1
|
Tran HT, Hoang HG, Chacha WE, Mukherjee S, Duong TVH, Nguyen NSH, Nguyen KN, Naidu R. A review of advanced bioremediation technologies for dioxin-contaminated soil treatment: Current and future outlook. CHEMOSPHERE 2024; 366:143400. [PMID: 39321885 DOI: 10.1016/j.chemosphere.2024.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), namely known as dioxins, are persistent organic compounds with high toxicity. The presence of dioxins in soil is a major environmental issue worldwide, as it negatively impacts both ecosystems and human health. Thus, several advanced techniques have been applied to overcome this issue, offering promising treatment efficiency and cost-effectiveness. This review employs a meta-analysis strategy to provide an up-to-date assessment of the global situation of dioxin-contaminated soil. Dioxin concentrations are commonly higher in industrial and urban areas than in rural areas, primarily due to anthropogenic activities such as chemical manufacturing and waste incineration. Furthermore, several advanced bioremediation technologies for dioxin treatment, including biosurfactants, composting, and phytoremediation were highlighted and thoroughly discussed. Aerobic composting has proven to be robust in removing dioxins, achieving treatment efficiencies ranging from 65% to 85%. Whereas, phytoremediation, particularly when involving agricultural crops like zucchini, cucumber, and wheat, shows great promise in dioxin removal through various mechanisms, including root uptake and transpiration. Notably, biosurfactants such as rhamnolipids and sophorolipids have been effectively used to remediate dioxin-contaminated soil due to their significantly enhanced bioavailability of dioxins and their interaction with microbes. This review provides a comprehensive understanding of advanced biotechnologies for remediating dioxin-contaminated soil. It also addresses the technical and economic aspects of dioxin treatment and identifies future directions and research perspectives to fill knowledge gaps in this field.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Viet Nam
| | - Hong Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam.
| | - Wambura E Chacha
- Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St., Lawrence, KS, 66045, USA
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Tran Vo Hai Duong
- Department of Agriculture and Rural Development, Bac Lieu Technical and Economic College, Bac Lieu province, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 24000, Viet Nam
| | - Khoi Nghia Nguyen
- Faculty of Soil Science, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Yu J, Luo H, Yang B, Wang M, Gong Y, Wang P, Jiao Y, Liang T, Cheng H, Ma F, Gu Q, Li F. Risk Control Values and Remediation Goals for Benzo[ a]pyrene in Contaminated Sites: Sectoral Characteristics, Temporal Trends, and Empirical Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2064-2074. [PMID: 36695743 DOI: 10.1021/acs.est.2c09553] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP) is a highly carcinogenic pollutant of global concern. There is a need for a comprehensive assessment of regulation decisions for BaP-contaminated site management. Herein, we present a quantitative evaluation of remediation decisions from 206 contaminated sites throughout China between 2011 and 2021 using the cumulative distribution function (CDF) and related statistical methodologies. Generally, remediation decisions seek to establish remediation goals (RGs) based on the risk control values (RCVs). Cumulative frequency distributions, followed non-normal S-curve, emerged multiple nonrandom clusters. These clusters are consistent with regulatory guidance values (RGVs), of national and local soil levels in China. Additionally, priority interventions for contaminated sites were determined by prioritizing RCVs and identifying differences across industrial sectors. Notably, we found that RCVs and RGs became more relaxed over time, effectively reducing conservation and unsustainable social and economic impacts. The joint probability curve was applied to model decision values, which afforded a generic empirically important RG of 0.57 mg/kg. Overall, these findings will help decision-makers and governments develop appropriate remediation strategies for BaP as a ubiquitous priority pollutant.
Collapse
Affiliation(s)
- Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing100012, China
| | - Minghao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Yiwei Gong
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Yufang Jiao
- Beijing Jiewei Science and Technology Limited Company, Beijing100012, China
| | - Tian Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Hongguang Cheng
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| |
Collapse
|
3
|
A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. TOXICS 2022; 10:toxics10060278. [PMID: 35736887 PMCID: PMC9227754 DOI: 10.3390/toxics10060278] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022]
Abstract
This article provides a comprehensive assessment of dioxins contaminating the soil and evaluates the bioremediation technology currently being widely used, and also offers recommendations for future prospects. Soil pollution containing dioxins is extremely toxic and hazardous to human health and the environment. Dioxin concentrations in soils around the world are caused by a variety of sources and outcomes, but the main sources are from the consequences of war and human activities. Bioremediation technology (bioaugmentation, biostimulation, and phytoremediation) is considered an optimal and environmentally friendly technology, with the goal of applying native microbial communities and using plant species with a high biomass to treat contaminated dioxins in soil. The powerful bioremediation system is the growth of microorganisms that contribute to the increased mutualistic and competitive relationships between different strains of microorganisms. Although biological treatment technology can thoroughly treat contaminated dioxins in soil with high efficiency, the amount of gas generated and Cl radicals dispersed after the treatment process remains high. Further research on the subject is required to provide stricter control over the outputs noted in this study.
Collapse
|
4
|
Wei Y, Sun H, Zhang S, Xie HQ, Li C, Zhao B, Yan B. Multi-walled carbon nanotubes inhibit potential detoxification of dioxin-mediated toxicity by blocking the nuclear translocation of aryl hydrocarbon receptor. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128458. [PMID: 35183049 DOI: 10.1016/j.jhazmat.2022.128458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Despite numerous studies on effects of environmental accumulation of nano-pollutants, the influence of nanoparticles on the biological perturbations of coexisting pollutants in the environment remained unknown. The present study aimed at elucidating the perturbations of six environmental nanoparticles on detoxification of dioxin-induced toxicity at cellular level. We discovered that there was no remarkable difference in the cell uptake and intracellular distributions of these six nanoparticles. However, they have different effects on the detoxification of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Multi-walled carbon nanotubes (MWCNTs) inhibited the translocation of aryl hydrocarbon receptor (AhR) from cytosol to the nucleus, leading to the downregulation of cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and inhibition of detoxification function. These findings demonstrate that MWCNTs can impact the potential detoxification of dioxin-induced toxicity through modulating AhR signaling pathway. Co-exposures to MWCNTs and dioxin may cause even more toxicity than single exposure to dioxin or MWCNTs alone.
Collapse
Affiliation(s)
- Yongyi Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hainan Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Shandong Vocational College of Light Industry, Zibo 255300, China.
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518000, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Tran HT, Lin C, Hoang HG, Bui XT, Le VG, Vu CT. Soil washing for the remediation of dioxin-contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126767. [PMID: 34396961 DOI: 10.1016/j.jhazmat.2021.126767] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Dioxin-contaminated soil has attracted worldwide attention due to its potential negative impacts on human health and the ecosystem. Thus, technological development aiming at high treatment efficiency and low cost for dioxin-contaminated soil is largely needed. In this review, approximately 200 documents were involved to summarize up-to-date scientific achievements of soil washing technology for the remediation of dioxin-contaminated soil. The mechanisms, advantages, and limitations of physical separation techniques (e.g. mechanical stirring, mechanical shaking, ultrasonication, and froth flotation) and washing solutions (e.g. organic solvents, edible oils, and surfactants) used for chemical extraction were comprehensively reviewed. Froth flotation is very promising for field-scale soil washing, whereas organic solvents show high removal efficiencies (up to 99%) of dioxins from contaminated soil. Further, the combination of physical separation and chemical extraction can help enhance dioxin removal efficiency (from 1.5 to 2 times), reducing energy consumption and cost (about 2 times). Among available remediation technologies for dioxin-contaminated soil, soil washing is truly promising since it has shown high removal efficiency (66-99% different remediation scales) with reasonable cost (46 - 250 USD per metric ton). However, the washed solution and volatile organic compounds generated during the process remain a concern and should be addressed in future research.
Collapse
Affiliation(s)
- Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, ROC
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, ROC.
| | - Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, United States
| |
Collapse
|
6
|
Zhao G, Wu Y, Wang X, Chen M, Li L. The impact of pollutant as selection pressure on conjugative transfer of dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1470-1481. [PMID: 34355316 DOI: 10.1007/s11356-021-15682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plasmid-mediated bioaugmentation has potential application in the cleanup of recalcitrant environmental pollutants. In this study, we examined the influence of various contaminants (in different categories or different amounts) as a selection pressure on the spread of catabolic plasmids within an activated sludge bacteria community bioaugmented with Rhodococcus sp. strain p52 harboring pDF01 and pDF02. The distinguishable genera of transconjugants were isolated under the stresses of phenanthrene, dibenzothiophene, and dibenzo-p-dioxin. The three contaminants exerted different degrees of influence on the activated sludge bacteria bearing the catabolic plasmids. The relatively high ratios of transconjugant-bearing catabolic plasmids were detected in the reactor fed with dibenzo-p-dioxin. As dibenzo-p-dioxin from 10 to 80 mg/L was fed into the reactors, the ratios of transconjugant-bearing catabolic plasmids increased. Additionally, levels of ROS and extracellular LDH of activated sludge bacteria in the contaminants-fed reactors increased, comparing with that in the control reactor, indicating that the contaminants exerted toxicity which promoted the cell membrane permeability of the activated sludge bacteria. Our study provides a characterization of the recalcitrant contaminants as a selection pressure that can modulate catabolic plasmid transfer during genetic bioaugmentation for the removal of contaminants.
Collapse
Affiliation(s)
- Gang Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China.
| |
Collapse
|
7
|
Austruy A, Roulier M, Angeletti B, Dron J, Dauphin CE, Ambrosi JP, Keller C, Chamaret P. Concentrations and transportation of metal and organochlorine pollutants in vegetables and risk assessment of human exposure in rural, urban and industrial environments (Bouches-du-Rhône, France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64253-64267. [PMID: 34302251 DOI: 10.1007/s11356-021-14604-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation of metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V, Zn, Al, Fe) and organochlorine compounds (PCDD-Fs and PCBs) was assessed in soils and vegetables of 3 sites of contrasted anthropogenic influence (rural and industrial-urban areas). Cultivated soils in industrial areas exhibited diffuse pollution in organochlorine pollutants (PCBs and PCDD-Fs). The pollutant levels encountered in vegetables were always lower than the EU regulatory or recommended values. However, the contents measured in vegetables cultivated near industrialized areas were significantly higher than those observed in rural areas. This was notably the case for Co, Cd, Cr, Ni, Pb, V, NDL- and DL-PCB, PCDD, and PCDF. The leaf pathway appeared as the main absorption pathway for many contaminants. The results suggested that population exposure to pollutants was mainly caused by vegetable ingestion. In the vegetables and soils, the toxicity was mainly caused by the V, Co, Cd, and Pb contents to which can be added As and PCDD-Fs for soils. Therefore, the proximity of vegetable crops to highly anthropised areas has led to long-term exposure of vegetables and soils to air pollutants, leading to an accumulation in the food chain and thus a risk for human health.
Collapse
Affiliation(s)
- Annabelle Austruy
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France.
| | - Marine Roulier
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Bernard Angeletti
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Julien Dron
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Charles-Enzo Dauphin
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| | - Jean-Paul Ambrosi
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Catherine Keller
- CEREGE, Aix-Marseille Univ, CNRS, IRD, Coll de France, INRA, Technopole de l'Arbois, BP80, 13545, Aix-en-Provence, France
| | - Philippe Chamaret
- Institut Ecocitoyen pour la Connaissance des Pollutions - Centre de Vie La Fossette, RD 268, 13270, Fos-sur-Mer, France
| |
Collapse
|
8
|
Holt PS. Centennial Review: A revisiting of hen welfare and egg safety consequences of mandatory outdoor access for organic egg production. Poult Sci 2021; 100:101436. [PMID: 34768045 PMCID: PMC8592875 DOI: 10.1016/j.psj.2021.101436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Mandating free range husbandry as a requirement for organic egg designation remains a prevailing sentiment within a segment of the organic community. The proponents maintain that such management practice ensures high hen welfare and enhanced wholesomeness of the egg. However, evidence from the field, especially in the European Union (EU), contradicts these assumptions. In many cases, hens allowed outdoor access were more subject to increased injury from predators and from flock mates, disease was more prevalent and generally more severe, and, as a result, higher mortality was routinely observed in these individuals compared with those raised indoors. The safety of eggs from free range hens is also questionable. Outdoor access compromises biosecurity efforts to curtail interaction of hens with rodents and wild birds, increasing the risk of flock Salmonella enterica serovar Enteritidis infection and consequent production of Salmonella-contaminated eggs. Even more serious, soil contaminated with dioxins and polychlorinated biphenyls, carcinogenic industrial by-products widespread in the environment, can be ingested by hens foraging outdoors. These compounds will subsequently be deposited into the egg yolks, many times at high levels, creating a serious food safety issue for the consuming public. Such findings provide evidence that hens exposed to a free-range environment may exhibit neither an enhanced welfare nor produce the safe wholesome egg that consumers expect.
Collapse
Affiliation(s)
- Peter S Holt
- Holt Consulting, P.O. Box 869, Winterville, GA 30683, USA.
| |
Collapse
|
9
|
Buscaroli E, Braschi I, Cirillo C, Fargue-Lelièvre A, Modarelli GC, Pennisi G, Righini I, Specht K, Orsini F. Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of city region food systems. Food Control 2021; 126:108085. [PMID: 34345121 PMCID: PMC8080888 DOI: 10.1016/j.foodcont.2021.108085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Attention to urban agriculture (UA) has recently grown among practitioners, scientists, and the public, resulting in several initiatives worldwide. Despite the positive perception of modern UA and locally grown, fresh produce, the potential food safety risks connected to these practices may be underestimated, leading to regulatory gaps. Thus, there is a need for assessment tools to evaluate the food safety risks connected to specific UA initiatives, to assist practitioners in self-evaluation and control, and to provide policy makers and scholars a means to pursue and assess food safety in city regions, avoiding either a lack or an excess of regulation that could ultimately hinder the sector. To address this aim, this paper reviews the most recent and relevant literature on UA food safety assessments. Food safety indicators were identified first. Then, a food safety assessment framework for UA initiatives was developed. The framework uses business surveys and food analyses (if available) as a data source for calculating a food safety index for single UA businesses and the whole UA landscape of a given city region. The proposed framework was designed to allow its integration into the CRFS (City Region Food System) toolkit developed by FAO (Food and Agriculture Organization of the United Nations), RUAF foundation (Resource Centres on Urban Agriculture and Food Security) and Wilfrid Laurier University. Connection of several biological and chemical food safety risks to UA techniques. Identifiable food safety risk factors for diverse UA practices. Framework for the assessment of food safety levels of UA initiatives. Development of a risk-based assessment that can be integrated into the FAO CRFS framework.
Collapse
Affiliation(s)
- E Buscaroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - I Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - C Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - G C Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - G Pennisi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - I Righini
- Wageningen UR Greenhouse Horticulture, Wageningen, the Netherlands
| | - K Specht
- ILS- Research Institute for Regional and Urban Development, Dortmund, Germany
| | - F Orsini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
van Drooge BL, Abalos M, Abad E, Adrados MA, Gomez A, Gallés P, Grimalt JO. Qualitative and quantitative changes in traffic and waste incineration PCDD/Fs in urban air and soils under different seasonal conditions (Metropolitan Area of Barcelona). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142149. [PMID: 33207451 DOI: 10.1016/j.scitotenv.2020.142149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
A sampling and analysis scheme was implemented to discriminate between inputs of polychlorodibenzo-p-dioxins and polychlorodibenzofurans (PCDD/Fs) at low concentrations in urban areas. Ambient air and soils were sampled and analyzed in five stations in the Metropolitan area of Barcelona (2018-2019); one located in a reference urban traffic site and four in the area of influence of an integrated waste management facility (IWMF) that included a solid waste incinerator. Seasonality was the main factor determining the PCDD/F composition, and involved lower values in the warmer months. This seasonal effect was related to enhanced photooxidation of PCDDs compared to PCDFs and faster depletion of the less chlorinated congeners due to volatility at higher ambient temperature; consistent with the compounds' octanol-air partition coefficients. The ratio 2,3,7,8-tetrachlorobenzofuran/1,2,3,4,6,7,8-heptachlorobenzofuran allowed, for the first time, identifying cases of preferential contributions of IWMF and traffic inputs, i.e. values of 0.06 and 0.32, respectively. Combination of this ratio with the airborne PCDD/F levels illustrated that the quantitative PCDD/F levels were not a useful criterion for elucidation between IWMF and traffic inputs. PCDD/Fs levels in soils ranged between 9.0 and 22 pg WHO-TEQ/g in the two sites closest to the IWMF, while the other sites, including the traffic site, showed values between 0.8 and 1.9 pg WHO-TEQ/g. The levels in the former group were higher than those observed in other urban areas and above 5 pg WHO-TEQ/g, which is a limit reference value in several European countries. The C7 and C8 observed congener distributions in all soils examined were different from those in the air samples and similar to those reported in sewage sludge from waste water treatment plants, not showing influences from IWMF or traffic PCDD/F inputs.
Collapse
Affiliation(s)
- Barend L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Manuela Abalos
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Esteban Abad
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Miquel A Adrados
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Anna Gomez
- Public Health Agency of Barcelona, Lesseps, 1, 08023 Barcelona, Catalonia, Spain
| | - Pau Gallés
- Public Health Agency of Barcelona, Lesseps, 1, 08023 Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
12
|
El-Rahman MMA, Hassanin AS, El-Shahat MF, Nabil YM. PCDD/PCDFs and PCBs in the irrigation water in Egypt: levels, patterns, and potential sources. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:529. [PMID: 31368020 DOI: 10.1007/s10661-019-7623-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The contamination levels of PCDD/PCDFs in irrigation water are the most rarely studied throughout the world. The major problem in Egypt is the lack of studies and statistics about these contaminants of POPs in irrigation water. Therefore, this study is the first comprehensive report to elucidate the estimation and sources of PCDD/PCDFs and PCBs in irrigation water from Egypt and rare for worldwide may provide a reference to future studies of POPs compounds in irrigation water of Egypt. A total of 24 irrigated water samples were collected from different irrigation canals which are adjacent to industrial areas from six Egyptian governorates (Bani Swef, El-Giza, El-Sharkeya, El-Menoufeya, El-Gharbeya, and Alexandria). The study shows that irrigation water canals were contaminated with low levels of PCDDs/PCDFs, which were 0.95 pgWHO-TEQ/l, and the total of PCDD/PCDFs and dl-PCBs were 2.06 pgWHO-TEQ/l with contamination ranging between 0.88 to 2.97 pgWHO-TEQ/l while the levels of indicator PCBs were 18.52 ng/l and ranged between 0.39 to 165.6 ng/l. The most predominant dioxins congeners were HpCDD, OCDD, HpCDF, and OCDF while for dl-PCBs were PCB105 and PCB118, and for ndl-PCBs was PCB138. The areas with recent urbanization and industrialization were more contaminated with PCBs than the unindustrialized area. Lightly to moderately chlorinated congeners dominated the PCB profiles. The major sources for these contaminants were fire bricks followed by textile industries closer to the located sampling sites. The detected pattern was found to be similar to the patterns reported in the air by other studies. Although the concentrations of the studied POPs are found to be low in irrigated water, it may be considered as a potential source of soil pollution due to their accumulation process in the agricultural land and may lead to risk on human health by consuming the agricultural products irrigated by contaminated water.
Collapse
Affiliation(s)
- M M Abd El-Rahman
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food (QCAP), Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, 7, Nadi Elsaid Street, Dokki, Giza, P.O.12311, Egypt
| | - Ashraf S Hassanin
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food (QCAP), Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, 7, Nadi Elsaid Street, Dokki, Giza, P.O.12311, Egypt
| | - M F El-Shahat
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, P.O.11566, Egypt
| | - Y M Nabil
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food (QCAP), Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, 7, Nadi Elsaid Street, Dokki, Giza, P.O.12311, Egypt.
| |
Collapse
|
13
|
Ding L, Cai B, Wang S, Qu C. Concentrations, spatial distributions, and congener profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans around original plastic solid waste recovery sites in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:692-699. [PMID: 30029168 DOI: 10.1016/j.envpol.2018.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The concentrations, profiles, and spatial distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and sediment samples from several typical plastic solid waste (PSW) recovery sites (particularly from areas in which PSW is burned openly) in China were investigated. The results showed that burning PSW directly influenced PCDD/F concentrations immediately around the burning area. All of the samples in which soil contained black burning residue, collected from immediately around burning areas, had PCDD/F concentrations (mean 21708 ng kg-1) and toxic equivalent (TEQ) concentrations (mean 2140 ng I-TEQ kg-1 or 1877 ng WHO2006-TEQ kg-1) more than 100 times higher than the concentrations in samples collected away from burning areas (mean 222 ng kg-1, 8.75 ng I-TEQ kg-1, 7.96 ng WHO2006-TEQ kg-1). Principal component analysis and hierarchical cluster analysis indicated that the PCDD/F concentrations in seven soil samples from near PSW burning areas were influenced by PSW burning but that the PCDD/Fs in these soil samples may have had other or multiple sources. PCDD/F distributions at PSW recovery sites have been investigated in few previous studies. The results presented here indicate that appropriate measures should be taken to decrease the ecological risks posed by PSW recovery and to prevent, control, and remediate PCDD/F and other chemical contamination caused by PSW recovery.
Collapse
Affiliation(s)
- Liang Ding
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, Jiangsu, 210036, China
| | - Bingjie Cai
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, Jiangsu, 210036, China
| | - Shui Wang
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, Jiangsu, 210036, China.
| | - Changsheng Qu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, Jiangsu, 210036, China.
| |
Collapse
|
14
|
Ren C, Wang Y, Tian L, Chen M, Sun J, Li L. Genetic Bioaugmentation of Activated Sludge with Dioxin-Catabolic Plasmids Harbored by Rhodococcus sp. Strain p52. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5339-5348. [PMID: 29608291 DOI: 10.1021/acs.est.7b04633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Horizontal transfer of catabolic plasmids is used in genetic bioaugmentation for environmental pollutant remediation. In this study, we examined the effectiveness of genetic bioaugmentation with dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52 in laboratory-scale sequencing batch reactors (SBRs). During 100 days of operation, bioaugmentation decreased the dibenzofuran content (120 mg L-1) in the synthetic wastewater by 32.6%-100% of that in the nonbioaugmented SBR. Additionally, dibenzofuran was removed to undetectable levels in the bioaugmented SBR, in contrast, 46.8 ± 4.1% of that in the influent remained in the nonbioaugmented SBR after 96 days. Moreover, transconjugants harboring pDF01 and pDF02 were isolated from the bioaugmented SBR after 2 days, and their abilities to degrade dibenzofuran were confirmed. After 80 days, the copy numbers of strain p52 decreased by 3 orders of magnitude and accounted for 0.05 ± 0.01% of the total bacteria, while transconjugants were present at around 106 copies mL-1 sludge and accounted for 8.2 ± 0.3% of the total bacteria. Evaluation of the bacterial community profile of sludge by high-throughput 16S rRNA gene sequencing revealed that genetic bioaugmentation led to a bacterial community with an even distribution of genera in the SBR. This study demonstrates the promise of genetic bioaugmentation with catabolic plasmids for dioxins remediation.
Collapse
Affiliation(s)
- Chongyang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Yiying Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Lili Tian
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Jiao Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
15
|
Boyd SA, Sallach JB, Zhang Y, Crawford R, Li H, Johnston CT, Teppen BJ, Kaminski NE. Sequestration of 2,3,7,8-tetrachlorodibenzo-p-dioxin by activated carbon eliminates bioavailability and the suppression of immune function in mice. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2671-2678. [PMID: 28370362 PMCID: PMC6684209 DOI: 10.1002/etc.3815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 05/13/2023]
Abstract
The effectiveness of activated carbon in reducing the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was examined from the context of using in situ sorbent amendments to remediate soils/sediments contaminated with polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). This technology has gained rapid acceptance based on observations that activated carbon amendments predictably lower PCDD/F concentrations in water and bioaccumulation by simple aquatic organisms and earthworms; it has been assumed that bioavailability to mammals is similarly reduced, although this has been disproven for other sorbent materials. In the present study TCDD was absorbed to a microporous activated carbon (TCDD-AC) using the incipient wetness method. An aqueous suspension of TCDD-AC and an equivalent dosage of TCDD in corn oil were administered by oral gavage to B6C3F1 mice. The relative bioavailability of TCDD-AC was determined by quantifying and comparing the hepatic induction of cyp1A1 (messenger ribonucleic acid) and suppression of the immunoglobulin M antibody-forming cell immune response by the 2 forms of TCDD. A concentration-dependent response was observed for both assays when TCDD in corn oil was administered to mice. However, when equivalent masses of TCDD were administered as TCDD-AC, no induction of cyp1A1 or suppression of the immunoglobulin M antibody-forming cell response was observed. The absence of these 2 sensitive aryl hydrocarbon receptor-mediated responses in mice provides the first direct evidence that activated carbon can sequester TCDD in a form that eliminates its bioavailability to mammals. These results support the premise that activated carbon can be used to reduce the bioeffective dose of TCDD delivered to mammals and that activated carbon amendments may provide a low-cost alternative to traditional remediation technologies. Environ Toxicol Chem 2017;36:2671-2678. © 2017 SETAC.
Collapse
Affiliation(s)
- Stephen A. Boyd
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - J. Brett Sallach
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Yingjie Zhang
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, 48824
| | - Hui Li
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Cliff T. Johnston
- Crop, Soil, and Environmental Science, Purdue University, West Lafayette, Indiana, 47907
| | - Brian J. Teppen
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824
| | - Norbert E. Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, 48824
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
16
|
Guemiza K, Coudert L, Metahni S, Mercier G, Besner S, Blais JF. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:194-214. [PMID: 28359036 DOI: 10.1016/j.jhazmat.2017.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
The contamination of soils by metals such as arsenic, chromium, copper and organic compounds such as pentachlorophenol (PCP) and dioxins and furans (PCDD/F) is a major problem in industrialized countries. Excavation followed by disposal in an appropriate landfilling is usually used site to manage these contaminated soils. Many researches have been conducted to develop physical, biological, thermal and chemical methods to allow the rehabilitation of contaminated sites. Thermal treatments including thermal desorption seemed to be the most appropriate methods, allowing the removal of more than 99.99% of organic contaminants but, they are ineffective for inorganic compounds. Biological treatments have been developed to remove inorganic and hydrophobic organic contaminants but their applications are limited to soils contaminated by easily biodegradable organic compounds. Among the physical technologies available, attrition is the most commonly used technique for the rehabilitation of soils contaminated by both organic and inorganic contaminants. Chemical processes using acids, bases, redox agents and surfactants seemed to be an interesting option to simultaneously extract organic and inorganic contaminants from soils. This paper will provide an overview of the recent developments in the field of decontamination technologies applicable for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soils.
Collapse
Affiliation(s)
- Karima Guemiza
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Lucie Coudert
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Sabrine Metahni
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Guy Mercier
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Simon Besner
- Institut de recherche d'Hydro-Québec (IREQ), IREQ, 1800, boul. Lionel-Boulet, Varennes, QC, J3X 1S1, Canada.
| | - Jean-François Blais
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| |
Collapse
|
17
|
Kochurova EV, Nikolenko VN. Estimation of Expression of Oral Fluid Biomarkers in the Diagnosis of Pretumor Diseases of Oral Mucosa. Bull Exp Biol Med 2017; 163:87-91. [PMID: 28580490 DOI: 10.1007/s10517-017-3744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/26/2022]
Abstract
Complex clinical, dental, and morphological investigation, and ELISA of levels of MMP-2, 8, 9, and TIMP-1 and 2 in the saliva was performed during primary examination of patients with premalignant lesions of maxillofacial area and practically healthy volunteers. Levels of all study MMP in the saliva significantly differed (p≤0.05) in patients with premalignant lesions and the control. These patients were also characterized by a significant (0.1≤p≤0.05) changes in TIMP concentrations (toward pathological pattern) comparing to the control. Pattern of correlations between parameters of MMP-2 expression might be a marker for early diagnostics of a premalignant lesion independently on the dental health. Observed features of biomarker expression in patients with premalignant lesions might reflect the appearance of a cascade of biochemical reactions followed by the activation of production of proteinases and their inhibitors as a response to the exposure to etiological factors. Clinical and morphological diagnosis of a premalignant lesion in the maxillofacial area was confirmed by the immunological analysis of biomarker expression in the saliva, which can be used for monitoring and screening of population.
Collapse
Affiliation(s)
- E V Kochurova
- I. M. Sechenov First Moscow State Medical University, Ministry of the Healthcare of the Russian Federation, Moscow, Russia.
| | - V N Nikolenko
- I. M. Sechenov First Moscow State Medical University, Ministry of the Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
18
|
Dopico M, Gómez A. Review of the current state and main sources of dioxins around the world. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:1033-1049. [PMID: 26068294 DOI: 10.1080/10962247.2015.1058869] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are a group of dangerous compounds, emitted mostly from anthropogenic sources, that have negative effects on human health. Therefore, it is interesting to analyze the emission patterns of dioxins proceeding from different sources around the world, to observe the actual trend of the transmission of dioxins and furans into the atmosphere.For that reason, the main objective of the present document is to provide a general assessment about the dioxin problematic, analyzing the main parameters that influence the ambient concentration of dioxins worldwide, and describing the most characteristic features of the fingerprint from different sources, while making emphasis in the importance that non-industrial sources are gaining over the last years in front of the decreasing tendency of industrial sources. The description of the most important abatement technologies for dioxins is also included in this review. IMPLICATIONS Given the negative effects of dioxins in human health, it is important to depict and locate the main sources of these dangerous compounds. Emissions proceeding from industrial facilities have decreased over the last years; however, other zones where nonindustrial sources used to be relevant contributors do not show the same decreasing tendency because it is more difficult to control this type of emissions. For that reason, future studies should focus on measuring and regulating this highly uncontrolled source of dioxins.
Collapse
|
19
|
Domingo JL, Rovira J, Vilavert L, Nadal M, Figueras MJ, Schuhmacher M. Health risks for the population living in the vicinity of an Integrated Waste Management Facility: screening environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:363-370. [PMID: 25770949 DOI: 10.1016/j.scitotenv.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
We performed a screening investigation to assess the human health risks of the Integrated Waste Management Facility (IWMF: mechanical-biological treatment (MBT) plant plus municipal solid waste incinerator (MSWI); Ecoparc-3) of Barcelona (Spain). Air concentrations of pollutants potentially released by the MBT plant (VOCs and bioaerosols) and the MSWI (trace elements, PCDD/Fs and PCBs) were determined. Trace elements, PCDD/Fs and PCBs were also analyzed in soil samples. The concentrations of trace elements and bioaerosols were similar to those previously reported in other areas of similar characteristics, while formaldehyde was the predominant VOC. Interestingly, PCDD/F concentrations in soil and air were the highest ever reported near a MSWI in Catalonia, being maximum concentrations 10.8 ng WHO-TEQ/kg and 41.3 fg WHO-TEQ/m(3), respectively. In addition, there has not been any reduction in soils, even after the closure of a power plant located adjacently. Human health risks of PCDD/F exposure in the closest urban nucleus located downwind the MSWI are up to 10-times higher than those nearby other MSWIs in Catalonia. Although results must be considered as very preliminary, they are a serious warning for local authorities. We strongly recommend to conduct additional studies to confirm these findings and, if necessary, to implement measures to urgently mitigate the impact of the MSWI on the surrounding environment. We must also state the tremendous importance of an individual evaluation of MSWIs, rather than generalizing their environmental and health risks.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Lolita Vilavert
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - María J Figueras
- Microbiology Unit, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
20
|
Perelló G, Díaz-Ferrero J, Llobet JM, Castell V, Vicente E, Nadal M, Domingo JL. Human exposure to PCDD/Fs and PCBs through consumption of fish and seafood in Catalonia (Spain): Temporal trend. Food Chem Toxicol 2015; 81:28-33. [PMID: 25862955 DOI: 10.1016/j.fct.2015.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/20/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
Abstract
The concentrations of PCDD/Fs and 18 PCBs (DL- and NDL-) were analyzed in 16 fish and seafood species widely consumed in Catalonia (Spain). The exposure of these pollutants was subsequently estimated according to various groups of population. The concentrations of PCDD/Fs and PCBs showed an important decrease in relation to the baseline study (2000) and our last survey (2008). Sardine and red mullet were the species showing the highest pollutant concentrations, while canned tuna and cuttlefish presented the lowest levels. Sardine was the main contributor to the exposure of PCDD/Fs and PCBs. In contrast, swordfish was the species with the lowest contribution to the exposure of PCDD/Fs, DL-PCBs, and PCDD/Fs+DL-PCBs, while clam was the minor contributor for NDL-PCBs and total PCBs. For all groups of population, the current intakes of PCDD/Fs and PCBs were lower than the TDI (1-4 pg WHO-TEQ/kg body weight/day), being children the group with the highest exposure. However, this exposure should not mean a health risk for this group of population. The current intake of PCDD/Fs and PCBs through fish and seafood consumption was similar or even lower than most values reported in recent studies all over the world.
Collapse
Affiliation(s)
- Gemma Perelló
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Jordi Díaz-Ferrero
- IQS Environmental Laboratory, Univ Ramon Llull, Via Augusta 390, 08017 Barcelona, Catalonia, Spain
| | - Juan M Llobet
- GRET-CERETOX, School of Pharmacy, University of Barcelona, Avgda. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain
| | - Victòria Castell
- Catalan Food Safety Agency, Department of Health, Generalitat de Catalunya, Roc Boronat 81-95, 08005 Barcelona, Catalonia, Spain
| | - Emilio Vicente
- Catalan Food Safety Agency, Department of Health, Generalitat de Catalunya, Roc Boronat 81-95, 08005 Barcelona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
21
|
Wenning RJ, Martello LB. Levels and Trends of Dioxins, PCBs, and Other POPs in Abiotic Compartments. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|