria (SM), 97105-900 RS, Brazil.
| |
Collapse
|
23
|
Moustafa GG, Shaaban FE, Hadeed AHA, Elhady WM. Immunotoxicological, biochemical, and histopathological studies on Roundup and Stomp herbicides in Nile catfish (Clarias gariepinus). Vet World 2016; 9:638-47. [PMID: 27397989 PMCID: PMC4937057 DOI: 10.14202/vetworld.2016.638-647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
AIM The current study was directed to investigate the immunotoxic and oxidative stress effects of Roundup and Stomp herbicides and their combination on Nile catfish (Clarias gariepinus). MATERIALS AND METHODS The experiment was carried out on 120 fish that randomly divided into four equal groups with three replicates: The first group kept as control, the second group exposed to 1/2 96 h lethal concentration 50 (LC50) of Roundup, the third group exposed to 1/2 96 h LC50 of Stomp, and the fourth one exposed to a combination of Roundup and Stomp at previously-mentioned doses. The experiment was terminated after 15 days; blood samples were obtained at 1(st), 8(th), and 15(th) days of treatment where the sera were separated for estimation of antioxidant enzymes. Meanwhile, at 15(th) day of exposure part of blood was collected from all groups with an anticoagulant for evaluation of phagocytic activity, then the fish were sacrificed, and specimens from the liver of all groups were obtained for histopathological examination. RESULTS Our results indicated that both herbicides either individually or in combination elucidated significant decrease in phagocytic activity that was highly marked in group exposed to both herbicides. Furthermore, our data elicited an obvious elevation in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Meanwhile, the data depicted reduction in levels of reduced glutathione (GSH) and glutathione-S-transferase (GST). Histopathological investigation of liver proved the aforementioned results. CONCLUSION It could be concluded that either Roundup or Stomp alone cause significant deleterious effects on aquatic vertebrates. However, the use of their combination enhanced their toxic effects. Toxicity can end up in humans through the food chain.
Collapse
Affiliation(s)
- Gihan G. Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Alzeraa Street Postal Code 44511, Zagazig City, Sharkia Province, Egypt
| | - F. E. Shaaban
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Alzeraa Street Postal Code 44511, Zagazig City, Sharkia Province, Egypt
| | - A. H. Abo Hadeed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Alzeraa Street Postal Code 44511, Zagazig City, Sharkia Province, Egypt
| | - Walaa M. Elhady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Alzeraa Street Postal Code 44511, Zagazig City, Sharkia Province, Egypt
| |
Collapse
|
24
|
Moon J, Chun B. Spectrum of patients intentionally poisoned with an emulsified concentrate pendimethalin herbicide. Arch Emerg Med 2015; 32:632-6. [DOI: 10.1136/emermed-2014-204184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/29/2014] [Indexed: 11/04/2022]
|
25
|
Danion M, Le Floch S, Lamour F, Quentel C. Effects of in vivo chronic exposure to pendimethalin on EROD activity and antioxidant defenses in rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 99:21-27. [PMID: 24183287 DOI: 10.1016/j.ecoenv.2013.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
Pendimethalin, an herbicide active substance frequently used in terrestrial systems, has detected in European aquatic ecosystems. Reliable indicators still need to be found in order to properly assess the impact of pesticides in fish. After an in vivo chronic exposure to pendimethalin, the detoxification process and the antioxidant defense system were assessed in 120 adult rainbow trout, Oncorhynchus mykiss. Four nominal exposure conditions were tested: control (C), 500 ng L(-1) (P500), 800 ng L(-1) (P800) and the commercial formulation Prowl(®) at 500 ng L(-1) (Pw500). Fish samples were made after a 28 day exposure period (D28) and after a fifteen day recovery period in clean fresh water (D43). At D28, ethoxyresorufin-O-deethylase (EROD) activity was not activated in liver in spite of the pendimethalin uptake in fish. At D43, EROD activity in fish exposed to the commercial product was lower than in control fish, which may be explained by the high presence of herbicide in fish (613±163 ng g bile(-1)). Furthermore, antioxidant defense responses were set up by trout in gills and liver following chronic exposure to 800 ng L(-1) of pendimethalin concentration. While the glutathione content (GSH) decreased in gills, it increased in liver associated with higher activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). These disturbances could lead to reactive oxygen species production and oxidative stress in the vital organs in fish. After fifteen days in clean water, while the SOD activity was restored, the GSH content and GPx activity were still significantly disturbed in fish exposed to pendimethalin in comparison with control. These significant differences between treatments in antioxidant defenses parameters measured, attesting to the irreversibility of the effects.
Collapse
Affiliation(s)
- Morgane Danion
- ANSES, Ploufragan-Plouzané Laboratory, Unit of Viral Pathology in Fish, Technopôle Brest-Iroise, 29280 Plouzané, France; Université Européenne de Bretagne, France.
| | | | | | | |
Collapse
|