1
|
Zhang ZM, Dou WK, Zhang XQ, Sun AL, Chen J, Shi XZ. Organophosphate esters in the mariculture ecosystem: Environmental occurrence and risk assessments. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129219. [PMID: 35739741 DOI: 10.1016/j.jhazmat.2022.129219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Most investigations on organophosphate esters (OPEs) are conducted predominantly in a separate biological or abiotic medium, and few joint analyses have been performed in the mariculture ecosystem based on yearly sampling. Herein, we investigated the occurrence, load estimation, phase distribution, source diagnostics, and risks of 20 OPEs in seawater, sediment, and aquaculture organisms from a typical mariculture area in China. The total of these OPEs (∑OPEs) ranged within 3.97-1068 ng/L, 0.39-65.5 ng/g (dw), and 4.09-16.3 ng/g (ww) in seawater, sediment and organisms, respectively. Chlorinated OPEs were the predominant congeners detected in seawater, whereas alkyl-OPEs were the leading contributors in sediment and biological samples. Seasonal variations of ∑OPEs in seawater were more distinct than those in sedimentary environments. Load estimation indicated that approximately 70% of the OPEs in the study area existed in the water bodies. Source identification performed using the U.S. EPA positive matrix factorization indicated that polyurethane foam/plastics and hydraulic oil made the greatest contributions in seawater, whereas chemical production was the predominant source in sediment. Indices of ecological and health risks of OPEs were lower than their risk threshold, indicating that the OPEs detected in this study posed a low risk to the aquatic environment and human health.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wen-Ke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Xiao-Qian Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Li AJ, Zhou GJ, Lai RWS, Leung PTY, Wu CC, Zeng EY, Lui GCS, Leung KMY. Extreme cold or warm events can potentially exacerbate chemical toxicity to the marine medaka fish Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106226. [PMID: 35738209 DOI: 10.1016/j.aquatox.2022.106226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Marine ecosystems are currently subjected to dual stresses of chemical pollution and climate change. Through a series of laboratory experiments, this study investigated the impact of exposure to chemical contaminant such as DDT or copper (Cu), in combination with cold or warm temperature extremes on the marine medaka fish Oryzias melastigma. The results showed that extreme seawater temperatures (i.e., 15 and 32 °C in sub-tropical Hong Kong) exacerbated adverse chemical impacts on the growth performance of O. melastigma, in particular at the high thermal extreme. This was likely associated with an interruption of oxygen consumption and aerobic scope. Most importantly, the results of acclimation experiments, as reflected by thermal tolerance polygons, showed that chemical exposure substantially narrowed the thermal tolerance of the medaka, making them more vulnerable to temperature changes and extreme thermal events. Under dual stresses of thermal extremes and chemical exposure, the medaka switched their metabolic pathway to anaerobic respiration that might deplete their energy reserve for chemical detoxification. Although stress proteins such as heat shock proteins (HSP90) were up-regulated for cellular protection in the fish, such a defensive mechanism was repressed with intensifying dual stresses at high temperature and high chemical concentration. Bioconcentration of DDT or Cu generally increased with increasing temperature and its exposure concentration. Overall, these complex chemical-temperature interactions concomitantly exerted a concerted adverse impact to O. melastigma. The temperature-dependent toxicity of DDT or Cu shown in this study clearly demonstrated the potential challenge brought by the risk of chemical pollution under the impact of global climate change.
Collapse
Affiliation(s)
- Adela J Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Colleage of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Racliffe W S Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chen C Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Eddy Y Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; School of Environment, Jinan University, Guangzhou, China
| | - Gilbert C S Lui
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Zhang ZM, Wang LY, Gu YY, Sun AL, You JJ, Shi XZ, Chen J. Probing the contamination characteristics, mobility, and risk assessments of typical plastic additive-phthalate esters from a typical coastal aquaculture area, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125931. [PMID: 34492861 DOI: 10.1016/j.jhazmat.2021.125931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 06/13/2023]
Abstract
Contamination characteristics, equilibrium partitioning and risk assessment of phthalate esters (PAEs) were investigated in seawater, sediment and biological samples collected from the Xiangshan Bay area during an annual investigation between January and November 2019. PAE concentrations detected in the mariculture environment in surface seawater, sediment, and biological samples were 172-3365 ng/L, 190-2430 μg/kg (dry weight [dw]), and 820-4926 μg/kg (dw), respectively. The dominant congeners in different media included di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP). The inner bay and the bay mouth were the gathering area of PAEs and heavily influenced by the mariculture activities, river inputs, and anthropogenic activities. The bioaccumulation of PAEs demonstrated benthic feeding fishes with relatively high trophic levels concentrated high levels of phthalates. The mobility of PAEs in sediment-seawater showed that the transfer tendency of low-molecular weight species was from the sediment to the water, which was in contrast with those of high-molecular weight PAEs. DEHP, DiBP and DnBP had various degrees of ecological risks in the aquatic environment, whereas only the DiBP posed potential risks in sediments. The current assessment of carcinogenic and noncarcinogenic risks posed by fish consumption were within acceptable limits for humans.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liu-Yong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Yan-Yu Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jin-Jie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
4
|
Zhang Y, Zhang H, Yang M. Profiles and risk assessment of legacy and current use pesticides in urban rivers in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39423-39431. [PMID: 33755890 DOI: 10.1007/s11356-021-13140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Pesticides in the environment can pose serious risks to aquatic ecosystems. This study focused on the existence of 27 pesticides, including 13 pesticides regulated by the Stockholm Convention as persistent organic pollutants (POPs) and 14 commonly used pesticides in three urban rivers in Beijing that receive effluents from three municipal wastewater treatment plants (MWTPs). Among the 27 pesticides, 12 were detected at least once over a period of 4 seasons. Atrazine, aldrin and dieldrin were universally found in the three rivers, with the highest concentrations being 311, 163 and 23.3 ng/L, respectively. HCHs, DDTs, heptachlor and endosulfan, which are POPs, were detected at lower concentrations (ND-16.7 ng/L). Most of the insecticides and some of the herbicides in the rivers originated from MWTP effluents. The risk assessment results showed that aldrin posed medium risk (0.1 ≤ RQ < 1) to fish, and atrazine exhibited medium risk to both fish and algae. Despite the implementation of the Stockholm Convention and the upgrades of MWTPs emitting ozone, high loads of aldrin, atrazine and dieldrin were discharged to the rivers. Efforts should be devoted to identifying POP pesticide sources and upgrading MWTPs with other technologies to ensure the ecological safety of rivers.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Universty of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Xue Y, Zhang ZM, Zhang RR, Li YQ, Sun AL, Shi XZ, Chen J, Song S. Aquaculture-derived distribution, partitioning, migration, and transformation of atrazine and its metabolites in seawater, sediment, and organisms from a typical semi-closed mariculture bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116362. [PMID: 33387782 DOI: 10.1016/j.envpol.2020.116362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Atrazine (ATR) is one of the most commonly used herbicides that could directly impair the growth and health of organisms in mariculture areas and adversely affect human health through the food chain. This study investigated the contaminant occurrence, migration, and transformation of ATR and three of its chlorinated metabolites, namely deethylatrazine (DEA), deisopropylatrazine (DIA), and didealkylatrazine (DDA), in surface seawater, sediment, and aquatic organisms from the Xiangshan Harbor. ATR was detected in all samples, while DIA and DDA were only respectively detected in aquatic and seawater samples. The distribution of ATR and its metabolites presented different patterns depending on the geographic location and showed a higher level in the aquaculture area than that in the non-aquaculture area. The bioaccumulation of ATR in aquaculture organisms showed that benthic organisms, such as Ditrema, and Sinonovacula constricta (Sin), had increased levels. The ecological risks indicated that ATR posed medium or high risks to algae in the water phase of the study area. The microcosm experiment showed that the main fate of ATR in the simulated microenvironment was sedimentation, which followed the first-order kinetic equation. The ATR in the sediment could be enriched 3-5 times in Sin, and its major metabolites were DEA and DIA.
Collapse
Affiliation(s)
- Ying Xue
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Rong-Rong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yu-Qi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Hidayati NV, Asia L, Khabouchi I, Torre F, Widowati I, Sabdono A, Doumenq P, Syakti AD. Ecological risk assessment of persistent organic pollutants (POPs) in surface sediments from aquaculture system. CHEMOSPHERE 2021; 263:128372. [PMID: 33297282 DOI: 10.1016/j.chemosphere.2020.128372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Organochlorinated pesticides (OCPs) and Polychlorinated biphenyls (PCBs) in the surface sediments from shrimp ponds in four regions of the northern part of the Central Java coast (namely Brebes, Tegal, Pemalang, and Pekalongan) were investigated. The highest concentration of ∑ OCPs was found in Brebes Regency, ranging from 68.1 ± 3.4 to 168.1 ± 9.8 μg kg-1 dw. As indicated by the DDT ratio and chlordane ratio, the value suggested that those compounds may mainly originate from historical inputs rather than a recent application. The concentrations of Ʃ 7 indicator PCBs were determined, with the concentration ranged from 1.2 ± 0.7 μg kg-1 dw (Pekalongan) to 2.2 ± 0.4 μg kg-1 dw (Tegal). The most toxic PCB congener, PCB 118, was detected in all studied regions, with the highest proportion found in Tegal. Source analysis indicated that PCBs in the sediments mainly originated from Aroclor 1254 and Aroclor 1248. Compared to sediment quality guidelines (SQGs), some OCPs were found with concentrations which potentially posed an adverse effect. Our findings suggested that more attention should be paid to ensure sustainable shrimp culture facing such a risk of the OCPs and PCBs.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto, 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | | | | | - Franck Torre
- Aix Marseille Univ, CNRS, IMBE, IRD, Avignon Université, Marseille, France
| | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang, 50275, Indonesia
| | | | - Agung Dhamar Syakti
- Environmental Science Department, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands Province, 29100, Indonesia; Center for Maritime Biosciences Studies, Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto, 53123, Indonesia.
| |
Collapse
|
7
|
Peng S, Kong D, Li L, Zou C, Chen F, Li M, Cao T, Yu C, Song J, Jia W, Peng P. Distribution and sources of DDT and its metabolites in porewater and sediment from a typical tropical bay in the South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115492. [PMID: 33254672 DOI: 10.1016/j.envpol.2020.115492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been banned around the world. However, DDT is still frequently detected in natural environments, particularly in aquaculture and harbor sediments. In this study, 15 surface sediment samples were collected from a typical tropical bay (Zhanjiang Bay) in the South China Sea, and the levels of DDT and its metabolites in sediment and porewater samples were investigated. The results showed that concentrations of DDXs (i.e., DDT and its metabolites) in bulk sediments were 1.58-51.0 ng g-1 (mean, 11.5 ng g-1). DDTs (DDT and its primary metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE)) were the most prominent, accounting for 73.2%-98.3% (86.1% ± 12.8%) of the DDXs. Additionally, high-order metabolites (i.e., 1-chloro-2,2-bis(4'-chlorophenyl)ethylene (p,p'-DDMU), 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU), 2,2-bis(p-chlorophenyl)ethanol (p,p'-DDOH), 2,2-bis(p-chlorophenyl)methane (p,p'-DDM), and 4,4'-dichlorobenzophenone (p,p'-DBP)) were also detected in most of the sediment and porewater samples, with DDMU and DBP being predominant. The DDTs concentration differed among the sampling sites, with relatively high DDTs concentrations in the samples from the aquaculture zone and an area near the shipping channel and the Haibin shipyard. The DDD/DDE ratios indicated a reductive dichlorination of DDT to DDD under anaerobic conditions at most of the sampling sites of Zhanjiang Bay. The possible DDT degradation pathway in the surface sediments of Zhanjiang Bay was p,p'-DDT/p,p'-DDD(p,p'-DDE)/p,p'-DDMU/p,p'-DDNU/ … /p,p'-DBP. The DDXs in the sediments of Zhanjiang Bay were mainly introduced via mixed sources of industrial DDT and dicofol, including fresh input and historical residue. The concentrations of DDXs in porewater samples varied from 66.3 to 250 ng L-1, exhibiting a distribution similar to that in the accompanying sediments. However, the content of high-order metabolites was relatively lower in porewater than in sediment, indicating that high-order degradation mainly occurs in particles. Overall, this study helps in understanding the distribution, source, and degradation of DDT in a typical tropical bay.
Collapse
Affiliation(s)
- Shiyun Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Deming Kong
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liting Li
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunlin Zou
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meiju Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chiling Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Sun RX, Sun Y, Xie XD, Yang BZ, Cao LY, Luo S, Wang YY, Mai BX. Bioaccumulation and human health risk assessment of DDT and its metabolites (DDTs) in yellowfin tuna (Thunnus albacares) and their prey from the South China Sea. MARINE POLLUTION BULLETIN 2020; 158:111396. [PMID: 32753181 DOI: 10.1016/j.marpolbul.2020.111396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
DDTs were detected in yellowfin tuna (Thunnus albacares, 92.1-221.8 ng‧g-1 lipid weight) and their prey (54.9-93.5 ng‧g-1 lipid weight) from the South China Sea (SCS). DDT levels reported in this study were lower than those of the previous studies indicated the recent mitigation of DDT contamination in the SCS. Higher DDT levels were observed in fat abdominal muscle than lean dorsal muscle in adult yellowfin tuna. Meanwhile, DDT levels in adult yellowfin tuna were higher than the young ones. The composition profiles of DDT and its metabolites suggested DDTs in fish in the SCS were mainly derived from the historical use of technical DDTs. DDTs were biomagnified through food chains with the trophic magnification factor of 2.5. Risk assessment results indicated that dietary exposure to DDTs through lifetime fish consumption from the SCS would pose little cancer and noncarcinogenic risk to coastal residents.
Collapse
Affiliation(s)
- Run-Xia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yue Sun
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xian-De Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Bing-Zhong Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang-Yang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Aslam SN, Venzi MS, Venkatraman V, Mikkelsen Ø. Chemical assessment of marine sediments in vicinity of Norwegian fish farms - A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139130. [PMID: 32438149 DOI: 10.1016/j.scitotenv.2020.139130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
While aquaculture is growing rapidly all over the world and generating many economic benefits, so have the environmental concerns about the externalities posed by the fish-farming industry. The distribution profiles of organic compounds and inorganic elements were explored in marine surface sediments collected in proximity of two active Norwegian fish farms, Hestøya and Nørholmen (<200-1100 m from the perimeter edge of the installations). Overall, the sediment organic matter (SOM) content was 7.3 ± 4.9%, with 7.9 ± 5.1% and 4.0 ± 0.5% for Hestøya and Nørholmen, respectively. A non-targeted analysis was performed for screening organic compounds in marine sediments, and the presence of 60 compounds was detected. Among suspect compounds were alkanes, alkenes, aromatics, aldehydes, ketones, esters, alcohols, diols, polycyclic aromatic hydrocarbons (PAHs), terpenes and terpenoids. Heptanal, benzaldehyde, 4-oxoisophorone, 1,7-dimethylnaphthalene and 3-bromophenol were the most abundant compounds in marine sediments. In total, concentrations of 47 elements were measured, concentrations of As, Cd, Cr, Cu, Hg, Mo, Ni, Sn and Zn were strongly influenced by anthropogenic inputs, while concentrations of Ce, Co, Al, Fe and Ti were related to the geology of the local bedrock. The chemical composition of marine sediments was different at Hestøya and Nørholmen, indicating different anthropogenic inputs in these areas. In general, concentrations of toxic elements were below the proposed guidelines for Norwegian marine sediment quality and can be characterised as background pollution. Overall, fish-farming activities had only a minor or negligible influence on marine sediments and are unlikely to cause any harm to local aquatic life in the studied area.
Collapse
Affiliation(s)
- Shazia N Aslam
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway.
| | - Marco Skibnes Venzi
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway
| | - Øyvind Mikkelsen
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, Trondheim 7491, Norway
| |
Collapse
|
10
|
Asaoka S, Umehara A, Haga Y, Matsumura C, Yoshiki R, Takeda K. Persistent organic pollutants are still present in surface marine sediments from the Seto Inland Sea, Japan. MARINE POLLUTION BULLETIN 2019; 149:110543. [PMID: 31543483 DOI: 10.1016/j.marpolbul.2019.110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Although persistent organic pollutants (POPs) are currently banned or strictly controlled under the Stockholm Convention on Persistent Organic Pollutants, POPs are still distributed worldwide due to their environmental persistence, atmospheric transport, and bioaccumulation. Herein we investigated the current concentrations of POPs in the sediments from Seto Inland Sea, Japan and sought to clarify the factors currently controlling the POPs concentration of the surface sediments from Seto Inland Sea. The concentrations of hexachlorocyclohexane isomers (HCHs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), and chlordane isomers (CHLs) in sediments from Seto Inland Sea were <0.002-1.20 ng g-1, 0.01-2.51 ng g-1, and 0.01-0.48 ng g-1, respectively. Resuspension increased the concentrations of HCHs, HCB, and DDTs in the surface sediment with the release of historically contaminated pollutants accumulated in a lower layer. We speculate that CHLs in air that were removed by atmospheric deposition affects the concentration of CHLs in surface sediments.
Collapse
Affiliation(s)
- Satoshi Asaoka
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukae-minami, Higashinada, Kobe 658-0022, Japan.
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, 1-5-3, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513, Japan
| | - Yuki Haga
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Ryosuke Yoshiki
- Hyogo Prefectural Institute of Environmental Sciences, 3-1-18 Yukuhira, Suma, Kobe 654-0037, Japan
| | - Kazuhiko Takeda
- Graduate School of Integrated Science of Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
11
|
Wu L, Ru H, Ni Z, Zhang X, Xie H, Yao F, Zhang H, Li Y, Zhong L. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105280. [PMID: 31518776 DOI: 10.1016/j.aquatox.2019.105280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
1,1-Trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p'-DDT) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) cause thyroid disruption, but the underlying mechanisms of these disturbances in fish remain unclear. To explore the potential mechanisms of thyroid dysfunction caused by o,p'-DDT and p,p'-DDE, thyroid hormone and gene expression levels in the hypothalamic-pituitary-thyroid (HPT) axis were measured, and the developmental toxicity were recorded in zebrafish larvae. Zebrafish embryos/larvae were exposed to o,p'-DDT (0, 0.28, 2.8, and 28 nM; or 0, 0.1, 1, and 10 μg/L) and p,p'-DDE (0, 1.57, 15.7, and 157 nM; or 0, 0.5, 5, and 50 μg/L) for 7 days. The genes related to thyroid hormone synthesis (crh, tshβ, tg, nis and tpo) and thyroid development (nkx2.1 and pax8) were up-regulated in both the o,p'-DDT and p,p'-DDE exposure groups. Zebrafish embryos/larvae exposed to o,p'-DDT showed significantly increased total whole-body T4 and T3 levels, with the expression of ugt1ab and dio3 being significantly down-regulated. However, the p,p'-DDE exposure groups showed significantly lowered whole-body total T4 and T3 levels, which were associated with up-regulation and down-regulation expression of the expression of dio2 and ugt1ab, respectively. Interestingly, the ratio of T3 to T4 was significantly decreased in the o,p'-DDT (28 nM) and p,p'-DDE (157 nM) exposure groups, suggesting an impairment of thyroid function. In addition, reduced survival rates and body lengths and increased malformation rates were recorded after treatment with either o,p'-DDT or p,p'-DDE. In summary, our study indicates that the disruption of thyroid states was different in response to o,p'-DDT and p,p'-DDE exposure in zebrafish larvae.
Collapse
Affiliation(s)
- Luyin Wu
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huaxiao Xie
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhang
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yunfeng Li
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Liqiao Zhong
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
12
|
Tham TT, Anh HQ, Trinh LT, Lan VM, Truong NX, Yen NTH, Anh NL, Tri TM, Minh TB. Distributions and seasonal variations of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in surface sediment from coastal areas of central Vietnam. MARINE POLLUTION BULLETIN 2019; 144:28-35. [PMID: 31179998 DOI: 10.1016/j.marpolbul.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in surface sediment from five estuaries of central coasts of Vietnam to understand the spatial distributions and seasonal variations. The contamination pattern was in the order: PCBs (9.72-3730 ng g-1 dry wt.) > PBDEs (11.8-311 ng g-1 dry wt.) > DDTs (0.462-26.7 ng g-1 dry wt.) > HCHs (0.491-22.6 ng g-1 dry wt.) > endosulfan compounds (0.196-19.4 ng g-1 dry wt.). DDTs and HCHs showed a little geographical variation, whereas PCBs and PBDEs exhibited clearer spatial distribution trend. Elevated concentrations of PCBs and PBDEs were detected in some sites in Nghe An and Quang Binh Province, which could be related to the human activities such as tourism, transportation, and domestic consumption. Seasonal variations of DDTs and HCHs were observed, showing higher residues in rainy seasons.
Collapse
Affiliation(s)
- Trinh Thi Tham
- Faculty of Environment, Hanoi University of Natural Resources and Environment, Cau Dien, Tu Liem, Hanoi, Viet Nam
| | - Hoang Quoc Anh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam; The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Le Thi Trinh
- Faculty of Environment, Hanoi University of Natural Resources and Environment, Cau Dien, Tu Liem, Hanoi, Viet Nam.
| | - Vi Mai Lan
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Nghiem Xuan Truong
- Vietnam-Russia Tropical Center, Ministry of Defense, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Thi Hong Yen
- National Institute of Hygiene and Epidemiology, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Lan Anh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Tran Manh Tri
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam.
| |
Collapse
|
13
|
Chen M, Jin M, Tao P, Wang Z, Xie W, Yu X, Wang K. Assessment of microplastics derived from mariculture in Xiangshan Bay, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1146-1156. [PMID: 30099319 DOI: 10.1016/j.envpol.2018.07.133] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Mariculture activities including enclosure, raft and cage cultures employ a variety of plastic gear such as fishing nets, buoyant material and net cages. The plastic gear poses a potential source of microplastics to the coastal environment, but relevant data on the impacts of mariculture are still limited. To this end, a semi-enclosed narrow bay (i.e., Xiangshan Bay, China) with a long-term mariculture history was investigated to assess how mariculture activities affect microplastics in seawater and sediment. The results indicated that mariculture-derived microplastics accounted for approximately 55.7% and 36.8% of the microplastics in seawater and sediment, respectively. The average microplastic abundances of seawater and sediment were 8.9 ± 4.7 (mean ± SD, n = 18) items/m3 seawater and 1739 ± 2153 (n = 18) items/kg sediment, respectively. The types of mariculture-derived microplastics included polyethylene (PE) foam, PE nets, PE film, polypropylene (PP) rope, polystyrene (PS) foam and rubber. PE foam had the highest proportion (38.6%) in the seawater samples. High usage rates and the porous structure of PE foam led to the high abundance. The average microplastic sizes of seawater and sediment are 1.54 ± 1.53 mm and 1.33 ± 1.69 mm, respectively. The spatial variations in the abundance and size of microplastics implied that the mariculture-derived microplastics in Xiangshan Bay were transported along the Bay to the open sea. The results of this study indicate that mariculture activity can be a significant source of microplastics. Further research is required to investigate how the high microplastic abundance in mariculture zone affects marine organisms, especially cultured seafood.
Collapse
Affiliation(s)
- Minglong Chen
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Meng Jin
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Peiran Tao
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Zheng Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Weiping Xie
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, PR China
| | - Xubiao Yu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| | - Kan Wang
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
14
|
Cheng Z, Li HH, Yu L, Yang ZB, Xu XX, Wang HS, Wong MH. Phthalate esters distribution in coastal mariculture of Hong Kong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17321-17329. [PMID: 29654456 DOI: 10.1007/s11356-018-1735-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of the study is to evaluate the impact of mariculture on phthalate esters speciation and distribution in sediments and cultured fish in the Hong Kong regions and near mainland China. Concentrations of ∑phthalate esters in mariculture surface sediments (0 to 5 cm) ranged from 0.20 to 54.3 mg/kg dw (mean 10.3 mg/kg dw), with the highest recorded at M2 (20.4 mg/kg dw). Concentrations of phthalate esters were not significantly (p > 0.05) enriched in surface and sediment cores at mariculture sites relative to the reference sediments, 1 to 2 km away in areas without mariculture activities. Among different congeners, only butyl benzyl phthalate (BBP) concentrations demonstrated a significant correlation (R2 = 0.40, p < 0.05) with TOC values of sediments. The median concentrations of di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP) in the sediments were 1.57 and 6.96 times higher than the environmental risk levels (ERL), which may pose environmental risks. Results of health risk assessments revealed that the cultured fish (snubnose pompano, orange-spotted grouper, and red snapper) were safe for consumption, in terms of phthalate esters. This is the first study to assess the differences of phthalate esters contamination between mariculture and natural coastal sediments.
Collapse
Affiliation(s)
- Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China.
| | - Han-Han Li
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Lin Yu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhan-Biao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Xun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Ming-Hung Wong
- College of Environment, Sichuan Agricultural University, Chengdu, China.
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China.
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
- School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Jin M, Fu J, Xue B, Zhou S, Zhang L, Li A. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacent Arctic areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:109-117. [PMID: 28069371 DOI: 10.1016/j.envpol.2016.12.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
The spatial distribution, compositional profiles, and enantiomer fractions (EFs) of organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes (CHLs), in the surface sediments in the Bering Sea, Chukchi Sea and adjacent areas were investigated. The total concentrations of DDTs, HCHs and CHLs varied from 0.64 to 3.17 ng/g dw, 0.19-0.65 ng/g dw, and 0.03-0.16 ng/g dw, respectively. No significant difference was observed between the Bering Sea and Chukchi Sea for most pollutants except for trans-CHL, ΣCHLs (sum of trans- and cis-chlordane) and p,p'-DDD. Concentration ratios (e.g., α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT) indicated that the contamination in the studied areas may result from inputs from multiple sources (e.g., historical usage of technical HCHs as well as new input of dicofol). Chiral analysis showed great variation in the enantioselective degradation of OCPs, resulting in excess of (+)-enantiomer for α-HCH in thirty of the 32 detectable samples, preferential depletion of (-)-enantiomer for o,p'-DDT in nineteen of the 35 detectable samples, and nonracemic in most samples for trans- and cis-chlordane. The ecological risks of the individual OCPs as well as the mixture were assessed based on the calculation of toxic units (TUs), and the results showed the predominance of DDT and γ-HCH in the mixture toxicity of the sediment. Overall, the TUs of OCPs in sediments from both the Bering and Chukchi Seas are less than one, indicating low ecological risk potential.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Jie Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Bin Xue
- Key Laboratory of Marine Ecosystem and Biogeochemistry, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou, PR China
| | - Shanshan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China.
| | - Lina Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - An Li
- College of Environment, Zhejiang University of Technology, Hangzhou, PR China; School of Public Health, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
16
|
Contaminants in aquaculture: Overview of analytical techniques for their determination. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|