1
|
Yan X, Zhu B, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Analysing N-nitrosamine occurrence and sources in karst reservoirs, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:112. [PMID: 38472659 DOI: 10.1007/s10653-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
N-nitrosamines in reservoir water have drawn significant attention because of their carcinogenic properties. Karst reservoirs containing dissolved organic matter (DOM) are important drinking water sources and are susceptible to contamination because of the fast flow of various contaminants. However, it remains unclear whether N-nitrosamines and their precursor, DOM, spread in karst reservoirs. Therefore, this study quantitatively investigated the occurrence and sources of N-nitrosamines based on DOM properties in three typical karst reservoirs and their corresponding tap water. The results showed that N-nitrosamines were widely spread, with detection frequencies > 85%. Similar dominant compounds, including N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine, were observed in reservoirs and tap water, with average concentrations of 4.7-8.9 and 2.8-6.7 ng/L, respectively. The average carcinogenic risks caused by these N-nitrosamines were higher than the risk level of 10-6. Three-dimensional fluorescence excitation-emission matrix modeling revealed that DOM was composed of humus-like component 1 (C1) and protein-like component 2 (C2). Fluorescence indicators showed that DOM in reservoir water was mainly affected by exogenous pollution and algal growth, whereas in tap water, DOM was mainly affected by microbial growth with strong autopoietic properties. In the reservoir water, N-nitrosodiethylamine and N-nitrosopiperidine were significantly correlated with C2 and biological indicators, indicating their endogenously generated sources. Based on the principal component analysis and multiple linear regression methods, five sources of N-nitrosamines were identified: agricultural pollution, microbial sources, humus sources, degradation processes, and other factors, accounting for 46.8%, 36.1%, 7.82%, 8.26%, and 0.96%, respectively. For tap water, two sources, biological reaction processes, and water distribution systems, were identified, accounting for 75.7% and 24.3%, respectively. Overall, this study presents quantitative information on N-nitrosamines' sources based on DOM properties in typical karst reservoirs and tap water, providing a basis for the safety of drinking water for consumers.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Bingquan Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
2
|
Assefa E, Jabasingh A, Mulugeta E, Dessalegne M, Teju E. Impact of source water quality on total organic carbon and trihalomethane removal efficiency in a water treatment plant: A case study of Upper Awash, Ethiopia. JOURNAL OF WATER AND HEALTH 2024; 22:337-349. [PMID: 38421628 PMCID: wh_2024_276 DOI: 10.2166/wh.2024.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study addresses the limited understanding of factors affecting the efficiency of water treatment plants in reducing trihalomethane (THM) formation through total organic carbon (TOC) removal, highlighting significant challenges in improving treatment effectiveness. The aim of this study was to examine the influence of water quality on the efficiency of water treatment plants to remove TOC and reduce THM formation. Linear regression and correlation analyses were conducted to examine the relationship between water quality parameters and THM concentrations. The results showed that there was a negative relationship between turbidity, metals, and TOC concentration with TOC removal efficiency. Positive correlations were found between parameters and the formation of THMs in water. Of these parameters, water temperature was observed to have relatively less influence on THM formation. It was observed that seasonal variations in water quality affect the efficiency of TOC removal and THM content in treated water. THM levels in chlorinated water were found to be within the permissible range of the World Health Organization's drinking water quality guidelines. However, it is still important to maintain continuous monitoring and take measures to reduce THMs. The model demonstrated a strong correlation (R2 = 0.906) between predicted and measured THM values.
Collapse
Affiliation(s)
- Emeru Assefa
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia E-mail:
| | - Anuradha Jabasingh
- Chemical and Biochemical Engineering, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyobel Mulugeta
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Meseret Dessalegne
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| |
Collapse
|
3
|
Luo Q, Miao Y, Liu C, Bei E, Zhang JF, Zhang LH, Deng YL, Qiu Y, Lu WQ, Wright JM, Chen C, Zeng Q. Maternal exposure to nitrosamines in drinking water during pregnancy and birth outcomes in a Chinese cohort. CHEMOSPHERE 2023; 315:137776. [PMID: 36623593 PMCID: PMC11534404 DOI: 10.1016/j.chemosphere.2023.137776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Maternal exposure to regulated disinfection by-products (DBPs) during pregnancy has been linked with adverse birth outcomes. However, no human studies have focused on drinking water nitrosamines, a group of emerging unregulated nitrogenous DBPs that exhibits genotoxicity and developmental toxicity in experimental studies. This cohort study included 2457 mother-infant pairs from a single drinking water supply system in central China, and maternal trimester-specific and entire pregnancy exposure of drinking water nitrosamines were evaluated. Multivariable linear and Poisson regression models were used to estimate the associations between maternal exposure to nitrosamines in drinking water and birth outcomes [birth weight (BW), low birth weight (LBW), small for gestational age (SGA) and preterm delivery (PTD)]. Elevated maternal N-nitrosodimethylamine (NDMA) exposure in the second trimester and N-nitrosopiperidine (NPIP) exposure during the entire pregnancy were associated with decreased BW (e.g., β = -88.6 g; 95% CI: -151.0, -26.1 for the highest vs. lowest tertile of NDMA; p for trend = 0.01) and increased risks of PTD [e.g., risk ratio (RR) = 2.16; 95% CI: 1.23, 3.79 for the highest vs. lowest tertile of NDMA; p for trend = 0.002]. Elevated maternal exposure of N-nitrosodiethylamine (NDEA) in the second trimester was associated with increased risk of SGA (RR = 1.80; 95% CI: 1.09, 2.98 for the highest vs. lowest tertile; p for trend = 0.01). Our study detected associations of maternal exposure to drinking water nitrosamines during pregnancy with decreased BW and increased risks of SGA and PTD. These findings are novel but require replication in other study populations.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Jin-Feng Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Ling-Hua Zhang
- Maternal and Child Health Care Service Centre of Xiaonan District, Xiaogan City, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - J Michael Wright
- Office of Research and Development, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Cincinnati, OH, USA
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
5
|
Du Z, Jia R, Song W, Wang Y, Zhang M, Pan Z, Sun S. The characteristic of N-nitrosodimethylamine precursor release from algal organic matter and degradation performance of UV/H 2O 2/O 3 technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148739. [PMID: 34328925 DOI: 10.1016/j.scitotenv.2021.148739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Seasonal cyanobacterial blooms in eutrophic water releases algal organic matter (AOM), which contains large amount of dissolved organic nitrogen (DON) and is difficult to be removed effectively by conventional treatment processes (e.g., coagulation and sand filtration) because of its high hydrophilicity. Moreover, N-nitrosodimethylamine (NDMA) can be generated by the reaction of AOM with disinfectants in the subsequent disinfection process. In this study, the formation of NDMA from different AOM components was explored and the control of algal-derived NDMA precursors by UV/H2O2/O3 was evaluated. The results showed that the hydrophilic and polar components of AOM with the low molecular weight had higher NDMA yields. UV-based advanced oxidation process (AOPs) is effective in degrading NDMA precursors, while the removal rate can be affected greatly by UV doses. The removal rate of NDMA precursors by UV/H2O2/O3 is higher than by UV/H2O2 or UV/O3 which can reach 95% at the UV dose of 400 mJ/cm2. An alkaline environment reduces the oxidation efficiency of UV/H2O2/O3 technology, while an acidic environment is conducive to its function. Inorganic anions such as HCO3-, SO42-, Cl- and NO3- are potential to compete with target algal-derived NDMA precursors for the oxidants reaction and inhibit the degradation/removal of these precursors. The degradation of algal-derived NDMA precursors by UV/H2O2/O3 is mainly accomplished by the oxidation of DON with secondary amide groups, and the main degradation mechanism by UV/H2O2/O3 was through the initial decomposition of macromolecular organic compounds such as biopolymers and humic substances and the further degradation of resulting small molecular components.
Collapse
Affiliation(s)
- Zhenqi Du
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China.
| | - Wuchang Song
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China.
| | - Mengyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 250101 Jinan, China; Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| | - Zhangbin Pan
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China; College of Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, 250101 Jinan, China
| |
Collapse
|
6
|
Luo Q, Bei E, Liu C, Deng YL, Miao Y, Qiu Y, Lu WQ, Chen C, Zeng Q. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139695. [PMID: 32497885 DOI: 10.1016/j.scitotenv.2020.139695] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Nitrosamines, as a class of emerging frequently detected nitrogenous disinfection byproducts (N-DBPs) in drinking water, have gained increasing attention due to their potentially high health risk. Few studies focus on the occurrence variation and carcinogenic health risk of nitrosamines in drinking water systems. Our study aimed to investigate the spatial and temporal variability of nitrosamines in a drinking water system and to conduct a carcinogenic health risk assessment. Three types of water samples, including influent water, treated water and tap water, were collected monthly during an entire year in a drinking water system utilizing a combination of chlorine dioxide and chlorine in central China, and 9 nitrosamines were measured. The nitrosamine formation potentials (FPs) in influent water were also determined. N-nitrosodimethylamine (NDMA) was the most prevalent compound and was dominant in the water samples with average concentrations ranging from 2.5 to 67.4 ng/L, followed by N-nitrosodiethylamine (NDEA) and N-nitrosopiperidine (NPIP). Nitrosamine occurrence varied monthly, and significant seasonal differences were observed in tap water (p < .05). There were decreasing mean NDMA, NDEA and NPIP concentrations from influent water to treated water to tap water, but no significant spatial variability was observed within the water distribution system (p > .05). The average and 95th percentile total lifetime cancer risks for the three main nitrosamines were 4.83 × 10-5 and 4.48 × 10-4, respectively, exceeding the negligible risk level (10-6) proposed by the USEPA. Exposure to nitrosamines in drinking water posed a higher cancer risk for children than for adults, and children aged 0.75 to 1 years suffered the highest cancer risk. These results suggest that nitrosamine occurrence in tap water varied temporally but not spatially. Exposure to drinking water nitrosamines may pose a carcinogenic risk to human health, especially to children.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Maqbool T, Zhang J, Qin Y, Ly QV, Asif MB, Zhang X, Zhang Z. Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC. WATER RESEARCH 2020; 183:116096. [PMID: 32717651 DOI: 10.1016/j.watres.2020.116096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosamines have been identified as emerging contaminants with tremendous carcinogenic potential for human beings. This study examined the seasonal changes in the occurrence of N-nitrosamines and N-nitrosodimethylamine formation potential (NDMA-FP) in drinking water resources and potable water from 10 drinking water treatment plants in a southern city of China. The changes in N-nitrosamines are well correlated with dissolved organic matter (DOM), particularly fluorophores, which were measured and compared between traditional fluorescence indices and excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Four of N-nitrosamine species including N-nitrosodimethylamine (NDMA), N-Nitrosodibutylamine (NDBA), N-Nitrosopyrrolidine (NPYR), and N-Nitrosodiphenylamine (NDPhA) are found to be abundant compounds with an average of 29.5% (26.7%), 20.0% (25.2%), 18.9% (16.0%), and 9.0% (9.9%) in the source (and treated) water, respectively. The sum of N-nitrosamines concentration is recorded to be low in the wet season (July-September), whereas the dry season (October-December) provided opposite impacts. EEM-PARAFAC modeling indicated the predominance of humic-like component (C1) in the wet season while in the dry season the water was dominant in protein-like component (C2). All the N-nitrosamines excluding NDPhA and N-Nitrosomorpholine (NMOR) showed a strong association with protein-like component (C2). In contrast, humic-like C1, which was directly influenced by rainfall, was found to be a suitable proxy for NMOR and NDPhA. The results of this study are valuable to understand the correlation between different N-nitrosamines and DOM through adopting fluorescence signatures.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiaxing Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanling Qin
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Regional and Seasonal Distributions of N-Nitrosodimethylamine (NDMA) Concentrations in Chlorinated Drinking Water Distribution Systems in Korea. WATER 2019. [DOI: 10.3390/w11122645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Volatile N-Nitrosamines (NAs), including N-nitrosodimethylamine (NDMA), an emerging contaminant in drinking water, have been reported to induce cancer in animal studies. This study aims to investigate the regional and seasonal distributions of the concentrations of NDMA, one of the most commonly found NAs with high carcinogenicity, in municipal tap water in Korea. NDMA in water samples was quantitatively determined using high-performance liquid chromatography-fluorescence detection (HPLC-FLD) as a 5-dimethylamino-1-naphthalenesulfonyl (dansyl) derivative after optimization to dry the SPE adsorbent and remove dimethylamine prior to derivatization. Tap water samples were collected from 41 sites in Korea, each of which was visited once in summer and once in winter. The average (±standard deviation) NDMA concentration among all the sites was 46.6 (±22.7) ng/L, ranging from <0.13 to 80.7 ng/L. Significant NDMA differences in the regions, excluding the Jeju region, were not found, whereas the average NDMA concentration was statistically higher in winter than in summer. A multiple regression analysis for the entire data set indicated a negative relationship between NDMA concentration and water temperature. High levels of NDMA in Korea may pose excessive cancer risks from the consumption of such drinking water.
Collapse
|
9
|
Zhao C, Lu Q, Gu Y, Pan E, Sun Z, Zhang H, Zhou J, Du Y, Zhang Y, Feng Y, Liu R, Pu Y, Yin L. Distribution of N-nitrosamines in drinking water and human urinary excretions in high incidence area of esophageal cancer in Huai'an, China. CHEMOSPHERE 2019; 235:288-296. [PMID: 31260869 DOI: 10.1016/j.chemosphere.2019.06.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 05/22/2023]
Abstract
The Huai'an area in Jiangsu Province of East China is an endemic region of esophageal cancer (EC). The regional heterogeneity of EC suggests that the levels of potential carcinogens might vary throughout the environment. It has been suggested that the most likely carcinogens related to EC are a group known as the N-nitrosamines. In this study, we measured the concentrations of nine nitrosamines in drinking water and human urine in two areas in China, one with a high incidence of EC (Huai'an) and one with a low incidence (Nanjing). Among the nine target analytes, N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosodiethylamine (NDEA) and N-nitrosomorpholine (NMor) occurred at higher concentrations in drinking water in the high incidence area. Inhabitants from the high incidence area also had urinary excretions with significantly higher concentrations of NDEA, NDBA, N-nitrosopiperidine (NPip) and N-nitrosodiphenylamine (NDPhA). These findings indicated that people in the high EC incidence area were exposed to higher levels of nitrosamines. However, the association between the incidence of EC and nitrosamines exposure will need to be evaluated in more detail.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yun Gu
- Departments of Thoracic Surgery, People's Hospital of Lianshui, Lianshui, 223400, Jiangsu, China
| | - Enchun Pan
- Huai'an Center for Disease Control and Prevention, Huai'an, 223001, Jiangsu, China
| | - Zhongming Sun
- Huai'an Center for Disease Control and Prevention, Huai'an, 223001, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuanmei Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
10
|
Zhao B, Nakada N, Okumura K, Zhou J, Tanaka H. N-nitrosomorpholine behavior in sewage treatment plants and urban rivers. WATER RESEARCH 2019; 163:114868. [PMID: 31344505 DOI: 10.1016/j.watres.2019.114868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
The seasonal and diurnal patterns of N-nitrosomorpholine (NMOR) and its formation potential (NMOR FP) were examined with water samples taken from five outlets of four sewage treatment plants (STPs), seven main stream sites, and five tributary sites in the Yodo River basin. STPs were shown to be the main sources of downstream NMOR load. The highest NMOR levels were found in the discharge from one STP (26.4-171 ng/L). Continuous sequential samplings over a period of 24 h at this STP revealed that NMOR flux at the influent point fluctuated in both summer (0.4-3.2 g/h) and winter (0.3-5.4 g/h), while it was steady in the effluent. In addition, levels of NMOR remained stable during the biological treatment and disinfection processes. The present research demonstrated that NMOR could be formed from morpholine (MOR) in raw sewage treated by this STP, with a possible mechanism being formaldehyde-catalyzed nitrosation of MOR by nitrites, prior to raw sewage entering the STP. This implies that the NMOR detected here might not be a disinfection byproduct per se under low-chlorine disinfection (around 1.0 mg/L), but is primarily a contaminant that is difficult to remove during sewage treatment. NMOR attenuated significantly in the rivers in the daytime with production of MOR, but persisted during nights, which demonstrated the importance of monitoring NMOR levels in the water environment during periods of low UV intensity, especially nights.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Kohei Okumura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Jiajun Zhou
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
11
|
Yin Y, Li T, Kuang D, Lu Y, Shen Y, Xu J, Jiang S, Wang X. Probabilistic health risk assessment of nitrosamines in drinking water of Shaoxing, Zhejiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5485-5499. [PMID: 30610581 DOI: 10.1007/s11356-018-4026-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 05/24/2023]
Abstract
Nitrosamines (NAms) are potent genotoxic and carcinogenic but widely detected in drinking water. This study aimed to investigate the occurrence of major types of NAms in drinking water in Shaoxing, China, and to conduct multi-pathway probabilistic cancer risk (CR) assessment to residents based on age-dependent adjustment Chinese exposure factors. Results showed that concentrations of NAms in water varied from not detected (ND) to dozens of nanograms per liter level. N-Nitrosodimethylamine (NDMA) was detected most frequently (93.06%), followed by N-nitrosodiethylamine (NDEA) (64.08%)-with the highest cancer risk among NAms. The CR of NAms came mainly through the oral exposure pathway. The 95th percentile of the total CR of five major NAms was 1.06 × 10-4, exceeding the maximum acceptable lifetime CR (1 × 10-4) recommended by US EPA. Exposure to NDEA contributed the highest to the total CR. The CR of the five NAms through ingestion was 2.5 times higher using the Chinese exposure factors than that of the Americans. The most important variables related to CRs were concentrations of NAms in drinking water, exposure duration, drinking water ingestion rate, and exposure time during bathing. Our findings suggest the urgent need to develop and enforce effective regulatory policies to control the contamination of NAms in drinking water in China. Graphical abstract.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tong Li
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
- Center for Disease Control and Prevention of Hongkou District, Shanghai, 200082, China
| | - Duyi Kuang
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yan Shen
- Shaoxing Water Environmental Science and Research Institute Co. Ltd., Shaoxing, 312000, China
| | - Jun Xu
- Songliuling Water Treatment Plant, Shaoxing Water Treating Co. Ltd., Shaoxing, 312035, China
| | - Songhui Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Good KD, VanBriesen JM. Coal-Fired Power Plant Wet Flue Gas Desulfurization Bromide Discharges to U.S. Watersheds and Their Contributions to Drinking Water Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:213-223. [PMID: 30512930 DOI: 10.1021/acs.est.8b03036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wet flue gas desulfurization (FGD) wastewater discharges from coal-fired power plants may increase bromide concentrations at downstream drinking water intakes, leading to increased formation of toxic disinfection byproducts (DBPs). Despite this, bromide was not regulated in FGD wastewater in the 2015 Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category (ELGs). Case-by-case management was recommended instead, depending on downstream drinking water effects. The present work seeks to identify U.S. regions where power plant discharges could affect drinking water. Bromide loads were evaluated for all coal-fired power plants operating wet FGD, and flow paths were used to identify downstream surface water sources. A population-concentration metric was used to evaluate the effect of wet FGD on downstream drinking water and the vulnerability of drinking water to upstream discharges. On a hydrologic region level, results indicate the Ohio, South Atlantic Gulf, and Missouri Regions are the most likely to see effects of power plant bromide discharges on populations served by surface water. Increased refined coal use, which may be treated with bromide, contributes to uncertainty in potential bromide effects on drinking water. Measurement of bromide concentrations in wet FGD discharges would reduce this uncertainty, and control of bromide discharges may be needed in some watersheds.
Collapse
Affiliation(s)
- Kelly D Good
- Department of Civil and Environmental Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
- Department of Engineering and Public Policy , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
13
|
Glover CM, Verdugo EM, Trenholm RA, Dickenson ERV. N-nitrosomorpholine in potable reuse. WATER RESEARCH 2019; 148:306-313. [PMID: 30390511 DOI: 10.1016/j.watres.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
As potable reuse guidelines and regulations continue to develop, the presence of N-nitrosamines is a primary concern because of their associated health concerns. In this study, bench-, pilot-, and full-scale tests were conducted to focus on the occurrence and treatment of N-nitrosomorpholine (NMOR) in United States (U.S.) potable reuse systems. Out of twelve U.S. wastewater effluents collected, ambient NMOR was detected in eleven (average = 20 ± 18 ng/L); in contrast, only two of the thirteen surface water and stormwater samples had NMOR. Across all of these samples maximum formation potential by chloramination produced an average increase of 3.6 ± 1.8 ng/L. This result underscores the need to understand the sources of NMOR as it is not likely a disinfection byproduct and it is not known to be commercially produced within the U.S. At the pilot-scale, three potable reuse systems were evaluated for ambient NMOR with oxidation (i.e., chlorination and ozonation), biofiltration, and granular activated carbon (GAC). Both pre-oxidation and biofiltration were ineffective at mitigating NMOR during long-term pilot plant operation (at least eight-months). GAC adsorbers were the only pilot-scale treatment to remove NMOR; however, complete breakthrough occurred rapidly from <2000 to 10,000 bed volumes. For comparison, a full-scale reverse osmosis (RO) potable reuse system was monitored for a year and confirmed that RO effectively removes NMOR. Systematic bench-scale UV-advanced oxidation experiments were undertaken to assess the mitigation potential for NMOR. At a fluence dose of 325 ± 10 mJ/cm2, UV alone degraded 90% of the NMOR present. The addition of 5 mg/L hydrogen peroxide did not significantly decrease the UV dose required for one-log removal. These data illustrate that efficient NMOR removal from potable reuse systems is limited to RO or UV treatment.
Collapse
Affiliation(s)
- Caitlin M Glover
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| | - Edgard M Verdugo
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Rebecca A Trenholm
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
14
|
The Seasonality of Nitrite Concentrations in a Chloraminated Drinking Water Distribution System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081756. [PMID: 30111761 PMCID: PMC6121643 DOI: 10.3390/ijerph15081756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
We studied the seasonal variation of nitrite exposure in a drinking water distribution system (DWDS) with monochloramine disinfection in the Helsinki Metropolitan Area. In Finland, tap water is the main source of drinking water, and thus the nitrite in tap water increases nitrite exposure. Our data included both the obligatory monitoring and a sampling campaign data from a sampling campaign. Seasonality was evaluated by comparing a nitrite time series to temperature and by calculating the seasonal indices of the nitrite time series. The main drivers of nitrite seasonality were the temperature and the water age. We observed that with low water ages (median: 6.7 h) the highest nitrite exposure occurred during the summer months, and with higher water ages (median: 31 h) during the winter months. With the highest water age (190 h), nitrite concentrations were the lowest. At a low temperature, the high nitrite concentrations in the winter were caused by the decelerated ammonium oxidation. The dominant reaction at low water ages was ammonium oxidation into nitrite and, at high water ages, it was nitrite oxidation into nitrate. These results help to direct monitoring appropriately to gain exact knowledge of nitrite exposure. Also, possible future process changes and additional disinfection measures can be designed appropriately to minimize extra nitrite exposure.
Collapse
|
15
|
Woods GC, Dickenson ERV. Natural attenuation of NDMA precursors in an urban, wastewater-dominated wash. WATER RESEARCH 2016; 89:293-300. [PMID: 26706247 DOI: 10.1016/j.watres.2015.11.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/07/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a disinfection by-product (DBP) that is potentially carcinogenic and has been found to occur in drinking water treatment systems impacted with treated wastewater. A major gap in NDMA research is an understanding of the persistence of wastewater-derived precursors within the natural environment. This research sought to fill this knowledge gap by surveying NDMA precursors across the length of a wastewater effluent-dominated wash. Significant precursor reduction (17%) was found to occur from introduction into the wash to a point 9 h downstream. This reduction translates into a half-life of roughly 32 h for bulk NDMA precursors. Further laboratory experiments examining rates of photolysis, biodegradation and loss to sediments, illustrated that both photolytic and biological degradation were effective removal mechanisms for NDMA precursors. Loss to sediments that were acquired from the wash did not appear to reduce NDMA precursors in the water column, although a control conducted with DI water provided evidence that significant NDMA precursors could be released from autoclaved sediments (suggesting that sorption does occur). Microbial experiments revealed that microbes associated with sediments were much more effective at degrading precursors than microbes within the water column. Overall, this study demonstrated that natural processes are capable of attenuating NDMA precursors relatively quickly within the environment, and that utilities might benefit from maximizing source water residency time in the environment, prior to introduction into treatment plants.
Collapse
Affiliation(s)
- Gwen C Woods
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA.
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA.
| |
Collapse
|