1
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Sabahat S, Arshad N, Aftab N, Mujtaba Z, Afzal M, Christy M. Exploration of anode candidacy of Ni 0.2Co 2.8O 4 and integrated Ni 0.2Co 2.8O 4/MWCNTs in supercapacitor and oxygen evolution reaction. Heliyon 2024; 10:e24214. [PMID: 38268822 PMCID: PMC10803912 DOI: 10.1016/j.heliyon.2024.e24214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
In the current research work, Ni0.2Co2.8O4 and Ni0.2Co2.8/MWCNTs have been synthesized via facile sol-gel and wet impregnation method. The synthesized materials attained the crystalline structures as evident from X-ray diffraction analysis (XRD). The uniform morphology and well dispersion of Ni0.2Co2.8O4 onto MWCNTs was observed via scanning electron microscopy (SEM). The electrochemical investigations for supercapacitor application by cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) revealed that, among both materials, Ni0.2Co2.8O4/MWCNTs has high specific capacitance (CV; 505.8 Fg-1 at 5 mV/s, GCD; 1598 Fg-1 at 0.5 A/g), greater capacitance retention (85 %) at 1000 cycles and has lower charge transfer resistance (Rct; 3.48 Ω cm2). These findings reflected the potential candidacy of Ni0.2Co2.8O4/MWCNTs to be used as anode material in supercapacitor. Further investigations by CV and linear sweep voltammetry (LSV) for oxygen evolution reaction (OER) activity in 1.0 M KOH showed comparatively low over potential of 340 mV @100 mA/cm2 for the same integrated material. Additionally, the lower Tafel slope (47 mV/dec) and solution resistance authenticated it as an appropriate electrocatalyst for OER in water splitting. The CPE (controlled potential electrolysis) revealed the stability of both materials for OER in water oxidation.
Collapse
Affiliation(s)
- Sana Sabahat
- Department of Chemistry, COMSATS University, Islamabad, 44000, Pakistan
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Nida Aftab
- Department of Chemistry, COMSATS University, Islamabad, 44000, Pakistan
| | - Zeeshan Mujtaba
- Department of Chemistry, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maria Christy
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| |
Collapse
|
3
|
İlyasoglu G, Kose-Mutlu B, Mutlu-Salmanli O, Koyuncu I. Removal of organic micropollutans by adsorptive membrane. CHEMOSPHERE 2022; 302:134775. [PMID: 35537632 DOI: 10.1016/j.chemosphere.2022.134775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.
Collapse
Affiliation(s)
- Gülmire İlyasoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Oyku Mutlu-Salmanli
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
4
|
Stegarescu A, Cabrera H, Budasheva H, Soran ML, Lung I, Limosani F, Korte D, Amati M, Borodi G, Kacso I, Opriş O, Dan M, Bellucci S. Synthesis and Characterization of MWCNT-COOH/Fe 3O 4 and CNT-COOH/Fe 3O 4/NiO Nanocomposites: Assessment of Adsorption and Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3008. [PMID: 36080044 PMCID: PMC9457809 DOI: 10.3390/nano12173008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this study the adsorption and photodegradation capabilities of modified multi-walled carbon nanotubes (MWCNTs), using tartrazine as a model pollutant, is demonstrated. MWCNT-COOH/Fe3O4 and MWCNT-COOH/Fe3O4/NiO nanocomposites were prepared by precipitation of metal oxides in the presence of MWCNTs. Their properties were examined by X-ray diffraction in powder (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, synchrotron-based Scanning PhotoElectron Microscopy (SPEM), and Brunauer-Emmett-Teller (BET) analysis. It was found that the optimal adsorption conditions were pH 4 for MWCNT-COOH/Fe3O4 and pH 3 for MWCNT-COOH/Fe3O4/NiO, temperature 25 °C, adsorbent dose 1 g L-1, initial concentration of tartrazine 5 mg L-1 for MWCNT-COOH/Fe3O4 and 10 mg L-1 for MWCNT-COOH/Fe3O4/NiO and contact time 5 min for MWCNT-COOH/Fe3O4/NiO and 15 min for MWCNT-COOH/Fe3O4. Moreover, the predominant degradation process was elucidated simultaneously, with and without simulated sunlight irradiation, using thermal lens spectrometry (TLS) and UV-Vis absorption spectrophotometry. The results indicated the prevalence of the photodegradation mechanism over adsorption from the beginning of the degradation process.
Collapse
Affiliation(s)
- Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Humberto Cabrera
- Optics Lab, STI Unit, The Abdus Salam International Centre for Theoretical Physics, Costiera 11, 34151 Trieste, Italy
| | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Francesca Limosani
- INFN-National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche, 1, 60131 Ancona, Italy
| | - Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Matteo Amati
- Spectroscopy, Photoemission and Dynamics, Elettra—Sincrotrone Trieste S.C.p.A. S.S. 14, km 163.5 in Area Science Park, Basovizza, 34149 Trieste, Italy
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Stefano Bellucci
- INFN-National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
5
|
Zheng Z, Deletic A, Toe CY, Amal R, Zhang X, Pickford R, Zhou S, Zhang K. Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129239. [PMID: 35739758 DOI: 10.1016/j.jhazmat.2022.129239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Although advanced oxidation processes (AOPs) such as photoelectrochemical oxidation (PECO), electrochemical oxidation (ECO) and photocatalytic oxidation (PCO), have shown potential for wastewater treatment, their application in urban stormwater has rarely been studied. This paper explored their major degradation mechanisms and possible degradation pathways of herbicides for stormwater applications (with treatment difficulty compared with wastewater). PECO and ECO showed excellent removal performance for diuron (100 %) and moderate for atrazine (around 35 %) under a relatively low potential (2 V). Superoxide radical (·O2-) has been found to be the dominant reactive species. Besides, there is evidence to indicate that hydroxyl radical (·OH) and free chlorine (·Cl) also support the degradation reactions. Up to 11 possible intermediate products have been identified during both diuron and atrazine degradation processes under PECO operation. Based on the proposed possible degradation pathways, the intermediates presented during PECO are species with further oxidation. As evidenced by the undetected species of more oxidized intermediates for ECO and PCO, some further degradation steps are missing, which demonstrate their lower oxidation capacity leading to incomplete decomposition of stormwater herbicides. Thus, PECO has a great potential to be developed into a passive stormwater degradation system due to its strong oxidation potential.
Collapse
Affiliation(s)
- Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia.
| | - Ana Deletic
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia; School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, University of New South Wales, New South Wales 2052, Australia; School of Engineering, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, New South Wales 2052, Australia
| | - Shujie Zhou
- School of Chemical Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Kefeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| |
Collapse
|
6
|
Lung I, Soran ML, Stegarescu A, Opriş O. Application of CNT-COOH/MnO 2/Fe 3O 4 Nanocomposite for the Removal of Cymoxanil from Aqueous Solution: Isotherm and Kinetic Studies. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Yao T, Liu L, Tan S, Li H, Liu X, Zeng A, Pan L, Li X, Bai L, Liu K, Xing B. Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils? CHEMOSPHERE 2021; 283:131304. [PMID: 34467944 DOI: 10.1016/j.chemosphere.2021.131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Herbicides are commonly used globally. However, residual herbicides in soils for ages often result in phytotoxicity and serious yield loss to subsequent crops. In this paper, the multi-walled carbon nanotubes (MWCNTs) were utilized to amend the herbicide polluted soil, and the adsorption performance of herbicides to MWCNTs amended soil was studied. Results indicate efficient alleviation of herbicide-induced phytotoxicity to rice and tobacco due to MWCNTs amendment. When 0.4% MWCNTs were applied, the concentration of sulfentrazone that inhibited the same rice height by 50% (IC50) increased to more than 3 times that of pure soil. When the MWCNTs were used to alleviate the phytotoxicity of quinclorac to tobacco, the MWCNTs not only alleviated the phytotoxicity of quinclorac but also promoted the growth of tobacco. The MWCNTs amended soil significantly increased the adsorption of herbicide to soil than biochar. The soil microbial analysis shows that MWCNTs had no significant effect on soil microbial community diversity, but the long-term exposure to MWCNTs could change the structure of the soil microbial community. Above all, our results highlighted the potential implication of the MWCNTs to ensure crop production by promoting crop growth and reducing the residual bioavailability of herbicides.
Collapse
Affiliation(s)
- Ting Yao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lejun Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Shuo Tan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Hui Li
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha, 410125, PR China
| | - Aiping Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha, 410125, PR China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
8
|
Park JM, Jhung SH. Polyaniline-derived carbons: Remarkable adsorbents to remove atrazine and diuron herbicides from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122624. [PMID: 32344360 DOI: 10.1016/j.jhazmat.2020.122624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The contamination of water resources by hazardous organic compounds is becoming severe worldwide. In this study, the adsorptive removal of atrazine (ATZ) and diuron (DUR), two widely used herbicides, from water by polyaniline-derived carbons (PDCs) was investigated for the first time, under various conditions. A selected PDC, fabricated at optimum conditions, i.e., by pyrolysis at 800 °C (and labeled PDC(800)), showed remarkable adsorptivity for both herbicides, that is, 7.7 and 11.3 times the maximum adsorption capacity (Q0) for ATZ and DUR, respectively, compared to activated carbon (AC). Or, the Q0 values of PDC(800) for ATZ and DUR were 943 and 884 mg/g, respectively; however, the Q0 values of AC were only 123 and 78.0 mg/g, respectively. Moreover, the optimum adsorbent PDC(800) had 4.5 and 3.1 times Q0 that of the best adsorbent, that showed the highest performances, so far, for ATZ and DUR, respectively. Plausible adsorption mechanisms were suggested based on the porosity and the adsorption in a wide pH range. The new adsorbent was reusable via simple solvent washing. Based on its remarkable adsorption performance and facile reusability, PDC(800) can be considered a promising adsorbent to remove herbicides such as ATZ and DUR from contaminated water.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
El Ouahedy N, Zbair M, Ojala S, Brahmi R, Pirault-Roy L. Porous carbon materials derived from olive kernels: application in adsorption of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29967-29982. [PMID: 32440882 DOI: 10.1007/s11356-020-09268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Adsorption of organic pollutants (OPs), bisphenol A, and diuron, from aqueous solutions onto porous carbon materials (CMs) prepared from olive kernels, have been investigated. The effects of initial pH, initial OP concentration, temperature, and contact time on the adsorption capacity were studied. The adsorption of bisphenol A and diuron onto CMs was found to be optimal at pH 5.6 and 6.9, respectively. It was noticed that the adsorption of those organic pollutants from aqueous solution declined with increasing temperature and the process is exothermic. The rate of adsorption followed the second order kinetic equation. The equilibrium results showed that Langmuir model fits well with the data. The maximum adsorption capacities obtained using the best CM were 476 and 434 mg g-1 for BPA and diuron, respectively. The results showed that CMs made from olive kernels are an excellent and inexpensive biomass waste-derived sorbent. Graphical abstract.
Collapse
Affiliation(s)
- Nadia El Ouahedy
- Laboratory of Coordination and Analytical Chemistry (LCCA), University Chouaïb Doukkali, El Jadida, Morocco
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers UMR 7285 CNRS, 4, Rue M. Brunet, 86073, Poitiers Cedex 9, France
| | - Mohamed Zbair
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Rachid Brahmi
- Laboratory of Coordination and Analytical Chemistry (LCCA), University Chouaïb Doukkali, El Jadida, Morocco
| | - Laurence Pirault-Roy
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers UMR 7285 CNRS, 4, Rue M. Brunet, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
10
|
Sigmund G, Gharasoo M, Hüffer T, Hofmann T. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4583-4591. [PMID: 32124609 PMCID: PMC7205386 DOI: 10.1021/acs.est.9b06287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
- Agroscope,
Environmental Analytics, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
- Ithaka
Institute, Ancienne Eglise
9, 1974 Arbaz, Switzerland
| | - Mehdi Gharasoo
- Department
of Earth and Environmental Sciences, Ecohydrology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Hüffer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
11
|
Khalid S, Shahid M, Murtaza B, Bibi I, Asif Naeem M, Niazi NK. A critical review of different factors governing the fate of pesticides in soil under biochar application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134645. [PMID: 31822404 DOI: 10.1016/j.scitotenv.2019.134645] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/13/2023]
Abstract
Pesticides are extensively used in the modern agricultural system. The inefficient and extensive use of pesticides during the last 5 to 6 decades inadvertently led to serious deterioration of environmental quality with health risk to living organisms, including humans. It is important to use some environmentally-friendly and sustainable approaches to remediate, restore and maintain soil quality. Biochar has gained considerable attention globally as a promising soil amendment because it has the ability to adsorb and as such minimize the bioavailability of pesticides in soils. This review emphasizes the recent trends and implications of biochar in pesticide-contaminated soils, as well as highlights need of the pesticides use and associated environmental issues in context of the biochar application. The overarching aim of this review is to signify the role of biochar on primary processes such as effect of biochar on the persistence, mineralization, leaching and efficacy of pesticides in soil. Notably, the effects of biochar on pesticide adsorption-desorption, degradation and bioavailability under various operating/production conditions are critically discussed. This review delineates the indirect impact of biochar on pesticides persistence in soils and proposes key recommendations for future research which are essential for the remediation and restoration of pesticides-impacted soils.
Collapse
Affiliation(s)
- Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan.
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
12
|
Cai N, Larese-Casanova P. Facile Synthesis and Reuse of Magnetic Black Carbon Magnetite (BC-Mag) for Fast Carbamazepine Removal from Water. NANOMATERIALS 2020; 10:nano10020213. [PMID: 31991921 PMCID: PMC7074862 DOI: 10.3390/nano10020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
Magnetic carbonaceous nanomaterials are needed in water treatment applications because they can offer both carbon surfaces for sorption of organic pollutants and ease of material magnetic retrieval for regeneration and reuse. In this study, we employed a facile one-step method to synthesize a black carbon-magnetite composite (BC-Mag) by high-temperature annealing of black carbon and hematite. The nanocomposite was easily dispersed and stable in water owing to the presence of negatively charged oxygen surface functional groups. Sorption kinetics with dissolved carbamazepine showed a rapid initial uptake with equilibrium achieved within only minutes. The sorption extent can be described with the Freundlich model, and surface area normalized sorption affinity was an order of magnitude greater than conventional granular activated carbon. The sorption extent of neutral carbamazepine remained constant between pH 2–10 while surface zeta potential decreased. BC-Mag can be reused for the sorption of carbamazepine up to six times without significant loss of the sorption extent.
Collapse
Affiliation(s)
- Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering and Technology Research Center of Online Monitoring for Water Environmental Pollution, Guangdong Institute of Analysis, Guangzhou 510070, China;
| | - Philip Larese-Casanova
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
- Correspondence: or ; Tel.: +1-617-373-2899
| |
Collapse
|
13
|
Meephon S, Rungrotmongkol T, Puttamat S, Praserthdam S, Pavarajarn V. Heterogeneous photocatalytic degradation of diuron on zinc oxide: Influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates. J Environ Sci (China) 2019; 84:97-111. [PMID: 31284920 DOI: 10.1016/j.jes.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Heterogeneous photocatalytic reaction has been generally applied for degradation of toxic contaminants. Degradations of a compound using the same kind of catalyst that was synthesized differently are commonly found in literature. However, the reported degradation intermediates are normally inconsistent. This issue is especially important for the degradation of toxic compounds because intermediates may be more toxic than their parent compounds and understanding the reason is necessary if appropriate catalysts are to be designed. This work systematically compares the photocatalytic degradation of diuron, a toxic recalcitrant herbicide, on two forms of zinc oxide (ZnO), i.e., conventional particles with zinc- and oxygen-terminated polar surfaces as the dominating planes, and nanorods with mixed-terminated nonpolar surfaces. Experimental and theoretical results indicate that both the rate of reaction and the degradation pathway depend on the adsorption configuration of diuron onto the surface. Diuron molecules adsorb in different alignments on the two surfaces, contributing to the formation of different degradation intermediates. Both the aliphatic and aromatic sides of diuron adsorb on the polar surfaces simultaneously, leading to an attack by hydroxyl radicals from both ends. On the other hand, on the mixed-terminated surface, only the aliphatic part adsorbs and is degraded. The exposed surface is therefore the key factor controlling the degradation pathway. For diuron degradation on ZnO, a catalyst confined to mixed-terminated surfaces, i.e., ZnO nanorods, is more desirable, as it avoids the formation of intermediates with potent phytotoxicity and cytogenotoxicity.
Collapse
Affiliation(s)
- Sutaporn Meephon
- Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somchintana Puttamat
- Department of Chemistry, Faculty of Science, Thammasat University, Pathumthani 12120, Thailand
| | - Supareak Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varong Pavarajarn
- Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Research Program in Hazardous Substance Management in Agricultural Industry, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Ahmad J, Naeem S, Ahmad M, Usman ARA, Al-Wabel MI. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:214-228. [PMID: 31176983 DOI: 10.1016/j.jenvman.2019.05.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The prevalence of organic micropollutants (OMPs) in various environmental compartments is posing a serious health risks to all kinds of lives on the planet. The levels of OMPs such as polyaromatic hydrocarbons, antibiotics, pesticides, contraceptive medicines, and personal care products in water bodies are increasing with each passing day. It is an urgent need of time to limit the release of OMPs into the environment, and to remove the prevailing OMPs for sustainable environmental management. The majority of the conventional means of water decontamination are either inefficient or expensive. However, due to nanosize, high surface area, and hollow and layered structure, carbon nanotubes (CNTs) serve as excellent sorbents for the removal of a diverse range of OMPs. The occurrence of emerging OMPs and their detrimental effects on human and animal health are collected and discussed in this review. The characteristics and efficacy of various CNTs (pristine and modified) for the efficient removal of different OMPs, and the removal mechanisms have been reviewed and discussed. The literature demonstrated that adsorption of OMPs onto CNTs is very complicated and rely on multiple factors including the properties of adsorbent and the adsorbate as well as solution chemistry. It was found that H-bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, H-π bongs, and π-π interactions were the major mechanisms responsible for the adsorption of OMPs onto various kinds of CNTs. Despite of higher affinities for OMPs, hydrophobicity and higher costs restrain the practical application of CNTs for wastewater treatment on large scale. However, continuous production may lead to the development of cost-effective, efficient and eco-friendly CTNs technology for wastewater treatments in future.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 61000, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shoaib Naeem
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
15
|
Ghosh S, Ojha PK, Roy K. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs. CHEMOSPHERE 2019; 228:545-555. [PMID: 31051358 DOI: 10.1016/j.chemosphere.2019.04.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the physicochemical properties as well as the mechanisms behind adsorption of hazardous synthetic organic chemicals (SOCs) onto single walled carbon nanotubes (SWCNTs), we have developed partial least squares (PLS)-regression based QSPR models using a diverse set of 40 hazardous SOCs having defined adsorption coefficient (logK). The models were extensively validated using different validation parameters in order to assure the robustness and predictivity of the models. We have also checked the consensus predictivity of all the individual models using "Intelligent consensus predictor" tool for possible enhancement of the quality of predictions for test set compounds. The consensus predictivity of the test set compounds were found to be better than the individual models based on not only the MAE based criteria (MAE(95%) = Good) but also some other validation parameters (Q2F1 = 0.938, Q2F2 = 0.937). The contributing descriptors obtained from the QSPR models suggested that the hazardous SOCs may get adsorbed onto the SWCNTs through hydrophobic interaction as well as hydrogen bonding interactions and electrostatic interaction to the functionally modified SWCNTs. Thus, the developed models may provide knowledge to scientists to increase the efficient application of SWCNTs as a special adsorbent, which may be useful for the management of environmental pollution.
Collapse
Affiliation(s)
- Sulekha Ghosh
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
16
|
Wang Z, Gao Z, Feng S, Wang J, Guo X. Experimental and Computational Study on the Adsorption Mechanism of 2-Arylpropionic Acids on Graphene: Solvent Effects and Aromatic Features Affecting the Adsorption Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang Z, Wang X, Li S, Jiang Z, Guo X. Magnetic solid‐phase extraction based on carbon nanosphere@Fe3O4for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019; 40:1306-1313. [DOI: 10.1002/elps.201800530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Zhaokun Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xia Wang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Shuang Li
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Zhen Jiang
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| | - Xingjie Guo
- Lab of Analytical ChemistrySchool of PharmacyShenyang Pharmaceutical University Shenyang Liaoning Province P. R. China
| |
Collapse
|
18
|
Wang Z, Zhang J, Hu B, Yu J, Wang J, Guo X. Graphene/Fe3O4 nanocomposite for effective removal of ten triazole fungicides from water solution: Tebuconazole as an example for investigation of the adsorption mechanism by experimental and molecular docking study. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Wang Y, Chen J, Tang W, Xia D, Liang Y, Li X. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms. CHEMOSPHERE 2019; 214:79-84. [PMID: 30261420 DOI: 10.1016/j.chemosphere.2018.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Prediction of adsorption equilibrium coefficients (K) of organic compounds onto single walled carbon nanotubes (SWNTs) from in silico molecular descriptors is of importance for probing potential applications of SWNTs as well as for evaluating environmental behavior and ecological risks of organic pollutants and SWNTs. In this study, two models for predicting logK were developed with multiple linear regression (MLR) and support vector machine (SVM) algorithms. The two models have satisfactory goodness-of-fit, robustness and predictive ability, and the SVM model performs slightly better than the MLR model. The two models are based on the up-to-date experimental dataset consisting of 61 logK values, and the applicability domains cover diverse organic compounds with functional groups > CC<, CC, C6H5, >CO, COOH, C(O)O, OH, O, F, Cl, Br, NH2, NH, >N, >NN<, NO2, >NC(O)NH2, >NC(O)NH, S and S(O)(O). The adsorption of organic compounds toward SWNTs is mainly determined by van der Waals forces and hydrophobic interactions. Since only in silico molecular descriptors were employed for the modeling, the developed models are beneficial for prediction purposes.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yuzhen Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
20
|
Zbair M, Ainassaari K, El Assal Z, Ojala S, El Ouahedy N, Keiski RL, Bensitel M, Brahmi R. Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35657-35671. [PMID: 30353441 PMCID: PMC6280859 DOI: 10.1007/s11356-018-3455-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 05/04/2023]
Abstract
Highly microporous carbons were prepared from argan nut shell (ANS) using steam activation method. The carbons prepared (ANS@H2O-30, ANS@H2O-90, and ANS@H2O-120) were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, nitrogen adsorption, total X-ray fluorescence, and temperature-programmed desorption (TPD). The ANS@H2O-120 was found to have a high surface area of 2853 m2/g. The adsorption of bisphenol A and diuron on ANS@H2O-120 was investigated. The isotherm data were fitted using Langmuir and Freundlich models. Langmuir isotherm model presented the best fit to the experimental data suggesting micropore filling of ANS@H2O-120. The ANS@H2O-120 adsorbent demonstrated high monolayer adsorption capacity of 1408 and 1087 mg/g for bisphenol A and diuron, respectively. The efficiency of the adsorption was linked to the porous structure and to the availability of the surface adsorption sites on ANS@H2O-120. Response surface method was used to optimize the removal efficiency of bisphenol A and diuron on ANS@H2O-120 from aqueous solution. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Mohamed Zbair
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali, BP 20, 24000, El Jadida, Morocco.
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland.
| | - Kaisu Ainassaari
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Zouhair El Assal
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Nadia El Ouahedy
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali, BP 20, 24000, El Jadida, Morocco
| | - Riitta L Keiski
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Mohammed Bensitel
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali, BP 20, 24000, El Jadida, Morocco
| | - Rachid Brahmi
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali, BP 20, 24000, El Jadida, Morocco
| |
Collapse
|
21
|
Wang Z, Zhang X, Jiang S, Guo X. Magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the simultaneous enantiomeric analysis of five β-blockers in the environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry. Talanta 2018; 180:98-107. [DOI: 10.1016/j.talanta.2017.12.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
|
22
|
Chen D, Chen C, Shen W, Quan H, Chen S, Xie S, Luo X, Guo L. MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.04.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Barbosa FHF, Menezes HC, de Carvalho Teixeira AP, Serp P, Antipoff V, de Lourdes Cardeal Z. Versatile magnetic carbon nanotubes for sampling and pre concentration of pesticides in environmental water. Talanta 2017; 167:538-543. [PMID: 28340758 DOI: 10.1016/j.talanta.2017.02.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/25/2017] [Accepted: 02/25/2017] [Indexed: 01/02/2023]
Abstract
This article describes a simple, efficient, and versatile magnetic carbon nanotubes (MCNT) method for sampling and pre-concentration of pesticides in environmental water samples. The multi-walled magnetic carbon nanotubes were obtained by chemical deposition vapor (CVD) process. The MCNTs structures are formed of hydrophobic and hydrophilic fractions that provide great dispersion at any water matrix allowing simultaneously a high efficiency of pesticides sorption. Following the extraction, analytes were desorbed with minor amounts of solvent and analyzed by gas chromatography coupled mass spectrometry (GC/MS). The parameters amount of MCNTs used to extraction, desorption time, and desorption temperature were optimized. The method showed good linearity with determination coefficients between 0.9040 and 0.9733. The limits of detection and quantification were ranged between 0.51 and 2.29µgL-1 and between 1.19 and 5.35µgL-1 respectively. The recovery ranged from 79.9% to 111.6%. The method was applied to the determination of fifteen multiclass pesticides in real samples of environmental water collected in Minas Gerais, Brazil.
Collapse
Affiliation(s)
| | - Helvécio Costa Menezes
- Universidade Federal de Minas Gerais, Departamento de Química, ICEx, Av. Antônio Carlos, 6627, 31270901 Belo Horizonte, MG, Brazil
| | - Ana Paula de Carvalho Teixeira
- Universidade Federal de Minas Gerais, Departamento de Química, ICEx, Av. Antônio Carlos, 6627, 31270901 Belo Horizonte, MG, Brazil
| | - Philippe Serp
- University Toulouse, ENSIACET, UPS INP LCC, Lab Chim Coordinat, UPR 8241, CNRS, 4 Allee Emile Monso, BP 44362, F-31030 Toulouse, France
| | - Vitor Antipoff
- Universidade Federal de Minas Gerais, Departamento de Química, ICEx, Av. Antônio Carlos, 6627, 31270901 Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Universidade Federal de Minas Gerais, Departamento de Química, ICEx, Av. Antônio Carlos, 6627, 31270901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
24
|
Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S. Environmental application of nanotechnology: air, soil, and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13754-88. [PMID: 27074929 DOI: 10.1007/s11356-016-6457-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/09/2016] [Indexed: 05/17/2023]
Abstract
Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).
Collapse
Affiliation(s)
- Rusul Khaleel Ibrahim
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Maan Hayyan
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdulhakim AlSaadi
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeeb Hayyan
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shaliza Ibrahim
- Department of Civil Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Holden PA, Gardea-Torresdey J, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Hubal EAC, Avery D, Barceló D, Behra R, Cohen Y, Deydier-Stephan L, Lee Ferguson P, Fernandes TF, Harthorn BH, Henderson WM, Hoke RA, Hristozov D, Johnston JM, Kane AB, Kapustka L, Keller AA, Lenihan HS, Lovell W, Murphy CJ, Nisbet RM, Petersen EJ, Salinas ER, Scheringer M, Sharma M, Speed DE, Sultan Y, Westerhoff P, White JC, Wiesner MR, Wong EM, Xing B, Horan MS, Godwin HA, Nel AE. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6124-45. [PMID: 27177237 PMCID: PMC4967154 DOI: 10.1021/acs.est.6b00608] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.
Collapse
Affiliation(s)
- Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Jorge Gardea-Torresdey
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Chemistry, Environmental Science and Engineering PhD Program, University of Texas, El Paso, Texas 79968, United States
| | - Fred Klaessig
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Pennsylvania Bio Nano Systems, Doylestown, Pennsylvania 18901, United States
| | - Ronald F. Turco
- College of Agriculture, Laboratory for Soil Microbiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Monika Mortimer
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-57392 Schmallenberg, Germany
| | - Elaine A. Cohen Hubal
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Avery
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona 08034, Spain
- Institut Català de Recerca de l’Aigua (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Girona 17003, Spain
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Yoram Cohen
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, California 90095, United States
| | | | - Patrick Lee Ferguson
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | | | - Barbara Herr Harthorn
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Center for Nanotechnology in Society, University of California, Santa Barbara, California 93106
- Department of Anthropology, University of California, Santa Barbara, California 93106
| | - William Matthew Henderson
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Robert A. Hoke
- E.I. du Pont de Nemours and Company, Newark, Delaware 19711, United States
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice 30123, Italy
| | - John M. Johnston
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Agnes B. Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, United States
| | | | - Arturo A. Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hunter S. Lenihan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Wess Lovell
- Vive Crop Protection Inc, Toronto, Ontario M5G 1L6, Canada
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roger M. Nisbet
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, United States
| | - Elijah J. Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Edward R. Salinas
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, D-67056, Germany
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Monita Sharma
- PETA International Science Consortium, Ltd., London N1 9RL, England, United Kingdom
| | - David E. Speed
- Globalfoundries, Corporate EHS, Hopewell Junction, New York 12533, United States
| | - Yasir Sultan
- Environment Canada, Gatineau, Quebec J8X 4C8, Canada
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason C. White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Eva M. Wong
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Washington, D.C. 20460, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Meghan Steele Horan
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hilary A. Godwin
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, United States
| | - André E. Nel
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Ding H, Li X, Wang J, Zhang X, Chen C. Adsorption of chlorophenols from aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. J Environ Sci (China) 2016; 43:187-198. [PMID: 27155424 DOI: 10.1016/j.jes.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes (SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi-Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between logKow and logKd suggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π-π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84mg/g, from 19 to 65mg/g and from 17 to 65mg/g, respectively. The effect of pH on the adsorption of 2,6-dichlorophenol (2,6-DCP), was also studied. When pH is over the pKa of 2,6-dichlorophenol (2,6-DCP), its removal dropped sharply. When ionic strength increased (NaCl or KCl concentration from 0 to 0.02mmol/L), the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.
Collapse
Affiliation(s)
- Han Ding
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084.
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Xiaojian Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084.
| |
Collapse
|
27
|
Ding H, Chen C, Zhang X. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:31-45. [PMID: 26854726 DOI: 10.1080/1062936x.2015.1132764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.
Collapse
Affiliation(s)
- H Ding
- a School of Environment, Tsinghua University , Beijing , China
| | - C Chen
- a School of Environment, Tsinghua University , Beijing , China
| | - X Zhang
- a School of Environment, Tsinghua University , Beijing , China
| |
Collapse
|
28
|
Hamdi H, De La Torre-Roche R, Hawthorne J, White JC. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology 2015; 9:172-80. [PMID: 24716640 DOI: 10.3109/17435390.2014.907456] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.
Collapse
Affiliation(s)
- Helmi Hamdi
- Water Research and Technology Center, University of Carthage , Soliman , Tunisia and
| | | | | | | |
Collapse
|
29
|
WANG DAOYUAN, MUKOME FUNGAIND, YAN DENGHUA, WANG HAO, SCOW KATEM, PARIKH SANJAIJ. Phenylurea herbicide sorption to biochars and agricultural soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:544-51. [PMID: 26065514 PMCID: PMC4838459 DOI: 10.1080/03601234.2015.1028830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.
Collapse
Affiliation(s)
- DAOYUAN WANG
- Department of Land, Air and Water Resources, University of California Davis, 95616, USA
- College of Environmental Science & Engineering, Donghua University, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
- Address correspondence to Daoyuan Wang, Department of Land, Air, and Water Resources, University of California, Davis, 95616, United States of America; Phone: 001-5305749610; Fax: 001-5307521552;
| | - FUNGAI N. D. MUKOME
- Department of Land, Air and Water Resources, University of California Davis, 95616, USA
| | - DENGHUA YAN
- China Institute of Water Resources and Hydropower Research, A--1 Fuxing Road, Beijing 100038, China
| | - HAO WANG
- China Institute of Water Resources and Hydropower Research, A--1 Fuxing Road, Beijing 100038, China
| | - KATE M. SCOW
- Department of Land, Air and Water Resources, University of California Davis, 95616, USA
| | - SANJAI J. PARIKH
- Department of Land, Air and Water Resources, University of California Davis, 95616, USA
| |
Collapse
|
30
|
Liu P, Qi W, Du Y, Li Z, Wang J, Bi J, Wu W. Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5204-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci Rep 2014; 4:5326. [PMID: 24937315 PMCID: PMC4060509 DOI: 10.1038/srep05326] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/28/2014] [Indexed: 11/09/2022] Open
Abstract
Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3–8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3–8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs.
Collapse
|
32
|
Gong W, Liu X, Tao L, Xue W, Fu W, Cheng D. Reduction of nitrobenzene with sulfides catalyzed by the black carbons from crop-residue ashes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6162-6169. [PMID: 24474561 DOI: 10.1007/s11356-014-2533-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
In this paper, three types of black carbons (BCs) named R-BC, W-BC, and C-BC were derived from rice straw ashes, wheat straw ashes, and corn straw ashes, respectively. Under room temperature and in an anaerobic aqueous solution, these three types of BCs could catalyze the reduction of nitrobenzene (NB) by sulfides rather than only act as the superabsorbent. The catalytic activities of BCs derived from different crop-residue ashes were very different and in the order of R-BC > W-BC > C-BC, since the reaction rate constants (k obs) of NB with the BCs in the presence of 3 mM sulfides were 0.0186, 0.0063, and 0.0051 h(-1), respectively. The key catalytic active sites for NB reduction were evaluated, with four types of modified BCs and two types of tailored graphite as the model catalysts. The results indicated that BCs probably had two types of active sites for NB reduction, the microscopic graphene moieties and the surface oxygen functional groups. Since the sulfides and BCs often coexist in the environment, this BC-catalyzed reduction technology of NACs may be applied as an in situ remediation technique without the need for reagent addition.
Collapse
Affiliation(s)
- Wenwen Gong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | | | | | | | | | |
Collapse
|