1
|
Golikova E, Varfolomeeva MA, Kursheva A, Morgunova I, Aristov D, Renaud PE, Granovitch A, Korsun S. Measuring ecological quality status in low-diversity Arctic intertidal foraminiferal assemblages using a diversity-based index. MARINE POLLUTION BULLETIN 2024; 203:116473. [PMID: 38820879 DOI: 10.1016/j.marpolbul.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 06/02/2024]
Abstract
EcoQS assessment of the marine intertidal zone based on its fauna is challenging because the assemblages have a low diversity and consist of stress tolerant species. The new approach we propose is to pool foraminiferal diversity (effective number of species exp(H'bc)) across the whole intertidal zone including the salt marsh and tidal flat. In seven fjordheads studied in northern Fennoscandia, polycyclic aromatic hydrocarbon (PAH) concentrations indicated low levels of pollution (EcoQSPAH Excellent to Moderate). Jadammina or Balticammina dominated the salt marsh, Elphidium albiumbilicatum, Elphidium williamsoni, Elphidium clavatum, and Buccella frigida occurred in the tidal flat. Ovammina opaca thrived in both belts. While foraminiferal test abnormalities are often proposed to measure pollution impacts, we did not detect any correlation with PAHs. EcoQS based on foraminiferal diversity (EcoQSforam Excellent to Good) matched EcoQS based on PAHs suggesting that pooled foraminiferal diversity reliably measures intertidal EcoQS.
Collapse
Affiliation(s)
- Elena Golikova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Marina A Varfolomeeva
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Anna Kursheva
- Academician I.S. Gramberg All-Russian Scientific Research Institute for Geology and Mineral Resources of the Ocean (FSBI "VNIIOkeangeologia"), 190121, Angliyskiy Av. 1, St. Petersburg, Russia
| | - Inna Morgunova
- Academician I.S. Gramberg All-Russian Scientific Research Institute for Geology and Mineral Resources of the Ocean (FSBI "VNIIOkeangeologia"), 190121, Angliyskiy Av. 1, St. Petersburg, Russia
| | - Dmitry Aristov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
| | - Paul E Renaud
- Akvaplan-niva, Fram Centre for Climate and Environment, N-9296 Tromsø, Norway
| | - Andrei Granovitch
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Sergei Korsun
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskiy pr. 36, 117997 Moscow, Russia
| |
Collapse
|
2
|
Knøfler IH, Andersson KE, Becker RL, Christiansen S, Nielsen NJ, Christensen JH. Is Fucus a suitable biomonitoring organism for polycyclic aromatic hydrocarbon contamination? A study from the Faroe Islands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26699-26712. [PMID: 38453760 PMCID: PMC11052821 DOI: 10.1007/s11356-024-32658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
To evaluate seaweed as a biomonitoring organism, Fucus was sampled in the Faroe Islands. Nineteen PAHs, including the EPA 16, and four groups of alkylated PAHs were quantified using GC-MS analysis of extracts obtained using a modified QuEchERS method with ultrasonication in acetonitrile, back-extraction into hexane, and Florisil® cleanup. Samples from the harbor of Tórshavn collected at high tide were the most polluted with PAH concentrations between 1.3 × 102 and 1.7 × 102 ng/g wet weight. All samples contained a factor 10 higher concentrations of alkylated PAHs compared to their parent compounds. These results suggest that Fucus might be suitable as a biomonitoring organism for PAH pollution. Differences between samples collected in close proximity and on different days were observed (same range of RSD 14-120% and 60-102%, respectively), suggesting that water exchange, tide levels, and direct exposure to surface diesel pollution have a strong influence on pollutant uptake in Fucus. The findings stress the need for further evaluation of the sampling strategy.
Collapse
Affiliation(s)
- Ida Huusmann Knøfler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kirstine Evald Andersson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Richard Leonard Becker
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sigurd Christiansen
- Faculty of Science and Technology, University of the Faroe Islands, Vestara Bryggja 15, FO-100, Tórshavn, Faroe Islands
| | - Nikoline J Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Hunnie BE, Schreiber L, Greer CW, Stern GA. The long-term fate of saturates and biomarkers within crude oil spilled during the Baffin Island Oil Spill (BIOS) Project. MARINE POLLUTION BULLETIN 2023; 194:115276. [PMID: 37459772 DOI: 10.1016/j.marpolbul.2023.115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 09/12/2023]
Abstract
The Baffin Island Oil Spill (BIOS) Project is a long-term monitoring field study conducted in the early 1980s, seeking to examine the physical and chemical fate of crude oil released into a pristine Arctic setting. During the present study, sites of the BIOS Project were revisited in 2019 for the collection of oiled intertidal and backshore sediments. These samples were analyzed for several groups of petroleum hydrocarbons including saturates (n-alkanes, branched alkanes, and alkylcycloalkanes), hopane and sterane biomarkers, and alkylbenzenes. These hydrocarbon groups were present in concentrations ranging from 1.77-1210, 0.224-51.7, 0.0643-16.9, 0.00-11.7, and 0.0171-8.60 mg/kg within individual samples, respectively. When comparing current to limited results from past BIOS studies, a representative branched alkane (phytane), and medium-chain (nC18) and long-chain (nC30) n-alkanes demonstrate extensive weathering processes, exhibiting up to 90 %, 98 %, and 77 % loss since the penultimate BIOS revisitation in 2001, respectively.
Collapse
Affiliation(s)
- Blake E Hunnie
- University of Manitoba, 125 Dysart Rd Winnipeg, MB R3T 2N2, Canada.
| | - Lars Schreiber
- National Research Council Canada, 6100 Royalmount Ave Montreal, QC H4P 2R2, Canada.
| | - Charles W Greer
- National Research Council Canada, 6100 Royalmount Ave Montreal, QC H4P 2R2, Canada; McGill University, Department of Natural Resource Sciences, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gary A Stern
- University of Manitoba, 125 Dysart Rd Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
4
|
Cwalina E, Kilpinen KS, Ryde I, Nielsen NJ, Christiansen S, Christensen JH. Investigation of the spatial distribution of airborne polycyclic aromatic hydrocarbons using Rhytidiadelphus squarrosus in Tórshavn, Faroe Islands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84663-84673. [PMID: 37365368 DOI: 10.1007/s11356-023-28423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Due to adverse effects of Polycyclic Aromatic Hydrocarbons (PAHs) on human health, it is important to understand how airborne PAHs, are spatially distributed within urban areas. Moss has been shown to be a suitable material for biomonitoring of airborne PAH pollution. In this study, the moss Rhytidiadelphus squarrosus was sampled throughout Tórshavn, Faroe Islands. 53 Rhytidiadelphus squarrosus samples were extracted using a matrix solid-phase dispersive extraction method and analysed for 19 parent PAHs and six groups of alkylated PAHs using gas chromatography mass-spectrometry. All PAHs were quantified in at least one Rhytidiadelphus squarrosus sample, and the sum of the EPA 16 PAHs (ƩPAHEPA16) ranged from 0.90 to 344 µg kg-1 dry weight. Higher concentrations were found close to the harbour and the main roads. The spatial correlation was investigated for the ƩPAHEPA16, pyrene, fluoranthene, chrysene, benzo(e)pyrene, benzo(g,h,i)perylene, C1-phenanthrenes/C1-anthracenes, and C2-phenanthrenes/C2-anthracenes using variograms. The effective range of the spatial correlation was between 500 to 700 m of all PAHs. The evaluation of diagnostic ratios of fluoranthene to pyrene, and benzo(a)anthracene to chrysene suggest that different pollution sources affect urban areas of different types. To the best of our knowledge, this is the first time airborne PAH pollution patterns were mapped in an Arctic town, and the first time, Rhytidiadelphus squarrosus was used for tracing PAH pollution sources. Rhytidiadelphus squarrosus is suitable for biomonitoring and mapping PAH pollution within urban areas since it is widespread, and suitable for mapping PAHs.
Collapse
Affiliation(s)
- Eliza Cwalina
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristoffer Skovlund Kilpinen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
- Eurofins Environment Denmark, Ladelundvej 85, 6600, Vejen, Denmark.
| | - Ingvild Ryde
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, IS-101, Reykjavik, Iceland
| | - Nikoline Juul Nielsen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sigurd Christiansen
- Faculty of Science and Technology, University of the Faroe Islands, FO-100, Tórshavn, Faroe Islands
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Singh BP, Zughaibi TA, Alharthy SA, Al-Asmari AI, Rahman S. Statistical analysis, source apportionment, and toxicity of particulate- and gaseous-phase PAHs in the urban atmosphere. Front Public Health 2023; 10:1070663. [PMID: 36703843 PMCID: PMC9871548 DOI: 10.3389/fpubh.2022.1070663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The concentrations of particulate and gaseous Polycyclic Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of Delhi in different seasons (winter, summer, and monsoon). Methodology The samples were collected using instrument air metric (particulate phase) and charcoal tube (gaseous phase) and analyzed through Gas chromatography. The principal component and correlation were used to identify the sources of particulate and gaseous PAHs during different seasons. Results and discussion The mean concentration of the sum of total PAHs (TPAHs) for particulate and gaseous phases at all the sites were found to be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84 ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59 ng/m3), whereas in the monsoon season the concentration was least (68.15 ± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis (PCA) results revealed that seasonal variations of PAHs accounted for over 86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons, respectively. The strong and positive correlation coefficients were observed between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and DahA (0.821), which indicated the common source emissions of PAHs. In addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the particulate phase PAHs. The carcinogenic health risk values for gaseous and particulate phase PAHs at all sites were calculated to be 4.53 × 10-6, 2.36 × 10-5 for children, and 1.22 × 10-5, 6.35 × 10-5 for adults, respectively. The carcinogenic health risk for current results was found to be relatively higher than the prescribed standard of the Central Pollution Control Board, India (1.0 × 10-6).
Collapse
Affiliation(s)
- Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbadhu College, University of Delhi, New Delhi, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, New Delhi, India
| | - Torki A. Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saif A. Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed I. Al-Asmari
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Laboratory Department, Ministry of Health, King Aziz Hospital, Jeddah, Saudi Arabia
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
6
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
7
|
Corminboeuf A, Montero-Serrano JC, St-Louis R. Spatial and temporal distributions of polycyclic aromatic hydrocarbons in sediments from the Canadian Arctic Archipelago. MARINE POLLUTION BULLETIN 2021; 171:112729. [PMID: 34298327 DOI: 10.1016/j.marpolbul.2021.112729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of 23 polycyclic aromatic hydrocarbons (PAHs; 16 parent and 7 alkylated PAHs) were determined in 113 surface marine sediment samples, 13 on-land sediment samples and 8 subsampled push cores retrieved from the Canadian Arctic Archipelago (CAA). PAHs were extracted via accelerated solvent extraction and quantified via gas chromatography-mass spectrometry. The sums of the concentrations of 16 priority PAHs in the surface sediments ranged from 7.8 to 247.7 ng g-1 (dry weight basis, dw). The PAH inputs to the sediments have remained constant during the last century. Source-diagnostic ratios and statistical analysis suggest that the PAHs in the CAA mainly originate from natural petrogenic sources, with some pyrogenic sources. Temporal trends did not indicate major source shifts and largely indicated petrogenic inputs. Overall, the sediments retrieved from the CAA have low PAH concentrations, which indicates a low ecological risk for benthic or other organisms living near the water-sediment interface.
Collapse
Affiliation(s)
- Anne Corminboeuf
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Geotop & Québec-Océan, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Jean-Carlos Montero-Serrano
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Geotop & Québec-Océan, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Richard St-Louis
- Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
8
|
Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A. A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation. CHEMOSPHERE 2021; 280:130608. [PMID: 33962296 DOI: 10.1016/j.chemosphere.2021.130608] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/15/2023]
Abstract
Over the last century, contamination of polycyclic aromatic hydrocarbons (PAHs) has risen tremendously due to the intensified industrial activities like petrochemical, pharmaceutical, insecticides and fertilizers applications. PAHs are a group of organic pollutants with adverse effects on both humans and the environment. These PAHs are widely distributed in various ecosystems including air, soil, marine water and sediments. Degradation of PAHs generally occurs through processes like photolysis, adsorption, volatilization, chemical degradation and microbial degradation. Microbial degradation of PAHs is done by the utilization of diverse microorganisms like algae, bacteria, fungi which are readily compatible with biodegrading/bio transforming PAHs into H2O, CO2 under aerobic, or CH4 under anaerobic environment. The rate of PAHs degradation using microbes is mainly governed by various cultivation conditions like temperature, pH, nutrients availability, microbial population, chemical nature of PAHs, oxygen and degree of acclimation. Several microbial species including Selenastrum capricornutum, Ralstonia basilensis, Acinetobacter haemolyticus, Pseudomonas migulae, Sphingomonas yanoikuyae and Chlorella sorokiniana are known to degrade PAHs via biosorption and enzyme-mediated degradation. Numerous bacterial mediated PAHs degradation methods are studied globally. Among them, PAHs degradation by bacterial species like Pseudomonas fluorescence, Pseudomonas aeruginosa, Rhodococcus spp., Paenibacillus spp., Mycobacterium spp., and Haemophilus spp., by various degradation modes like biosurfactant, bioaugmentation, biostimulation and biofilms mediated are also investigated. In contrarily, PAHs degradation by fungal species such as Pleurotus ostreatus, Polyporus sulphureus, Fusarium oxysporum occurs using the activity of its ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase. The present review highlighted on the PAHs degradation activity by the algal, fungal, bacterial species and also focused on their mode of degradation.
Collapse
Affiliation(s)
- N Premnath
- Department of Energy Science, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - R Guru Raj Rao
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G Siva Prakash
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - V Ananthi
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, PRIST University, Madurai, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
9
|
Poulsen R, Gravert TKO, Tartara A, Bensen HK, Gunnarsen KC, Dicová K, Nielsen NJ, Christensen JH. A case study of PAH contamination using blue mussels as a bioindicator in a small Greenlandic fishing harbor. MARINE POLLUTION BULLETIN 2021; 171:112688. [PMID: 34271510 DOI: 10.1016/j.marpolbul.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the impact of local anthropogenic activity on the marine environment around the remote harbor of Qeqertarsuaq, West Greenland. Blue mussels (Mytilus sp.) were used as a bioindicator, and their physiological condition was found to decrease with increasing proximity to the harbor. Subsequently, the distribution of 19 polycyclic aromatic hydrocarbons (PAHs) and 9 groups of alkylated PAHs were measured in mussel and sediment samples. The highest values were found in a rocky collection area 15 m from a wooden pier frequented by small boats. A PAH source investigation, indicated a mixed source from light fuel oils and creosote used as boat coating. Finally, correlations between the mussels morphological condition and the PAH pollution were found to be significant for 4-, 5-, and 6-ring PAHs. In conclusion, the results indicate that pollution sources in harbors have significant effects on the local environment and should be considered in arctic conservation research.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Arianna Tartara
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Henriette Kornmaaler Bensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klara Cecilia Gunnarsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Kristína Dicová
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Nikoline Juul Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jan Henning Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
10
|
Steenhuisen F, van den Heuvel-Greve M. Exposure radius of a local coal mine in an Arctic coastal system; correlation between PAHs and mercury as a marker for a local mercury source. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:499. [PMID: 34291327 PMCID: PMC8295130 DOI: 10.1007/s10661-021-09287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 05/26/2023]
Abstract
Mercury in the Arctic originates from emissions and releases at lower latitudes and, to a lesser extent, from local and regional sources. The relationship between mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) in sediment can be applied as an indicator of the mercury source. This research examines the Hg contamination gradient from a land-based coal mine to the surrounding coastal environment to quantify the impact of local sources. Total mercury and PAH (Σ14PAH) were measured in terrestrial and marine sediments as well as in marine biota. Samples were collected at the mine and two reference sites. Mercury and Σ14PAH concentrations in samples collected at the mine site were significantly higher than those at the reference sites. This was also found in the biota samples, although less pronounced. This work addresses the complexities of interpreting data concerning very low contaminant levels in a relatively pristine environment. A clear correlation between PAH and Hg concentration in sediment was found, although a large number of samples had levels below detection limits. PAH profiles, hierarchical clustering, and molecular diagnostic ratios provided further insight into the origin of PAHs and Hg, showing that signatures in sediments from the nearest reference site were more similar to the mine, which was not the case for the other reference site. The observed exposure radius from the mine was small and diluted from land to water to marine biota. Due to low contamination levels and variable PAH profiles, marine biota was less suitable for tracing the exposure radius for this local land-based Hg source. With an expected increase in mobility and availability of contaminants in the warming Arctic, changes in input of PAHs and Hg from land-based sources to the marine system need close monitoring.
Collapse
Affiliation(s)
- Frits Steenhuisen
- Arctic Centre, University of Groningen, Aweg 30, 9718, CW, Groningen, the Netherlands.
| | - Martine van den Heuvel-Greve
- Wageningen Marine Research, P.O. Box 77, 4400 AB, Yerseke, The Netherlands
- Marine Animal Ecology, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
11
|
Martinez-Swatson K, Mihály E, Lange C, Ernst M, Dela Cruz M, Price MJ, Mikkelsen TN, Christensen JH, Lundholm N, Rønsted N. Biomonitoring of Polycyclic Aromatic Hydrocarbon Deposition in Greenland Using Historical Moss Herbarium Specimens Shows a Decrease in Pollution During the 20 th Century. FRONTIERS IN PLANT SCIENCE 2020; 11:1085. [PMID: 32760420 PMCID: PMC7373755 DOI: 10.3389/fpls.2020.01085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Although most point sources of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs), are at lower latitudes, the Arctic region is contaminated. In particular, PAHs now dominate the POP body burden of the region's marine biota at the lower trophic levels. Greenlandic Inuits have the most elevated levels of POPs in their blood compared to any other population, due to their consumption of seal meat and other marine mammals. PAHs, the by-products of the incomplete combustion of petroleum products, are known carcinogens and have been shown to affect the immune system, reproduction, endocrine functions, and the nervous system. With industrial activities and climate change set to increase local PAH emissions, it is paramount to document changes in atmospheric PAH deposition to further investigate PAH exposure in the region and attribute contaminations to their sources. As a measure of atmospheric pollution, we sampled bryophyte herbarium specimens of three common and widespread species collected in Greenland between the 1920s and 1970s after which time new collections were not available. They were analyzed for 19 PAHs using GC-MS (gas chromatography mass spectrometry). The presence of more low-molecular-weight PAHs than high-molecular-weight PAHs is evidence that the PAH contamination in Greenland is due to long-range transport rather than originating from local sources. The results show peaks in PAH atmospheric deposition in the first part of the 19th century followed by a trend of decrease, which mirror global trends in atmospheric pollution known from those periods. PAHs associated with wood and fossil-fuel combustion decrease in the 1970s coinciding with the disappearance of charcoal pits and foundries in Europe and North America, and a shift away from domestic heating with wood during the 19th century. The results highlight the value of bryophytes as bioindicators to measure PAH atmospheric pollution as well as the unrealized potential of herbaria as historical records of environmental change.
Collapse
Affiliation(s)
- Karen Martinez-Swatson
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eszter Mihály
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Lange
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Madeleine Ernst
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Center for Newborn Screening, Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Majbrit Dela Cruz
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Michelle J. Price
- Conservatoire et Jardin Botaniques de la Ville de Genève, Geneva, Switzerland
| | | | - Jan H. Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Science and Conservation, National Tropical Botanical Garden, Kalaheo, HI, United States
| |
Collapse
|
12
|
Wegeberg S, Hansson SV, van Beest FM, Fritt-Rasmussen J, Gustavson K. Smooth or smothering? The self-cleaning potential and photosynthetic effects of oil spill on arctic macro-algae Fucus distichus. MARINE POLLUTION BULLETIN 2020; 150:110604. [PMID: 31671350 DOI: 10.1016/j.marpolbul.2019.110604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Due to increased sea transport and offshore gas and oil exploration, the Arctic is facing an unprecedented risk of marine oil spills. Although beached oil spills can lead to acute and chronic impacts on intertidal ecosystems, the effects of oil spills on macro-algae in Arctic ecosystems is lacking. Here, we assessed the effect and response of the tidal macro-algae Fucus distichus to oiling, i.e. self-cleaning potential by seawater wash and photosynthetic activity. Oiling with four oil types (ANS, Grane, IFO30 and MGO) was simulated by exposing F. distichus tips to oil. Oil removal half-times ranged between 0.8 - 4.5 days, indicating that oiling of macro-algae with the tested oils was short-term. Further, Grane oil mostly inhibited photosynthetic activity whereas oil from ANS, IFO30 and MGO stimulated it. The photosynthetic activity of F. distichus continued to be affected (inhibited or stimulated), even after oil on the tip surface was washed off.
Collapse
Affiliation(s)
- Susse Wegeberg
- (a)Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| | - Sophia V Hansson
- (a)Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark; EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), Université de Toulouse, UMR-CNRS 5245, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Floris M van Beest
- (a)Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Janne Fritt-Rasmussen
- (a)Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Kim Gustavson
- (a)Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| |
Collapse
|
13
|
Tairova Z, Frantzen M, Mosbech A, Arukwe A, Gustavson K. Effects of water accommodated fraction of physically and chemically dispersed heavy fuel oil on beach spawning capelin (Mallotus villosus). MARINE ENVIRONMENTAL RESEARCH 2019; 147:62-71. [PMID: 31047709 DOI: 10.1016/j.marenvres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Due to a northward shift in off-shore activities, including increased shipping traffic and oil and gas exploration there is a growing focus on the potential effects of oil pollution on Arctic marine ecosystems. Capelin (Mallotus villosus) is a small fish and a member of the smelt family, and is a key species in the marine food chain. Capelin are seasonally abundant in the Northern Atlantic and in coastal Arctic waters, e.g. in western Greenland and in the Barents Sea, where it undertakes aggregated spawning in the intertidal and subtidal zone. To study the possible effects of oil pollution on the physiology and development of early life stages in capelin, freshly fertilised capelin eggs were exposed to a water accommodated fraction of physically (WAF) and chemically (CEWAF) dispersed heavy fuel oil (IFO30) for 72 h. Subsequent mortality, hatching success, larvae malformations, growth and CYP1A/EROD activity was measured over a 4-week period. The nominal exposure concentrations of WAF and CEWAF were between 0.02 and 14.5 mg total hydrocarbon content (THC) L-1 and 0.5-304 mg THC L-1, respectively. Egg mortality correlated significantly with WAF exposure concentration. The proportions of hatched eggs decreased with increasing CEWAF exposure concentration. Further, the percentage of malformed larvae with craniofacial abnormalities, body axis defects, generally under developed larvae, reduced total body length (dwarfs), correlated significantly with exposure concentrations in both CEWAF and WAF treatments. The four types of the predominant malformations were distributed differently in two parallel experiments. At the biochemical level, we observed a significant relationship between CEWAF exposure concentration and CYP1A/EROD activity in newly hatched larvae and this effect persisted for 3 weeks after the 72 h exposure. We conclude that even short-term exposure to both heavy fuel oil WAF and CEWAF, at environmentally relevant THC concentrations following an oil spill, may induce adverse developmental effects on the vulnerable early life stages of capelin. The mechanisms responsible for the observed effects on mortality, growth and embryo development in capelin eggs and embryos following WAF and CEWAF exposure require further studies.
Collapse
Affiliation(s)
- Zhanna Tairova
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark; Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway.
| | - Marianne Frantzen
- Akvaplan-niva AS, Fram Centre, P.O. Box 6606 Langnes, 9296 Tromsø, Norway.
| | - Anders Mosbech
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark.
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science & Technology (NTNU), Trondheim, Norway.
| | - Kim Gustavson
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark.
| |
Collapse
|
14
|
Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, Brorström-Lundén E, Ma J, Zhao Y, Wu Z, Tych W, Mindham D, Sverko E, Barresi E, Dryfhout-Clark H, Fellin P, Hung H. Polycyclic Aromatic Hydrocarbons Not Declining in Arctic Air Despite Global Emission Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2375-2382. [PMID: 30746937 DOI: 10.1021/acs.est.8b05353] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas > Zeppelin > Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo[ a]pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as more volatile flame retardants and pesticides.
Collapse
Affiliation(s)
- Yong Yu
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology , Chinese Academy of Sciences , Changchun 130102 , China
| | | | | | | | - Jianmin Ma
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yuan Zhao
- College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Zhiyong Wu
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| | - Wlodzimierz Tych
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - David Mindham
- Lancaster Environment Centre , Lancaster University , Lancaster , LA1 4YQ , United Kingdom
| | - Ed Sverko
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Enzo Barresi
- National Laboratory for Environmental Testing (NLET), Canada Centre for Inland Waters , Environment and Climate Change Canada , Burlington , L7R 4A6 , Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| | - Phil Fellin
- AirZone One Ltd. , Mississauga , L4Z 1X1 , Canada
| | - Hayley Hung
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , M3H 5T4 , Canada
| |
Collapse
|
15
|
Lebedev AT, Mazur DM, Polyakova OV, Kosyakov DS, Kozhevnikov AY, Latkin TB, Andreeva Yu I, Artaev VB. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:416-427. [PMID: 29679939 DOI: 10.1016/j.envpol.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes.
Collapse
Affiliation(s)
- A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia.
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - O V Polyakova
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D S Kosyakov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - A Yu Kozhevnikov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - T B Latkin
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - I Andreeva Yu
- Lomonosov Northern (Arctic) Federal University, Core Facility Center "Arktika", Nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - V B Artaev
- LECO Corporation, 3000 Lakeview Avenue, St. Joseph, MI, USA
| |
Collapse
|
16
|
Vergeynst L, Wegeberg S, Aamand J, Lassen P, Gosewinkel U, Fritt-Rasmussen J, Gustavson K, Mosbech A. Biodegradation of marine oil spills in the Arctic with a Greenland perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1243-1258. [PMID: 29898532 DOI: 10.1016/j.scitotenv.2018.01.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
New economic developments in the Arctic, such as shipping and oil exploitation, bring along unprecedented risks of marine oil spills. Microorganisms have played a central role in degrading and reducing the impact of the spilled oil during past oil disasters. However, in the Arctic, and in particular in its pristine areas, the self-cleaning capacity and biodegradation potential of the natural microbial communities have yet to be uncovered. This review compiles and investigates the current knowledge with respect to environmental parameters and biochemical constraints that control oil biodegradation in the Arctic. Hereby, seawaters off Greenland are considered as a case study. Key factors for biodegradation include the bioavailability of hydrocarbons, the presence of hydrocarbon-degrading bacteria and the availability of nutrients. We show how these key factors may be influenced by the physical oceanographic conditions in seawaters off Greenland and other environmental parameters including low temperature, sea ice, sunlight regime, suspended sediment plumes and phytoplankton blooms that characterize the Arctic. Based on the acquired insights, a first qualitative assessment of the biodegradation potential in seawaters off Greenland is presented. In addition to the most apparent Arctic characteristics, such as low temperature and sea ice, the impact of typical Arctic features such as the oligotrophic environment, poor microbial adaptation to hydrocarbon degradation, mixing of stratified water masses, and massive phytoplankton blooms and suspended sediment plumes merit to be topics of future investigation.
Collapse
Affiliation(s)
- Leendert Vergeynst
- Arctic Research Centre, Department of Bioscience, Aarhus University, Denmark.
| | - Susse Wegeberg
- Arctic Research Centre, Department of Bioscience, Aarhus University, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Denmark
| | - Pia Lassen
- Department of Environmental Science, Aarhus University, Denmark
| | | | | | - Kim Gustavson
- Arctic Research Centre, Department of Bioscience, Aarhus University, Denmark
| | - Anders Mosbech
- Arctic Research Centre, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
17
|
Skogland Enerstvedt K, Sydnes MO, Pampanin DM. Study of the plasma proteome of Atlantic cod (Gadus morhua): Effect of exposure to two PAHs and their corresponding diols. CHEMOSPHERE 2017; 183:294-304. [PMID: 28551206 DOI: 10.1016/j.chemosphere.2017.05.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Occurrence of polycyclic aromatic hydrocarbon (PAH) contamination in the marine environment represents a risk to marine life and humans. In this study, plasma samples from Atlantic cod (Gadus morhua) were analysed by shotgun mass spectrometry to investigate the plasma proteome in response to exposure to single PAHs (naphthalene or chrysene) and their corresponding metabolites (dihydrodiols). In total, 369 proteins were identified and ranked according to their relative abundance. The levels of 12 proteins were found significantly altered in PAH exposed fish and are proposed as new biomarker candidates. Eleven proteins were upregulated, primarily immunoglobulin components, and one protein was downregulated (antifreeze protein type IV.) The uniformity of the upregulated proteins suggests a triggered immune response in the exposed fish. Overall, the results provide valuable knowledge for future studies of the Atlantic cod plasma proteome and generate grounds for establishing new plasma protein biomarkers for environmental monitoring of PAH related exposure.
Collapse
Affiliation(s)
- Karianne Skogland Enerstvedt
- International Research Institute of Stavanger (IRIS) - Environmental Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| | - Magne O Sydnes
- Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway
| | - Daniela M Pampanin
- International Research Institute of Stavanger (IRIS) - Environmental Department, Mekjarvik 12, NO-4070 Randaberg, Norway; Faculty of Science and Technology, Department of Mathematics and Natural Science, University of Stavanger, NO-4036 Stavanger, Norway.
| |
Collapse
|
18
|
Martínez-Gómez C, Robinson CD, Burgeot T, Gubbins M, Halldorsson HP, Albentosa M, Bignell JP, Hylland K, Vethaak AD. Biomarkers of general stress in mussels as common indicators for marine biomonitoring programmes in Europe: The ICON experience. MARINE ENVIRONMENTAL RESEARCH 2017; 124:70-80. [PMID: 26654299 DOI: 10.1016/j.marenvres.2015.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
This study investigated whether general stress biomarkers in mussels can be applied as common first-tier biomarkers in regional biomonitoring programmes in the North Sea (including Iceland) and western Mediterranean Sea. Stress on Stress (SoS) and lysosomal membrane stability (LMS) biomarkers were analysed in resident mussels (Mytilus sp.) from 8 coastal sites and in transplanted mussels (Mytilus galloprovincialis) from two Spanish Mediterranean coastal sites. The assessment of results, as input to pollution monitoring strategies, was performed jointly for LMS and SoS data from the two regions. Contaminant body burden of the mussels was compared with biomarker results. The results demonstrated that these two general and non-expensive stress biomarkers in mussel can be applied throughout European waters, providing a cost-effective and harmonised approach to screen contaminant-related biological effects within the framework of wide-scale pollution biomonitoring programmes, such as that proposed by the European Union, i.e. the Marine Strategy Framework Directive.
Collapse
Affiliation(s)
- Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), Oceanographic Centre of Murcia, Varadero 1, PO Box 22, 30740 San Pedro del Pinatar (Murcia), Spain.
| | - Craig David Robinson
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK.
| | - Thierry Burgeot
- IFREMER, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, B.P. 21105, F-44311 Nantes Cédex 03, France.
| | - Matt Gubbins
- Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK.
| | - Halldor P Halldorsson
- The University of Iceland's Research Centre in Sudurnes, University of Iceland, Gardvegi 1, 245 Sandgerdi, Iceland.
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO), Oceanographic Centre of Murcia, Varadero 1, PO Box 22, 30740 San Pedro del Pinatar (Murcia), Spain.
| | - John P Bignell
- CEFAS, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, England, UK.
| | - Ketil Hylland
- Department of Bioscience, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway.
| | - A Dick Vethaak
- Deltares, Marine and Coastal Systems, P.O. Box 177, 2600 MH Delft, The Netherlands; VU University Amsterdam, Institute for Environmental Studies, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Marquès M, Mari M, Sierra J, Nadal M, Domingo JL. Solar radiation as a swift pathway for PAH photodegradation: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:530-540. [PMID: 28065544 DOI: 10.1016/j.scitotenv.2016.12.161] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The photodegradation of polycyclic aromatic hydrocarbons (PAHs) may be an important degradation pathway of PAHs in regions with a high solar radiation. The present investigation was aimed at studying the photodegradation of PAHs after their deposition on surface soils with different textures. Photodegradation by-products were also identified and semi-quantified, as well as correlated with the decrease of parent compounds. The experiment was performed by deploying soil samples spiked with a mixture of the 16 US EPA priority PAHs in a methacrylate box, exposed to solar radiation for 7days, meaning a solar energy of 102.6MJm-2. As hypothesized, the individual PAHs were volatilized, sorbed and/or photodegraded, depending on their physicochemical properties, as well as the soil characteristics. Low and medium molecular weight PAHs were more sorbed and photodegraded in fine-textured Regosol soil, while a higher volatilization was observed in the coarse-textured Arenosol soil. In contrast, high molecular weight PAHs were more photodegraded in Arenosol soil. Specially low half-lives were noted for anthracene and benzo(a)pyrene, agreeing with previous findings at laboratory scale. Nine by-products were identified, including oxy-, nitro- and hydro-PAHs, whose toxic and mutagenic potential might be higher than the 16 priority PAHs.
Collapse
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Montse Mari
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| |
Collapse
|
20
|
Nevalainen M, Helle I, Vanhatalo J. Preparing for the unprecedented - Towards quantitative oil risk assessment in the Arctic marine areas. MARINE POLLUTION BULLETIN 2017; 114:90-101. [PMID: 27593852 DOI: 10.1016/j.marpolbul.2016.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/23/2023]
Abstract
The probability of major oil accidents in Arctic seas is increasing alongside with increasing maritime traffic. Hence, there is a growing need to understand the risks posed by oil spills to these unique and sensitive areas. So far these risks have mainly been acknowledged in terms of qualitative descriptions. We introduce a probabilistic framework, based on a general food web approach, to analyze ecological impacts of oil spills. We argue that the food web approach based on key functional groups is more appropriate for providing holistic view of the involved risks than assessments based on single species. We discuss the issues characteristic to the Arctic that need a special attention in risk assessment, and provide examples how to proceed towards quantitative risk estimates. The conceptual model presented in the paper helps to identify the most important risk factors and can be used as a template for more detailed risk assessments.
Collapse
Affiliation(s)
- Maisa Nevalainen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland.
| | - Inari Helle
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Jarno Vanhatalo
- Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 University of Helsinki, Finland; Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|
21
|
Szczybelski AS, van den Heuvel-Greve MJ, Kampen T, Wang C, van den Brink NW, Koelmans AA. Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway). MARINE POLLUTION BULLETIN 2016; 112:65-74. [PMID: 27575395 DOI: 10.1016/j.marpolbul.2016.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 05/14/2023]
Abstract
The predicted expansion of oil and gas (O&G) activities in the Arctic urges for a better understanding of impacts of these activities in this region. Here we investigated the influence of location, feeding strategy and animal size on the bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and Hexachlorobenzene (HCB) by three Arctic benthic species in Kongsfjorden (Svalbard, Norway). No toxicity was expected based on biota PAH critical body residues. Biota PCB levels were mainly below limit of detection, whereas samples were moderately polluted by HCB. PAH concentrations in biota and Biota Sediment Accumulation Factors (BSAFs) were generally higher in Blomstrandhalvøya than in Ny-Ålesund, which was explained by a higher abundance of black carbon in Ny-Ålesund harbour. BSAFs differed significantly among species and stations. We conclude that contaminant body residues are a less variable and more straightforward monitoring parameter than sediment concentrations or BSAFs in Arctic benthos.
Collapse
Affiliation(s)
- Ariadna S Szczybelski
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Alterra Wageningen UR, Department of Animal Ecology, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Martine J van den Heuvel-Greve
- IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box 77, 4400 AB Yerseke, The Netherlands
| | - Tineke Kampen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Chenwen Wang
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Nico W van den Brink
- Department of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA Wageningen, The Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box 77, 4400 AB Yerseke, The Netherlands
| |
Collapse
|
22
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
23
|
Zhang D, Liu J, Yin P, Lin X, Liu N, Meng X. Polycyclic aromatic hydrocarbons in surface sediments from the Coast of Weihai, China: Spatial distribution, sources and ecotoxicological risks. MARINE POLLUTION BULLETIN 2016; 109:643-649. [PMID: 27236234 DOI: 10.1016/j.marpolbul.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to measure the polycyclic aromatic hydrocarbon (PAH) concentrations and evaluate the distribution, sources in surface sediments from various coastal sites in Weihai, which create good conditions for rapid development because of their excellent geographical location and abundant marine resources. The results indicated that the total PAHs contents in the sediments of Weihai ranged from 2.69 to 166.50ngg(-1), with an average of 67.44ngg(-1). Phenanthrene, Fluoranthene, Benzo(b)fluoranthene, Chrysene, and Pyrene were dominant in sediments, primarily as a result of high temperature combustion and biomass. Molecular ratios suggested that these PAHs in the sediments of Weihai were predominantly from pyrogenic sources such as grass, wood and charcoal combustion, as well as engine exhaust which is similar to the result of the study of the Yellow River Delta, China. The result of probability risk assessment additionally elucidated low PAH ecological risk in the surface sediments of Weihai, China.
Collapse
Affiliation(s)
- Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao, China; Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Jinqing Liu
- Qingdao Institute of Marine Geology, Qingdao, China; Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Ping Yin
- Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Xuehui Lin
- Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Na Liu
- Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Xianwei Meng
- First Institute Oceanography of SOA, Qingdao 266100, China.
| |
Collapse
|