1
|
Zhuang Y, Liu S, Xiao J, Chen T, Gao D, Xu Y, Jiang W, Wang J, Hou G, Li S, Zhao X, Huang Y, Li S, Zhang S, Li M, Wang W, Li S, Cao Z. Metagenomics reveals the characteristics and potential spread of microbiomes and virulence factor genes in the dairy cattle production system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136005. [PMID: 39369676 DOI: 10.1016/j.jhazmat.2024.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Virulence factor genes (VFGs) pose a potential threat to ecological security and animal health, and have attracted increasing attention in the livestock industry. As one of the primary livestock types, dairy cattle may be an important source of VFG transmission. However, the distribution, transmission, and evolution of VFGs in the gastrointestinal tract and surrounding environment of dairy cattle remain unclear. In the present study, a total of 263 samples were collected from cows, calves, colostrum, farm wastewater, and soil. Metagenomics was conducted to analyze changes in the microbiome and VFGs characteristics in these ecological niches. The VFGs of the cows showed distinct differences between the rumen and feces, and were influenced by the region. The dominant VFG hosts was regulated by their microbial structure. Colostrum administration of cows increased VFG abundance in their newborn calf feces sharply and Enterobacteriaceae became the primary host. While diet was the primary driving force for the temporal variation in calf VFGs. For samples of the surrounding environment, water and soil had higher VFG concentrations and were more structurally stable. Moreover, extensive interactions between the mobile genetic elements and VFGs and gene mobile analysis map based on metagenomic binning both displayed the potential horizontal transfer ability of VFGs in the cows and environment. Our study revealed the prevalence, diffusion, and regulatory factors of VFGs in dairy cattle production systems, providing novel insights into reducing livestock VFGs and limiting their spread.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Garzon A, Basbas C, Schlesener C, Silva-del-Rio N, Karle BM, Lima FS, Weimer BC, Pereira RV. WGS of intrauterine E. coli from cows with early postpartum uterine infection reveals a non-uterine specific genotype and virulence factors. mBio 2024; 15:e0102724. [PMID: 38742889 PMCID: PMC11237492 DOI: 10.1128/mbio.01027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.
Collapse
Affiliation(s)
- Adriana Garzon
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Carl Basbas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cory Schlesener
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Noelia Silva-del-Rio
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Tulare, California, USA
| | - Betsy M. Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, California, USA
| | - Fabio S. Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Richard V. Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
4
|
Balbuena-Alonso MG, Camps M, Cortés-Cortés G, Carreón-León EA, Lozano-Zarain P, Rocha-Gracia RDC. Strain belonging to an emerging, virulent sublineage of ST131 Escherichia coli isolated in fresh spinach, suggesting that ST131 may be transmissible through agricultural products. Front Cell Infect Microbiol 2023; 13:1237725. [PMID: 37876872 PMCID: PMC10591226 DOI: 10.3389/fcimb.2023.1237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.
Collapse
Affiliation(s)
- Maria G. Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Manel Camps
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Eder A. Carreón-León
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Kavinesan K, Sugumar G, Chrisolite B, Muthiahsethupathy A, Sudarshan S, Parthiban F, Mansoor M. Phenotypic and genotypic characterization of pathogenic Escherichia coli identified in resistance mapping of β-lactam drug-resistant isolates from seafood along Tuticorin coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68111-68128. [PMID: 37120498 DOI: 10.1007/s11356-023-27008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The ubiquity of pathogenic E. coli isolate possessing antimicrobial resistance was investigated in seafood samples procured from major seafood supply chain markets established for export and domestic consumption along Tuticorin coast. Out of 63 seafood samples examined, 29 (46%) were found to be contaminated by pathogenic E. coli harbouring one or more genes of virulent potential. Based on virulome profiling, 9.55% of isolates belonged to enterotoxigenic E. coli (ETEC), 8.08% to enteroaggregative E. coli (EAEC), 7.35% to enterohemorrhagic E. coli (EHEC), 2.20% to enteropathogenic E. coli (EPEC), and 2.20% to uropathogenic E. coli (UPEC). All the 34 virulome positive and haemolytic pathogenic E. coli have been serogrouped as O119, O76, O18, O134, O149, O120, O114, O25, O55, O127, O6, O78, O83, O17 and clinically significant O111, O121, O84, O26, O103, and O104 (non-O157 STEC) serotypes in this study. Multi-drug resistance (MDR) (≥ 3 antibiotic classes/sub-classes) was exhibited in 38.23% of the pathogenic E. coli, and 17.64% were extensive drug resistant (XDR). Extended spectrum of β-lactamase (ESBL) genotypes were confirmed in 32.35% isolates and 20.63% isolates harboured ampC gene. One sample (Penaeus semisulcatus) collected from landing centre (L1) harboured all ESBL genotypes blaCTX-M, blaSHV, blaTEM, and ampC genes. Hierarchical clustering of isolates revealed the separation of ESBL isolates into three clusters and non-ESBL isolates into three clusters based on phenotypic and genotypic variations. Based on dendrogram analysis on antibiotic efficacy pattern, carbapenems and β-lactam inhibitor drugs are the best available treatment for ESBL and non-ESBL infections. This study emphasizes the significance of comprehensive surveillance of pathogenic E. coli serogroups that pose serious threat to public health and compliance of AMR antimicrobial resistant genes in seafood that hinder seafood supply chain.
Collapse
Affiliation(s)
- Kumar Kavinesan
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Gopalrajan Sugumar
- Tamil Nadu Dr. J.Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, India, 611 002
| | - Bagthasingh Chrisolite
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008.
| | | | - Shanmugam Sudarshan
- TNJFU-Dr.MGR Fisheries College and Research Institute, TNJFU, Thalainayeru, Tamil Nadu, India, 614712
| | - Fathiraja Parthiban
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Mohamed Mansoor
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| |
Collapse
|
6
|
Martins JCL, Pintor-Cora A, Alegría Á, Santos JA, Herrera-Arias F. Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Int J Food Microbiol 2023; 394:110168. [PMID: 36931145 DOI: 10.1016/j.ijfoodmicro.2023.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried blaCTX-M and blaTEM genes, one (5.2 %) blaSHV and blaTEM genes, one isolate (5.2 %) carried blaCTX-M and one (5.2 %) blaSHV alone. The majority of CTX-M-positive E. coli isolates carried the blaCTX-M-15 gene (13 isolates), being the blaCTX-M-9, blaCTX-M-2, and blaCTX-M-8 (one isolate each) also detected. Two SHV-positive isolates presented the blaSHV-5 and blaSHV-12 allele. The isolate identified as E. fergusonii was positive for blaCTX-M-65 gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain.
Collapse
Affiliation(s)
- Joana C L Martins
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain
| | - Alberto Pintor-Cora
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Ángel Alegría
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Fanny Herrera-Arias
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain; Departamento de Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona, Colombia.
| |
Collapse
|
7
|
Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Antibiotics (Basel) 2023; 12:antibiotics12020350. [PMID: 36830261 PMCID: PMC9952161 DOI: 10.3390/antibiotics12020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Wastewater (WW) is considered a source of antibiotic-resistant bacteria with clinical relevance and may, thus, be important for their dissemination into the environment, especially in countries with poor WW treatment. To obtain an overview of the occurrence and characteristics of carbapenem-resistant Gram-negative bacteria (CR-GNB) in WW of Belgrade, we investigated samples from the four main sewer outlets prior to effluent into international rivers, the Sava and the Danube. Thirty-four CR-GNB isolates were selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). AST revealed that all isolates were multidrug-resistant. WGS showed that they belonged to eight different species and 25 different sequence types (STs), seven of which were new. ST101 K. pneumoniae (blaCTX-M-15/blaOXA-48) with novel plasmid p101_srb was the most frequent isolate, detected at nearly all the sampling sites. The most frequent resistance genes to aminoglycosides, quinolones, trimethroprim-sulfamethoxazole, tetracycline and fosfomycin were aac(6')-Ib-cr (55.9%), oqxA (32.3%), dfrA14 (47.1%), sul1 (52.9%), tet(A) (23.5%) and fosA (50%), respectively. Acquired resistance to colistin via chromosomal-mediated mechanisms was detected in K. pneumoniae (mutations in mgrB and basRS) and P. aeruginosa (mutation in basRS), while a plasmid-mediated mechanism was confirmed in the E. cloacae complex (mcr-9.1 gene). The highest number of virulence genes (>300) was recorded in P. aeruginosa isolates. Further research is needed to systematically track the occurrence and distribution of these bacteria so as to mitigate their threat.
Collapse
|
8
|
Osińska A, Korzeniewska E, Korzeniowska-Kowal A, Wzorek A, Harnisz M, Jachimowicz P, Buta-Hubeny M, Zieliński W. The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11572-11583. [PMID: 36094711 PMCID: PMC9898413 DOI: 10.1007/s11356-022-22870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This study aimed to determine the applicability of various methods for identifying E. coli strains in environmental samples. Bacterial strains preliminary selected on mFc and Chromocult media as E. coli were identified using MALDI Biotyper techniques, based on the presence of genes characteristic of E. coli (uidA, uspA, yaiO), as well as by 16S rRNA gene sequencing. The virulence and antibiotic resistance genes pattern of bacterial strains were also analyzed to investigate the prevalence of factors that may indicate adaptation to unsupportive environmental conditions and could have any significance in further identification of E. coli. Of the strains that had been initially identified as E. coli with culture-based methods, 36-81% were classified as E. coli with the use of selected techniques. The value of Cohen's kappa revealed the highest degree of agreement between the results of 16S rRNA gene sequencing, the results obtained in the MALDI Biotyper system, and the results of the analysis based on the presence of the yaiO gene. The results of this study could help in the selection of more accurate and reliable methods which can be used in a preliminary screening and more precise identification of E. coli isolated from environmental samples.
Collapse
Affiliation(s)
- Adriana Osińska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Piotr Jachimowicz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| |
Collapse
|
9
|
Peng H, Zhou G, Yang XM, Chen GJ, Chen HB, Liao ZL, Zhong QP, Wang L, Fang X, Wang J. Transcriptomic Analysis Revealed Antimicrobial Mechanisms of Lactobacillus rhamnosus SCB0119 against Escherichia coli and Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms232315159. [PMID: 36499483 PMCID: PMC9739798 DOI: 10.3390/ijms232315159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Lactic acid bacteria were reported as a promising alternative to antibiotics against pathogens. Among them, Lactobacillus rhamnosus could be used as probiotics and inhibit several pathogens, but its antibacterial mechanisms are still less known. Here, L. rhamnosus SCB0119 isolated from fermented pickles could inhibit bacterial growth or even cause cell death in Escherichia coli ATCC25922 and Staphylococcus aureus ATCC6538, which was mainly attributed to the cell-free culture supernatant (CFS). Moreover, CFS induced the accumulation of reactive oxygen species and destroyed the structure of the cell wall and membrane, including the deformation in cell shape and cell wall, the impairment of the integrity of the cell wall and inner membrane, and the increases in outer membrane permeability, the membrane potential, and pH gradient in E. coli and S. aureus. Furthermore, the transcriptomic analysis demonstrated that CFS altered the transcripts of several genes involved in fatty acid degradation, ion transport, and the biosynthesis of amino acids in E. coli, and fatty acid degradation, protein synthesis, DNA replication, and ATP hydrolysis in S. aureus, which are important for bacterial survival and growth. In conclusion, L. rhamnosus SCB0119 and its CFS could be used as a biocontrol agent against E. coli and S. aureus.
Collapse
Affiliation(s)
- Huan Peng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xi-Miao Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guo-Jun Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Bin Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qing-Ping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.F.); (J.W.)
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.F.); (J.W.)
| |
Collapse
|
10
|
Perestrelo S, Correia Carreira G, Valentin L, Fischer J, Pfeifer Y, Werner G, Schmiedel J, Falgenhauer L, Imirzalioglu C, Chakraborty T, Käsbohrer A. Comparison of approaches for source attribution of ESBL-producing Escherichia coli in Germany. PLoS One 2022; 17:e0271317. [PMID: 35839265 PMCID: PMC9286285 DOI: 10.1371/journal.pone.0271317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli have been widely described as the cause of treatment failures in humans around the world. The origin of human infections with these microorganisms is discussed controversially and in most cases hard to identify. Since they pose a relevant risk to human health, it becomes crucial to understand their sources and the transmission pathways. In this study, we analyzed data from different studies in Germany and grouped ESBL-producing E. coli from different sources and human cases into subtypes based on their phenotypic and genotypic characteristics (ESBL-genotype, E. coli phylogenetic group and phenotypic antimicrobial resistance pattern). Then, a source attribution model was developed in order to attribute the human cases to the considered sources. The sources were from different animal species (cattle, pig, chicken, dog and horse) and also from patients with nosocomial infections. The human isolates were gathered from community cases which showed to be colonized with ESBL-producing E. coli. We used the attribution model first with only the animal sources (Approach A) and then additionally with the nosocomial infections (Approach B). We observed that all sources contributed to the human cases, nevertheless, isolates from nosocomial infections were more related to those from human cases than any of the other sources. We identified subtypes that were only detected in the considered animal species and others that were observed only in the human population. Some subtypes from the human cases could not be allocated to any of the sources from this study and were attributed to an unknown source. Our study emphasizes the importance of human-to-human transmission of ESBL-producing E. coli and the different role that pets, livestock and healthcare facilities may play in the transmission of these resistant bacteria. The developed source attribution model can be further used to monitor future trends. A One Health approach is necessary to develop source attribution models further to integrate also wildlife, environmental as well as food sources in addition to human and animal data.
Collapse
Affiliation(s)
- Sara Perestrelo
- Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Lars Valentin
- Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Judith Schmiedel
- Institute of Medical Microbiology, Justus Liebig University, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
- Hessisches universitäres Kompetenzzentrum Krankenhaushygiene (HuKKH), Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Annemarie Käsbohrer
- Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
11
|
Aworh MK, Ekeng E, Nilsson P, Egyir B, Owusu-Nyantakyi C, Hendriksen RS. Extended-Spectrum ß-Lactamase-Producing Escherichia coli Among Humans, Beef Cattle, and Abattoir Environments in Nigeria. Front Cell Infect Microbiol 2022; 12:869314. [PMID: 35463650 PMCID: PMC9021871 DOI: 10.3389/fcimb.2022.869314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Beef cattle, one of the food-producing animals, are linked to humans through a shared environment and the food chain as a major source of animal protein. Antimicrobial drugs are readily accessible for use in food animal production in Nigeria. Beef cattle and abattoir environments harbor pathogenic bacteria such as Escherichia coli (E. coli) which have developed resistance to antimicrobial agents used for prophylaxis or treatment. This study investigated the zoonotic transmission of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) among humans, beef cattle, and abattoir environments in Abuja and Lagos, Nigeria. Materials and Methods We conducted a cross-sectional study among abattoir workers, beef cattle, and abattoir environments in Abuja and Lagos. Stool, cecal, and environmental samples were collected from apparently healthy workers, slaughtered cattle, and abattoir environments from May to December 2020. Data were collected electronically using open data kit app installed on a mobile phone. Antimicrobial susceptibility patterns were determined using the Kirby–Bauer disk diffusion method against a panel of 16 antimicrobial agents. Phenotypic and genotypic characterizations of the isolates were conducted. Data were analyzed with descriptive statistics. Results From 21.7% (n = 97) of 448 samples, ESBL-EC were isolated and further characterized. Prevalence of ESBL-EC was highest in cattle (45.4%; n = 44), abattoir workers (41.2%; n = 40), and abattoir environment (13.4%; n = 13). Whole-genome sequencing of ESBL-EC showed dissemination of blaCTX-M-15 (90.7%; n = 88); blaCTX-M-14 (5.2%; n = 5); and blaCTX-M-55 (2.1%; n = 2) genes. The blaCTX-M-15 coexisted with blaCTX-M-14 and blaTEM-1 genes in 2.1% (n = 2) and 39.2% (n = 38) of the isolates, respectively. The presence of blaCTX-M-14 and blaCTX-M-15 genes was significantly associated with isolates originating from abattoir workers when compared with beef cattle isolates (p = 0.05; p < 0.01). The most prevalent sequence types (ST) were ST10 (n = 11), ST215 (n = 7), ST4684 (n = 7), and ST2178 (n = 6). ESBL-EC strain (ST205/B1) harbored mcr-1.1 and blaCTX-M15 and was isolated from a worker at Lagos abattoir. In 91 ESBL-EC isolates, 219 mobile genetic elements (MGEs) harbored resistance genes out of which β-lactam genes were carried on 64 different MGEs. Isolates showed equal distribution of insertion sequences and miniature inverted repeats although only a few composite transposons were detected (humans n = 12; cattle n = 9; environment n = 4). Two isolates of human and cattle origin (ST46/A) harboring ESBL genes and carried by MGEs were clonally related. Conclusions This is the first report of blaCTX-M-55 gene in humans and cattle in Nigeria. This study demonstrates the horizontal transfer of ESBL genes possibly by MGEs and buttresses the importance of genomic surveillance. Healthcare workers should be sensitized that people working closely with cattle or in abattoir environments are a high-risk group for fecal carriage of ESBL-EC when compared with the general population.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria
- Nigeria Field Epidemiology and Laboratory Training Program, Abuja, Nigeria
- *Correspondence: Mabel Kamweli Aworh,
| | - Eme Ekeng
- National Reference Laboratory, Nigeria Center for Disease Control, Abuja, Nigeria
| | - Pernille Nilsson
- Technical University of Denmark, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, Europea Union Reference Laboratory for Antimicrobial Resistance (EURL-AMR), Kongens Lyngby, Denmark
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rene S. Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, Europea Union Reference Laboratory for Antimicrobial Resistance (EURL-AMR), Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health 2022; 10:794513. [PMID: 35356018 PMCID: PMC8960044 DOI: 10.3389/fpubh.2022.794513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.
Collapse
Affiliation(s)
- Chui Wei Bong
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Chui Wei Bong ;
| | - Kyle Young Low
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lay Ching Chai
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Inactivation of Antibiotic-Resistant Bacteria in Wastewater by Ozone-Based Advanced Water Treatment Processes. Antibiotics (Basel) 2022; 11:antibiotics11020210. [PMID: 35203813 PMCID: PMC8868322 DOI: 10.3390/antibiotics11020210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
The inactivating effect of ozone (O3)-based advanced oxidation processes (AOPs) (O3/H2O2, O3/UV, and O3/UV/H2O2 systems) on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in sewage treatment plant (STP) wastewater was investigated. The AMRB were grouped into six classes: carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE); these classes constituted the World Health Organization (WHO) global priority list of AMRB. The results indicate that O3-based advanced wastewater treatment inactivated all AMRB and AMSB (>99.9%) after 10 min of treatment, and significant differences (p < 0.5) were not observed in the disinfection of AMRB and AMSB by each treatment. Altered taxonomic diversity of micro-organisms based on 16S rRNA gene sequencing via O3/UV and O3/UV/H2O2 treatment showed that advanced wastewater treatments not only inactivated AMRB but also removed antimicrobial resistance genes (AMRGs) in the wastewater. Consequently, this study recommends the use of advanced wastewater treatments for treating the STP effluent, reducing environmental pollution, and alleviating the potential hazard to human health caused by AMRB, AMSB, and infectious diseases. Overall, this study provides a new method for assessing environmental risks associated with the spread of AMRB and AMSB in aquatic environments, while keeping the water environment safe and maintaining human health.
Collapse
|
14
|
Liu Z, Wang K, Zhang Y, Xia L, Zhao L, Guo C, Liu X, Qin L, Hao Z. High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Front Cell Infect Microbiol 2022; 11:755545. [PMID: 35198455 PMCID: PMC8859839 DOI: 10.3389/fcimb.2021.755545] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to understand the diversity characteristics of ESBL-producing Escherichia coli (ESBL-EC) in chicken, pig, and cattle. A high prevalence of ESBL-EC (260/344) was observed in all food animals with prevalence rates of 78.6% (110/140) for chicken, 70.7% (58/82) for cattle, and 75.4% (92/122) for swine. However, the resistance rates presented significant differences in different animal origin ESBL-EC, where resistance to CTX, GEN, IMP, NEO, and OFL was the highest in chicken ESBL-EC, then in cattle, and the lowest in swine. Seriously, most ESBL-EC harbor multidrug resistance to antibiotics (MDR, ≥3 antibiotic categories), and the MDR rates of ESBL-EC were the highest in chicken (98.18%), followed by swine (93.48%), and the lowest in cow (58.62%), while the same trend also was observed in MDR of ≥5 antibiotic categories. This high prevalence and resistance can be partly interpreted by the high carriage rates of the β-lactamases CTX-M (n = 89), OXA (n = 59), SHV (n = 7), and TEM (n = 259). A significant difference of β-lactamase genes also presented in different animal species isolates, where the chicken origin ESBL-EC possessed higher carriage rates of almost all genes tested than cattle and swine. Notably, eight chicken origin ESBL-EC carried transferable plasmid-mediated blaNDM-1 or blaNDM-5, especially, of which four ESBL-EC also contained the colistin resistance gene mcr-1, as confirmed by genomic analysis. More interestingly, two deletion events with a 500-bp deletion in ΔISAba125 and a 180-bp deletion in dsbC were observed in three blaNDM-5 IncX3 plasmids, which, as far as we know, is the first discovery. This showed the instability and horizontal transfer of blaNDM genetic context, suggesting that blaNDM is evolving to “pack light” to facilitate rapid and stable horizontal transfer. Sequence types (STs) and PFGE showed diversity patterns. The most prevalent STs were ST48 (n = 5), ST189 (n = 5), ST206 (n = 4), ST6396 (n = 3), ST10 (n = 3), and ST155 (n = 3), where ST48 ESBL-EC originated from three food animal species. The STs of all blaNDM-positive ESBL-EC were attributed to three STs, namely, ST6396 (n = 2), ST206 (n = 2), and ST189 (n = 4), where ST189 was also the unique type for four mcr-1-carrying ESBL-EC. In conclusion, we suggest that the three animal species ESBL-EC show similar high prevalence, diversity in isolate lineages, and significant discrepancies in antibiotic resistance and resistance genes. This suggests that monitoring and anti-infection of different food animal origin ESBL-EC need different designs, which deserves more attention and further surveillance.
Collapse
Affiliation(s)
- Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Husbandry and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ke Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, China
- Department of Instruments, Autobio Labtec Instruments Co., Ltd, Zhengzhou, China
| | - Yaru Zhang
- Academy of Poultry Industry Research, The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, China
| | - Li Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Changmei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, China
| | - Xudong Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liting Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Zhihui Hao,
| |
Collapse
|
15
|
Persistence of Antibiotic-Resistant Escherichia coli Strains Belonging to the B2 Phylogroup in Municipal Wastewater under Aerobic Conditions. Antibiotics (Basel) 2022; 11:antibiotics11020202. [PMID: 35203805 PMCID: PMC8868233 DOI: 10.3390/antibiotics11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is classified into four major phylogenetic groups (A, B1, B2, and D) that are associated with antibiotic resistance genes. Although antibiotic-resistant E. coli is commonly detected in municipal wastewater, little is known about the relationship between the phylogenetic groups and antibiotic-resistant E. coli in wastewater. In this study, the survival of E. coli in wastewater and the changes to the relationships between each phylogroup and the antibiotic-resistant profiles of E. coli isolates from wastewater were investigated under aerobic conditions for 14 days. The isolates were classified into the phylogroups A, B1, B2, and D or others by multiplex PCR. In addition, the susceptibility of the isolates to 11 antibiotics was assessed with the minimum inhibitory concentration (MIC) assay. While E. coli counts decreased in the wastewater with time under aerobic conditions, the prevalence of phylogroup B2 had increased to 73% on day 14. Furthermore, the MIC assay revealed that the abundance of antibiotic-resistant E. coli also increased on day 14. After batch-mixing the experiments under aerobic conditions, the surviving antibiotic-resistant E. coli included mainly multidrug-resistant and beta-lactamase-producing isolates belonging to phylogroup B2. These results suggest that the phylogroup B2 isolates that have acquired antibiotic resistance had a high survivability in the treated wastewater.
Collapse
|
16
|
Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults. Nat Commun 2022; 13:586. [PMID: 35102136 PMCID: PMC8803835 DOI: 10.1038/s41467-022-28048-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacterial bloodstream infections are a major cause of morbidity and mortality among patients undergoing hematopoietic cell transplantation (HCT). Although previous research has demonstrated that pathogens may translocate from the gut microbiome into the bloodstream to cause infections, the mechanisms by which HCT patients acquire pathogens in their microbiome have not yet been described. Here, we use linked-read and short-read metagenomic sequencing to analyze 401 stool samples collected from 149 adults undergoing HCT and hospitalized in the same unit over three years, many of whom were roommates. We use metagenomic assembly and strain-specific comparison methods to search for high-identity bacterial strains, which may indicate transmission between the gut microbiomes of patients. Overall, the microbiomes of patients who share time and space in the hospital do not converge in taxonomic composition. However, we do observe six pairs of patients who harbor identical or nearly identical strains of the pathogen Enterococcus faecium, or the gut commensals Akkermansia muciniphila and Hungatella hathewayi. These shared strains may result from direct transmission between patients who shared a room and bathroom, acquisition from a common hospital source, or transmission from an unsampled intermediate. We also identify multiple patients with identical strains of species commonly found in commercial probiotics, including Lactobacillus rhamnosus and Streptococcus thermophilus. In summary, our findings indicate that sharing of identical pathogens between the gut microbiomes of multiple patients is a rare phenomenon. Furthermore, the observed potential transmission of commensal, immunomodulatory microbes suggests that exposure to other humans may contribute to microbiome reassembly post-HCT. Here, Siranosian et al. provide evidence for rare transmission of commensal and pathogenic bacteria between the microbiomes of hospitalized adults, with important factors being roommate overlap and exposure to broad-spectrum antibiotics.
Collapse
|
17
|
Atlaw NA, Keelara S, Correa M, Foster D, Gebreyes W, Aidara-Kane A, Harden L, Thakur S, Fedorka-Cray PJ. Evidence of sheep and abattoir environment as important reservoirs of multidrug resistant Salmonella and extended-spectrum beta-lactamase Escherichia coli. Int J Food Microbiol 2021; 363:109516. [PMID: 34990883 DOI: 10.1016/j.ijfoodmicro.2021.109516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
The increase in antimicrobial-resistant (AMR) foodborne pathogens, including E. coli and Salmonella in animals, humans, and the environment, is a growing public health concern. Among animals, cattle, pigs, and chicken are reservoirs of these pathogens worldwide. There is a knowledge gap on the prevalence and AMR of foodborne pathogens in small ruminants (i.e., sheep and goats). This study investigates the prevalence and antimicrobial resistance of extended-spectrum beta-lactamase (ESBL) E. coli and Salmonella from sheep and their abattoir environment in North Carolina. We conducted a year-round serial cross-sectional study and collected a total of 1128 samples from sheep (n = 780) and their abattoir environment (n = 348). Sheep samples consisted of feces, cecal contents, carcass swabs, and abattoir resting area feces. Environmental samples consisted of soil samples, lairage swab, animal feed, and drinking water for animals. We used CHROMAgar EEC with 4 μg/ml of Cefotaxime for isolating ESBL E. coli, and ESBL production was confirmed by double-disk diffusion test. Salmonella was isolated and confirmed using standard methods. All of the confirmed isolates were tested against a panel of 14 antimicrobials to elucidate susceptibility profiles. The prevalence of ESBL E. coli and Salmonella was significantly higher in environmental samples (47.7% and 65.5%) compared to the sheep samples (19.5% and 17.9%), respectively (P < 0.0001). We recovered 318 ESBL E. coli and 368 Salmonella isolates from sheep and environmental samples. More than 97% (310/318) of ESBL E. coli were multidrug-resistant (MDR; resistant to ≥3 classes of antimicrobials). Most Salmonella isolates (77.2%, 284/368) were pansusceptible, and 10.1% (37/368) were MDR. We identified a total of 24 different Salmonella serotypes by whole genome sequencing (WGS). The most common serotypes were Agona (19.8%), Typhimurium (16.2%), Cannstatt (13.2%), Reading (13.2%), and Anatum (9.6%). Prevalence and percent resistance of ESBL E. coli and Salmonella isolates varied significantly by season and sample type (P < 0.0001). The co-existence of ESBL E. coli in the same sample was associated with increased percent resistance of Salmonella to Ampicillin, Chloramphenicol, Sulfisoxazole, Streptomycin, and Tetracycline. We presumed that the abattoir environment might have played a great role in the persistence and dissemination of resistant bacteria to sheep as they arrive at the abattoir. In conclusion, our study reaffirms that sheep and their abattoir environment act as important reservoirs of AMR ESBL E. coli and MDR Salmonella in the U.S. Further studies are required to determine associated public health risks.
Collapse
Affiliation(s)
- N A Atlaw
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - S Keelara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - M Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - D Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - W Gebreyes
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Rd., Columbus, OH 43210, USA
| | - A Aidara-Kane
- Department Food Safety and Zoonoses, Foodborne Diseases, World Health Organization, Geneva, Switzerland
| | - L Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - S Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - P J Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
18
|
Wang W, Yu L, Hao W, Zhang F, Jiang M, Zhao S, Wang F. Multi-Locus Sequence Typing and Drug Resistance Analysis of Swine Origin Escherichia coli in Shandong of China and Its Potential Risk on Public Health. Front Public Health 2021; 9:780700. [PMID: 34926393 PMCID: PMC8674453 DOI: 10.3389/fpubh.2021.780700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
The extensive use of antibiotics has caused antimicrobial resistance and multidrug resistance in Escherichia coli and gradual expands it into a worldwide problem. The resistant E. coli could be transmitted to humans through animal products, thereby creating a problem for bacterial treatment in humans and resulting in a public health issue. This study aims to investigate the molecular typing and drug resistance of swine and human origin E. coli within the same prefecture-level cities of Shandong Province and the potential risk of E. coli on public health. The drug sensitivity results indicated that tetracycline (TE) (97.17%) is a major antibiotic with high drug resistance in 106 swine origin E. coli. There was a significant difference in the drug-resistant genotypes between the two sources, of which the blaTEM positive rate was the highest in the genera of β-lactams (99% in swines and 100% in humans). Among the 146 E. coli isolates, 98 (91.51% swine origin) and 31 (77.5% human origin) isolates were simultaneously resistant to three or more classes of antibiotics, respectively. The multi-locus sequence typing (MLST) results indicate that the 106 swine origin E. coli isolates are divided into 25 STs with ST1258, ST361, and ST10 being the dominant sequence analysis typing strains. There were 19 MLST genotypes in 40 strains of human E. coli from Tai'an, Shandong Province, with ST1193, ST73, ST648, ST131, ST10, and ST1668 being the dominant strains. Moreover, the cluster analysis showed that CCl0 and CC23 were the common clonal complexes (CCs) from the two sources. Our results provide a theoretical basis for guiding the rational use of antibiotics and preventing the spread of drug-resistant bacteria, and also provide epidemiological data for the risk analysis of foodborne bacteria and antimicrobial resistance in swine farms in Shandong Province.
Collapse
Affiliation(s)
- Wei Wang
- Tai'an City Central Hospital, Taian City, China
| | - Lanping Yu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, China
| | - Wenwen Hao
- Department of Laboratory, Tai'an Central Hospital Branch, Taian City, China
| | - Fusen Zhang
- Tai'an City Central Hospital, Taian City, China
| | | | | | - Fangkun Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, China
| |
Collapse
|
19
|
Furlan JPR, Stehling EG. Multiple sequence types, virulence determinants and antimicrobial resistance genes in multidrug- and colistin-resistant Escherichia coli from agricultural and non-agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117804. [PMID: 34329068 DOI: 10.1016/j.envpol.2021.117804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In soils, the presence of clinically relevant bacteria carrying ARGs, including extended-spectrum β-lactamase- and plasmid-mediated AmpC β-lactamase-encoding genes, is an underestimated public health problem that requires more attention. For this investigation, 300 samples from agricultural and non-agricultural soils were used to obtain 41 MDR E. coli isolates, standing out the resistance to β-lactams, fluoroquinolones and colistin. Virulence genes related to diarrheagenic E. coli and extraintestinal pathogenic E. coli were detected. Several ARGs were found, highlighting the presence of at least one β-lactamase-encoding gene (blaTEM, blaCMY, blaSHV, blaOXA-1-like, blaCTX-M-2, and/or blaCTX-M-15) in each isolate. Among the fluoroquinolone-resistant E. coli isolates, the plasmid-mediated quinolone resistance genes (qnrB and oqxA) and substitutions in the quinolone resistance-determining regions were detected. Some isolates were resistant to colistin (MICs of 4-8 mg/L) and, although no mcr-like gene was detected, substitutions in the two-component systems involving PhoP/PhoQ and PmrA/PmrB were found. Furthermore, the E. coli isolates presented plasmids and class 1 integrons, the last one detected in all isolates. The ARGs blaTEM, aadA and dfrA and the lpfA virulence-associated gene presented statistically significant differences (P < 0.05) in agricultural soils, while the blaOXA-1-like gene presented a statistically significant difference in non-agricultural soils. Thirty-eight sequence types (STs) were identified among the isolates, spotlighting the 20 different STs that carried blaCMY and blaCTX-M-type genes and those commonly reported in infections worldwide. The occurrence of virulent, multidrug- and colistin-resistant E. coli isolates in soils could lead to contamination of surrounding environments and food, increasing the risk of human and animal exposure. Therefore, this study contributes to a better understanding of E. coli in soils and reinforces the importance of the One Health approach to antimicrobial resistance surveillance.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Host Colonization as a Major Evolutionary Force Favoring the Diversity and the Emergence of the Worldwide Multidrug-Resistant Escherichia coli ST131. mBio 2021; 12:e0145121. [PMID: 34425698 PMCID: PMC8406181 DOI: 10.1128/mbio.01451-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli ST131 is a major worldwide public health problem in humans. According to the “one health” approach, this study investigated animal reservoirs of ST131, their relationships with human strains, and the genetic features associated with host colonization. High-quality genomes originating from human, avian, and canine hosts were classified on the basis of their accessory gene content using pangenomic. Pangenomic clusters and subclusters were specifically and significantly associated with hosts. The functions of clustering accessory genes were mainly enriched in functions involved in DNA acquisition, interactions, and virulence (e.g., pathogenesis, response to biotic stimulus and interaction between organisms). Accordingly, networks of cooccurrent host interaction factors were significantly associated with the pangenomic clusters and the originating hosts. The avian strains exhibited a specific content in virulence factors. Rarely found in humans, they corresponded to pathovars responsible for severe human infections. An emerging subcluster significantly associated with both human and canine hosts was evidenced. This ability to significantly colonize canine hosts in addition to humans was associated with a specific content in virulence factors (VFs) and metabolic functions encoded by a new pathogenicity island in ST131 and an improved fitness that is probably involved in its emergence. Overall, VF content, unlike the determinants of antimicrobial resistance, appeared as a key actor of bacterial host adaptation. The host dimension emerges as a major driver of genetic evolution that shapes ST131 genome, enhances its diversity, and favors its dissemination.
Collapse
|
21
|
Azuma T, Hayashi T. On-site chlorination responsible for effective disinfection of wastewater from hospital. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145951. [PMID: 33647640 DOI: 10.1016/j.scitotenv.2021.145951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
Both hospital effluent and a model sewage treatment plant (STP) wastewater prepared by mixing STP influent and STP secondary effluent at a volume ratio of 1:9 were directly treated with chlorine for investigation of their effects on disinfection of antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB). The overall results indicate that the chlorine disinfection effectively inactivated the majority of AMRB and AMSB, expect for MRSA and Staphylococcus aureus in both wastewaters. No significant differences could further be observed in the taxonomic diversity of micro-organisms after the treatment. The degrees of disinfection given by the direct chlorination were comparable to those attained by combination of conventional activated sludge process and additional chlorine treatment at the STP. The results of this study evoked a recommendation to operate local chlorination treatment directly for the wastewater from medicinal facilities prior to its flow into the STP as sewage. Although additional disinfection treatment at the STP seems necessary to remove the recalcitrant MRSA and Staphylococcus aureus, the present study desirably contributes to a great reduction of the loads of STP and urgent prevention of spreading of infectious diseases in the present state.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
22
|
Nishimura E, Nishiyama M, Nukazawa K, Suzuki Y. Comparison of Antibiotic Resistance Profile of Escherichia coli between Pristine and Human-Impacted Sites in a River. Antibiotics (Basel) 2021; 10:antibiotics10050575. [PMID: 34068153 PMCID: PMC8152993 DOI: 10.3390/antibiotics10050575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.
Collapse
Affiliation(s)
- Emi Nishimura
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan; (E.N.); (K.N.)
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan;
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan; (E.N.); (K.N.)
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan; (E.N.); (K.N.)
- Correspondence: ; Tel.: +81-985-58-7339
| |
Collapse
|
23
|
Kurittu P, Khakipoor B, Brouwer MS, Heikinheimo A. Plasmids conferring resistance to extended-spectrum beta-lactamases including a rare IncN+IncR multireplicon carrying blaCTX-M-1 in Escherichia coli recovered from migrating barnacle geese ( Branta leucopsis). OPEN RESEARCH EUROPE 2021; 1:46. [PMID: 37645149 PMCID: PMC10446048 DOI: 10.12688/openreseurope.13529.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 08/31/2023]
Abstract
Background: Increasing antimicrobial resistance (AMR) is a global threat and wild migratory birds may act as mediators of resistant bacteria across country borders. Our objective was to study extended-spectrum beta-lactamase (ESBL) and plasmid-encoded AmpC (pAmpC) producing Escherichia coli in barnacle geese using whole genome sequencing (WGS) and to identify plasmids harboring bla genes. Methods: Barnacle geese feces (n=200) were collected during fall 2017 and spring 2018 from an urban area in Helsinki, Finland. ESBL/AmpC-producing E. coli were recovered from nine samples (4.5%) and isolates were subjected to WGS on both short- and long-read sequencers, enabling hybrid assembly and determination of the genomic location of bla genes. Results: A rare multireplicon IncN+IncR was recovered from one isolate carrying bla CTX-M-1 in addition to aadA2b, lnu(F), and qnrS1. Moreover, rarely detected IncY plasmids in two isolates were found to harbor multiple resistance genes in addition to the human-associated bla CTX-M-15. Poultry-associated bla CMY-2 was identified from the widely distributed IncI1 and IncK plasmids from four different isolates. One isolate harbored an IncI1 plasmid with bla CTX-M-1 and flor. A chromosomal point mutation in the AmpC promoter was identified in one of the isolates. WGS analysis showed isolates carried multiple resistance and virulence genes and harbored multiple different plasmid replicons in addition to bla-carrying plasmids. Conclusions: Our findings suggest that wild migratory birds serve as a limited source of ESBL/AmpC-producing E. coli and may act as disseminators of the epidemic plasmid types IncI1 and IncK but also rarely detected plasmid types carrying multidrug resistance. Human and livestock-associated ESBL enzyme types were recovered from samples, suggesting a potential for interspecies transmission. WGS offers a thorough method for studying AMR from different sources and should be implemented more widely in the future for AMR surveillance and detection. Understanding plasmid epidemiology is vital for efforts to mitigate global AMR spread.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Laboratory and Research Division, Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
24
|
Graham JP, Amato H, Mendizabal-Cabrera R, Alvarez D, Ramay B. Waterborne Urinary Tract Infections: Have We Overlooked an Important Source of Exposure? Am J Trop Med Hyg 2021; 105:12-17. [PMID: 33939640 DOI: 10.4269/ajtmh.20-1271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022] Open
Abstract
The presence of intestinal pathogenic Escherichia coli in drinking water is well recognized as a risk for diarrhea. The role of drinking water in extraintestinal infections caused by E. coli-such as urinary tract infections (UTIs)-remains poorly understood. Urinary tract infections are a leading cause of outpatient infections globally, with a lifetime incidence of 50-60% in adult women. We reviewed the scientific literature on the occurrence of uropathogenic E. coli (UPEC) in water supplies to determine whether the waterborne route may be an important, overlooked, source of UPEC. A limited number of studies have assessed whether UPEC isolates are present in drinking water supplies, but no studies have measured whether their presence in water may increase UPEC colonization or the risk of UTIs in humans. Given the prevalence of drinking water supplies contaminated with E. coli across the globe, efforts should be made to characterize UTI-related risks associated with drinking water, as well as other pathways of exposure.
Collapse
Affiliation(s)
- Jay P Graham
- 1Berkeley School of Public Health, University of California Berkeley, Berkeley, California
| | - Heather Amato
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Danilo Alvarez
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Brooke Ramay
- 2Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala.,3Paul G. Allen School for Global Animal Health, Washington State University Pullman, Guatemala City, Guatemala
| |
Collapse
|
25
|
Song J, Kim J, Oh SS, Shin J. Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Vegetable Farm Soil in South Korea. Microb Drug Resist 2021; 27:1489-1494. [PMID: 33926223 DOI: 10.1089/mdr.2020.0542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The populations of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) have increasingly disseminated in humans, animals, and the environment. This study aimed to determine the prevalence, antimicrobial susceptibilities, and molecular characteristics of ESBL-EC isolates obtained from vegetable farm soil. In total, 200 soil samples were collected from vegetable farms in Incheon, South Korea, between 2018 and 2019 and cultured on MacConkey screening plates supplemented with 2 μg/mL cefotaxime. Cefotaxime-resistant ESBL-EC isolates were recovered from 4.0% (8/200) of the soil samples. All eight isolates were nonsusceptible to ampicillin, piperacillin, cefazolin, cefotaxime, and cefepime and harbored blaCTX-M-type ESBL genes, including blaCTX-M-15 (50.0%), blaCTX-M-55 (25.0%), and blaCTX-M-14 (25.0%). Phylogenetic analysis showed that the B1 lineage was predominant (75.0%), followed by A (12.5%) and B2 (12.5%) lineages. Multilocus sequence typing revealed eight different E. coli sequence types (STs), including ST10, ST73, ST155, ST847, ST2521, ST3285, ST5173, and ST9479. Notably, ST10 and ST73 belong to the global extraintestinal pathogenic E. coli lineages. Our findings demonstrated that the farm soil environment may serve as a reservoir of human-associated multidrug-resistant ESBL-producing pathogens.
Collapse
Affiliation(s)
- Jihyun Song
- Department of Microbiology, Inha University College of Medicine, Incheon, South Korea
| | - Junghee Kim
- Incheon Research Institute of Public Health and Environment, Incheon, South Korea
| | - Sung-Suck Oh
- Incheon Research Institute of Public Health and Environment, Incheon, South Korea
| | - Jinwook Shin
- Department of Microbiology, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
26
|
Hassen B, Abbassi MS, Ruiz-Ripa L, Mama OM, Ibrahim C, Benlabidi S, Hassen A, Torres C, Hammami S. Genetic characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae from a biological industrial wastewater treatment plant in Tunisia with detection of the colistin-resistance mcr-1 gene. FEMS Microbiol Ecol 2021; 97:5986610. [PMID: 33202005 DOI: 10.1093/femsec/fiaa231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the occurrence of extended-spectrum β-lactamases (ESBL) and associated resistance genes, integrons, and plasmid types, as well as the genetic relatedness of enterobacterial isolates in the wastewater treatment plant (WWTP) of La Charguia, Tunis City (Tunisia). A total of 100 water samples were collected at different points of the sewage treatment process during 2017-2019. Antimicrobial susceptibility was conducted by the disc-diffusion method. blaCTX-M, blaTEM and blaSHV genes as well as those encoding non-β-lactam resistance, the plasmid types, occurrence of class1 integrons and phylogenetic groups of Escherichia coli isolates were determined by PCR/sequencing. Genomic relatedness was determined by multi-locus sequence typing (MLST) for selected isolates. In total, 57 ESBL-producer isolates were recovered (47 E. coli, eight Klebsiella pneumoniae, 1 of the Citrobacter freundii complex and 1 of the Enterobacter cloacae complex). The CTX-M-15 enzyme was the most frequently detected ESBL, followed by CTX-M-27, CTX-M-55 and SHV-12. One E. coli isolate harboured the mcr-1 gene. The following phylogroups/sequence types (STs) were identified among ESBL-producing E. coli isolates: B2/ST131 (subclade-C1), A/ST3221, A/ST8900, D/ST69, D/ST2142, D/ST38, B1/ST2460 and B1/ST6448. High numbers of isolates harboured the class 1 integrons with various gene cassette arrays as well as IncP-1 and IncFIB plasmids. Our findings confirm the importance of WWTPs as hotspot collectors of ESBL-producing Enterobacteriaceae with a high likelihood of spread to human and natural environments.
Collapse
Affiliation(s)
- Bilel Hassen
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia.,Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Chourouk Ibrahim
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Saloua Benlabidi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et de Valorisation des rejets hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Salah Hammami
- Université de la Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
27
|
Galler H, Luxner J, Petternel C, Reinthaler FF, Habib J, Haas D, Kittinger C, Pless P, Feierl G, Zarfel G. Multiresistant Bacteria Isolated from Intestinal Faeces of Farm Animals in Austria. Antibiotics (Basel) 2021; 10:antibiotics10040466. [PMID: 33923903 PMCID: PMC8073873 DOI: 10.3390/antibiotics10040466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.
Collapse
Affiliation(s)
- Herbert Galler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
- Correspondence: ; Tel.: +43-316-385-73619; Fax: +43-316-385-79637
| | - Josefa Luxner
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Christian Petternel
- Institute of Laboratory Diagnostics and Microbiology, Klinikum-Klagenfurt am Wörthersee, Feschnigstraße 11, 9020 Klagenfurt, Austria;
| | - Franz F. Reinthaler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Juliana Habib
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Doris Haas
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Clemens Kittinger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Peter Pless
- Animal Health Service of the Department of Veterinary Administration, Styrian Government, Friedrichgasse 9, 8010 Graz, Austria;
| | - Gebhard Feierl
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| | - Gernot Zarfel
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.L.); (F.F.R.); (J.H.); (D.H.); (C.K.); (G.F.); (G.Z.)
| |
Collapse
|
28
|
Ewers C, de Jong A, Prenger-Berninghoff E, El Garch F, Leidner U, Tiwari SK, Semmler T. Genomic Diversity and Virulence Potential of ESBL- and AmpC-β-Lactamase-Producing Escherichia coli Strains From Healthy Food Animals Across Europe. Front Microbiol 2021; 12:626774. [PMID: 33868190 PMCID: PMC8047082 DOI: 10.3389/fmicb.2021.626774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
The role of livestock animals as a putative source of ESBL/pAmpC E. coli for humans is a central issue of research. In a large-scale pan-European surveillance, 2,993 commensal Escherichia spp. isolates were recovered from randomly collected fecal samples of healthy cattle, pigs and chickens in various abattoirs. One-hundred Escherichia spp. isolates (0.5% from cattle, 1.3% pigs, 8.0% chickens) fulfilled the criteria for cefotaxime and ceftazidime non-wildtype (EUCAST). In silico screening of WGS data of 99 isolates (98 E. coli and 1 E. fergusonii) revealed blaSHV–12 (32.3%), blaCTX–M–1 (24.2%), and blaCMY–2 (22.2%) as predominant ESBL/pAmpC types. Other types were blaSHV–2 (1.0%), blaCTX–M–2/–14/–15 (1.0/6.1/1.0%), and blaTEM–52 (5.1%). Six isolates revealed AmpC-promoter mutations (position −42 (C > T) and one carried mcr-1. The majority (91.3%) of ESBL/pAmpC genes were located on plasmids. SHV-12 was mainly (50%) encoded on IncI1α plasmids (pST-3/-26/-95), followed by IncX3 (12.5%) and IncK2 (3.1%). The blaTEM–52 genes were located on IncI1α-pST-36 (60%) and IncX1 plasmids (20%). The dominant plasmid lineage among CTX-M-1 isolates was IncI1α (pST-3/-295/-317) (87.5%), followed by IncN-pST-1 (8.3%). CMY-2 was mostly identified on IncI1α (pST-12/-2) (54.5%) and IncK2 (31.8%) plasmids. Several plasmids revealed high similarity to published plasmids from human and animal Enterobacteriaceae. The isolates were assigned to phylogroups A/C (34.7/7.1%), B1 (27.6%), B2 (3.1%), D/F (9.2/10.2%), E (5.1%), and to E. clades (3.0%). With 51 known and 2 novel MLST types, a wide variety of STs was found, including STs previously observed in human isolates (ST10/38/117/131/648). ESBL/AmpC types or STs were rarely correlated with the geographic origin of the isolates or animal species. Virulence gene typing identified extraintestinal pathogenic E. coli (ExPEC; 2.0%), avian pathogenic E. coli (APEC; 51.5%), and atypical enteropathogenic E. coli (EPEC; 6.1%). In conclusion, the high diversity of STs and phylogenetic groups provides hardly any hint for clonal spread of single lineages but hints toward the dissemination of cephalosporin resistance genes in livestock via distinct, globally successful plasmid lineages. Even though a number of isolates could not be assigned to a distinct pathotype, our finding of combined multidrug-resistance and virulence in this facultative pathogen should be considered an additional threat to public health.
Collapse
Affiliation(s)
- Christa Ewers
- Department of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Anno de Jong
- European Antimicrobial Susceptibility Surveillance in Animals (EASSA) Study Group, Executive Animal Health Study Center (CEESA), Brussels, Belgium
| | - Ellen Prenger-Berninghoff
- Department of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Farid El Garch
- European Antimicrobial Susceptibility Surveillance in Animals (EASSA) Study Group, Executive Animal Health Study Center (CEESA), Brussels, Belgium
| | - Ursula Leidner
- Department of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Sumeet K Tiwari
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
29
|
Savin M, Bierbaum G, Kreyenschmidt J, Schmithausen RM, Sib E, Schmoger S, Käsbohrer A, Hammerl JA. Clinically Relevant Escherichiacoli Isolates from Process Waters and Wastewater of Poultry and Pig Slaughterhouses in Germany. Microorganisms 2021; 9:microorganisms9040698. [PMID: 33800539 PMCID: PMC8066038 DOI: 10.3390/microorganisms9040698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli is frequently associated with multiple antimicrobial resistances and a major cause of bacterial extraintestinal infections in livestock and humans. However, data on the epidemiology of (i) multidrug-resistant (MDR) and (ii) extraintestinal pathogenic E. coli (ExPEC) in poultry and pig slaughterhouses in Germany is currently lacking. Selected E. coli isolates (n = 71) with phenotypic resistance to cephalosporins from two poultry and two pig slaughterhouses expressing high MDR rates (combined resistance to piperacillin, cefotaxime and/or ceftazidime, and ciprofloxacin) of 51.4% and 58.3%, respectively, were analyzed by whole-genome sequencing. They constituted a reservoir for 53 different antimicrobial resistance determinants and were assigned various sequence types, including high-risk clones involved in human infections worldwide. An ExPEC pathotype was detected in 17.1% and 5.6% of the isolates from poultry and pig slaughterhouses, respectively. Worryingly, they were recovered from scalding water and eviscerators, indicating an increased risk for cross-contaminations. Uropathogenic E. coli (UPEC) were detected in the effluent of an in-house wastewater treatment plant (WWTP) of a poultry slaughterhouse, facilitating their further dissemination into surface waters. Our study provides important information on the molecular characteristics of (i) MDR, as well as (ii) ExPEC and UPEC regarding their clonal structure, antimicrobial resistance and virulence factors. Based on their clinical importance and pathogenic potential, the risk of slaughterhouse employees’ exposure cannot be ruled out. Through cross-contamination, these MDR E. coli pathotypes may be introduced into the food chain. Moreover, inadequate wastewater treatment may contribute to the dissemination of UPEC into surface waters, as shown for other WWTPs.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, 53113 Bonn, Germany;
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
- Correspondence: (M.S.); (J.A.H.)
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53113 Bonn, Germany;
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, 53113 Bonn, Germany;
- Department of Fresh Produce Logistics, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, 53113 Bonn, Germany; (R.M.S.); (E.S.)
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
- Department for Farm Animals and Veterinary Public Health and Epidemiology, Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (S.S.); (A.K.)
- Correspondence: (M.S.); (J.A.H.)
| |
Collapse
|
30
|
Wang R, Li J, Qu G, Guo D, Yang Y, Ma X, Wang M, Xu Y, Wang Y, Xia X, Shi C. Antibacterial Activity and Mechanism of Coenzyme Q 0 Against Escherichia coli. Foodborne Pathog Dis 2021; 18:398-404. [PMID: 33709804 DOI: 10.1089/fpd.2020.2884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q0 (CoQ0) is a natural compound found in Antrodia cinnamomea, which has a variety of biological activities. Here, the antibacterial activity and possible antibacterial mechanism of CoQ0 against Escherichia coli were investigated. The antibacterial effect was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, and by assessing bacterial survival and the effect on the growth of E. coli after CoQ0 treatment in Luria-Bertani (LB) broth. To reveal the antibacterial mechanism of CoQ0, changes in intracellular adenosine triphosphate (ATP) concentration, membrane potential, and bacterial protein content, as well as effects on cell morphology and membrane integrity, were investigated. Both the MICs and MBCs of CoQ0 against E. coli were 0.1 mg/mL. After treatment of E. coli (6.5 log colony-forming units/mL) with 0.1 mg/mL of CoQ0 in LB broth for 3 h, the number of viable cells dropped below the detection limit. In addition, CoQ0 treatment resulted in the reduction in intracellular ATP concentration, cell membrane hyperpolarization, decreased bacterial protein concentrations, and damage to cell membrane integrity and cellular morphology. These results indicated that CoQ0 has effective antibacterial activity against E. coli, suggesting potential applications in food industry safety.
Collapse
Affiliation(s)
- Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Geruo Qu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Kurittu P, Khakipoor B, Aarnio M, Nykäsenoja S, Brouwer M, Myllyniemi AL, Vatunen E, Heikinheimo A. Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Front Microbiol 2021; 12:592291. [PMID: 33613476 PMCID: PMC7886708 DOI: 10.3389/fmicb.2021.592291] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. blaCTX–M–15-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring blaTEM–52C from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.
Collapse
Affiliation(s)
- Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Banafsheh Khakipoor
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
32
|
Genetic Features of Extended-Spectrum β-Lactamase-Producing Escherichia coli from Poultry in Mayabeque Province, Cuba. Antibiotics (Basel) 2021; 10:antibiotics10020107. [PMID: 33499392 PMCID: PMC7910960 DOI: 10.3390/antibiotics10020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
A total of 434 poultry cloacal samples were collected from seven different farms in different years (2013–2015) in the Cuban province of Mayabeque and analyzed for the presence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec). Sixty-two 3GC-R-Ec isolates were recovered in total from the farms, with detection rates of 2.9% in 2013, 10.3% in 2014, and 28.7% in 2015. Characterization of 32 3GC-R-Ec isolates revealed the presence of the extended-spectrum β-lactamase (ESBL) genes blaCTX-M-1 (n = 27), blaCTX-M-15 (n = 4), and blaCTX-M-1 together with blaLAP-2 (n = 1). The isolates also contained different proportions of genes conferring decreased susceptibility to sulfonamides (sul1, sul2, sul3), trimethoprim (dfrA1, dfrA7, dfrA12, dfrA14, dfrA17), tetracyclines (tet(A), tet(B)), aminoglycosides (aac(6′)-Ib-cr, strA, strB), chloramphenicol (cmlA1, floR), macrolides (mph(A), mph(D)), and quinolones (qnrS, qnrB, aac(6′)-Ib-cr) as well as mutations in the fluoroquinolone-resistance determining regions of GyrA (S83L, D87N, D87Y) and ParC (S80I, E84G). The isolates belonged to 23 different sequence types and to phylogroups A (n = 25), B1 (n = 5), and D (n = 2), and they contained plasmid-associated incompatibility groups FII, X1, HI1, HI2, N, FIA, and FIB. These findings reveal a genetically diverse population of multiresistant ESBL-producing E. coli in poultry farms in Cuba, which suggests multiple sources of contamination and the acquisition of antibiotic resistance genes.
Collapse
|
33
|
Al-Sa'ady AT, Mohammad GJ, Hussen BM. Genetic relation and virulence factors of carbapenemase-producing Uropathogenic Escherichia coli from urinary tract infections in Iraq. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020; 10:ani10122239. [PMID: 33260303 PMCID: PMC7761174 DOI: 10.3390/ani10122239] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This revision is about the problem of Escherichia coli as a commensal and pathogenic bacterium among food-producing animals and health implications. Escherichia coli may play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tract; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. The majority of E. coli strains are commensals inhabiting the intestinal tract of humans and warm-blooded animals and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. All over the word, antibiotic resistance is commonly detected among commensal bacteria from food-producing animals, raising important questions on the potential impact of antibiotic use in animals and the possible transmission of these resistant bacteria to humans through the food chain. The use, in food-producing animals, of antibiotics that are critically important in human medicine has been implicated in the emergence of new forms of resistant bacteria, including new strains of multidrug-resistant foodborne bacteria, such as extended spectrum β-lactamase (ESBL)-producing E. coli. Abstract Escherichia coli are facultative, anaerobic Gram-negative rods with many facets. Within resistant bacterial populations, they play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tracts; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. Thus, the prevalence of antimicrobial resistance in these commensal bacteria (or others, such as enterococci) can be a good indicator for the selective pressure caused by the use of antimicrobial agents, providing an early warning of the emergence of antimicrobial resistance in pathogens. As many as 90% of E. coli strains are commensals inhabiting the intestinal tracts of humans and warm-blooded animals. As a commensal, it lives in a mutually beneficial association with its hosts and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. In humans, it is the prominent cause of enteritis, community- and hospital-acquired urinary tract infection (UTI), septicemia, postsurgical peritonitis, and other clinical infections, such as neonatal meningitis, while, in farm animals, it is more prominently associated with diarrhea. On a global scale, E. coli can be considered the most important human pathogen, causing severe infection along with other major bacterial foodborne agents, such as Salmonella spp. and Campylobacter. Thus, the importance of resistance in E. coli, typically considered a benign commensal, should not be underestimated.
Collapse
Affiliation(s)
- Sónia Ramos
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-259-350-466
| |
Collapse
|
35
|
Song J, Oh SS, Kim J, Shin J. Extended-spectrum β-lactamase-producing Escherichia coli isolated from raw vegetables in South Korea. Sci Rep 2020; 10:19721. [PMID: 33184462 PMCID: PMC7661520 DOI: 10.1038/s41598-020-76890-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of oxyimino-cephalosporin-resistant Enterobacteriaceae has become a global concern because of their clinical impact on both human and veterinary medicine. The present study determined the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) isolates from raw vegetables. A total of 1324 samples were collected from two agricultural wholesale markets in Incheon, South Korea in 2018. The ESBL-EC strains were isolated from 0.83% (11/1324) samples, and all of them were resistant to ampicillin, piperacillin, cefazoline, cefotaxime, and nalidixic acid and yielded CTX-M-type ESBL, including CTX-M-14, CTX-M-15, CTX-M-55, CTX-M-27, and CTX-M-65. The isolates belonged to phylogenetic subgroups D (n = 5), A (n = 4), and B1 (n = 2). Multilocus sequence typing revealed nine known E. coli sequence types (STs), including ST10, ST38, ST69, ST101, ST224, ST349, ST354, ST2509, ST2847, and two new STs. Notably, ST69, ST10, ST38, and ST354 belong to the major human-associated extraintestinal pathogenic E. coli lineages. Our results demonstrate that ESBL-producing multidrug-resistant pathogens may be transmitted to humans through the vegetable intake, highlighting the importance of resistance monitoring and intervention in the One Health perspective.
Collapse
Affiliation(s)
- Jihyun Song
- Department of Microbiology, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Sung-Suck Oh
- Incheon Research Institute of Public Health and Environment, Incheon, 22320, South Korea
| | - Junghee Kim
- Incheon Research Institute of Public Health and Environment, Incheon, 22320, South Korea
| | - Jinwook Shin
- Department of Microbiology, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| |
Collapse
|
36
|
Massella E, Reid CJ, Cummins ML, Anantanawat K, Zingali T, Serraino A, Piva S, Giacometti F, Djordjevic SP. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics (Basel) 2020; 9:antibiotics9110782. [PMID: 33172096 PMCID: PMC7694828 DOI: 10.3390/antibiotics9110782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
Collapse
Affiliation(s)
- Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Cameron J. Reid
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Max L. Cummins
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Kay Anantanawat
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
- Correspondence:
| |
Collapse
|
37
|
Ogura Y, Ueda T, Nukazawa K, Hiroki H, Xie H, Arimizu Y, Hayashi T, Suzuki Y. The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Sci Rep 2020; 10:17880. [PMID: 33087784 PMCID: PMC7578040 DOI: 10.1038/s41598-020-75065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.
Collapse
Affiliation(s)
- Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takuya Ueda
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hayate Hiroki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hui Xie
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
38
|
Fournier C, Aires de Sousa M, Fuster Escriva B, Sales L, Nordmann P, Poirel L. Epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae among healthcare students, at the Portuguese Red Cross Health School of Lisbon, Portugal. J Glob Antimicrob Resist 2020; 22:733-737. [PMID: 32659506 DOI: 10.1016/j.jgar.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of the present study was to prospectively evaluate the prevalence of intestinal carriage by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae among Portuguese students attending a Bachelors' course in healthcare, and to determine the molecular features of ESBL-producing isolates. METHODS One-hundred and eleven faecal samples recovered from Portuguese healthcare students were screened for either ESBL-producing, carbapenem-resistant, colistin-resistant or pan-aminoglycoside-resistant Enterobacteriaceae, using respective screening media. All recovered isolates were tested for antimicrobial susceptibility and characterised by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS A total of 17 ESBL-producing Enterobacteriaceae (16 Escherichia coli and a single Klebsiella pneumoniae) were recovered from 16 students, representing a prevalence of 14.5%. The E. coli isolates were distributed into three sequence types (STs) and seven PFGE types. The most common ESBL identified was CTX-M-1 (n=13; 76%), followed by CTX-M-15 (n=3; 18%) and CTX-M-8 (n=1; 6%). The majority of the strains were resistant to sulfonamides (88%) and fosfomycin (71%). Resistance to aminoglycosides was observed at a low rate, that is 12% for both tobramycin and kanamycin. No colistin-, carbapenem- or pan-aminoglycoside-resistant isolates were recovered. A major clone, ST10-blaCTX-M-1, included 12 E. coli isolates. The blaCTX-M-1 gene was always located on an IncFIA/FIB plasmid type, co-harbouring genes encoding resistance to tetracycline, sulfonamides, trimethoprim-sulfamethoxazole and fosfomycin. CONCLUSION The most commonly identified ESBL gene in E. coli was blaCTX-M-1, usually identified among ESBL-producing isolates recovered from animals. A high prevalence of faecal carriage of ESBL-producing E. coli was found among healthy healthcare students, underlying this population as an important reservoir.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marta Aires de Sousa
- Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP), Lisbon, Portugal; Laboratory of Molecular Genetics, Instituto de Tecnologia Quimica e Biológica (ITQB) António Xavier, Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Begoña Fuster Escriva
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leila Sales
- Escola Superior de Saúde da Cruz Vermelha Portuguesa (ESSCVP), Lisbon, Portugal
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland; Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
39
|
IS Ecp1-Mediated Transposition Leads to Fosfomycin and Broad-Spectrum Cephalosporin Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00150-20. [PMID: 32122889 DOI: 10.1128/aac.00150-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/24/2020] [Indexed: 11/20/2022] Open
Abstract
A fosfomycin-resistant and carbapenemase (OXA-48)-producing Klebsiella pneumoniae isolate was recovered, and whole-genome sequencing revealed ISEcp1-bla CTX-M-14b tandemly inserted upstream of the chromosomally encoded lysR-fosA locus. Quantitative evaluation of the expression of lysR and fosA genes showed that this insertion brought a strong hybrid promoter leading to overexpression of the fosA gene, resulting in fosfomycin resistance. This work showed the concomitant acquisition of resistance to broad-spectrum cephalosporins and fosfomycin due to a single genetic event.
Collapse
|
40
|
Díaz-Jiménez D, García-Meniño I, Herrera A, García V, López-Beceiro AM, Alonso MP, Blanco J, Mora A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid aEPEC/ExPEC Pathotype O153:H10-A-ST10 eae-beta1 Occurred in Meat, Poultry, Wildlife and Human Diarrheagenic Samples. Antibiotics (Basel) 2020; 9:antibiotics9040192. [PMID: 32316613 PMCID: PMC7235894 DOI: 10.3390/antibiotics9040192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Different surveillance studies (2005–2015) in northwest Spain revealed the presence of eae-positive isolates of Escherichia coli O153:H10 in meat for human consumption, poultry farm, wildlife and human diarrheagenic samples. The aim of this study was to explore the genetic and genomic relatedness between human and animal/meat isolates, as well as the mechanism of its persistence. We also wanted to know whether it was a geographically restricted lineage, or whether it was also reported elsewhere. Conventional typing showed that 32 isolates were O153:H10-A-ST10 fimH54, fimAvMT78, traT and eae-beta1. Amongst these, 21 were CTX-M-32 or SHV-12 producers. The PFGE XbaI-macrorestriction comparison showed high similarity (>85%). The plasmidome analysis revealed a stable combination of IncF (F2:A-:B-), IncI1 (STunknown) and IncX1 plasmid types, together with non-conjugative Col-like plasmids. The core genome investigation based on the cgMLST scheme from EnteroBase proved close relatedness between isolates of human and animal origin. Our results demonstrate that a hybrid MDR aEPEC/ExPEC of the clonal group O153:H10-A-ST10 (CH11-54) is circulating in our region within different hosts, including wildlife. It seems implicated in human diarrhea via meat transmission, and in the spreading of ESBL genes (mainly of CTX-M-32 type). We found genomic evidence of a related hybrid aEPEC/ExPEC in at least one other country.
Collapse
Affiliation(s)
- Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Alexandra Herrera
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana María López-Beceiro
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - María Pilar Alonso
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain;
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Correspondence: ; Tel.: +34-982822110
| |
Collapse
|
41
|
Pérez-Etayo L, González D, Vitas AI. The Aquatic Ecosystem, a Good Environment for the Horizontal Transfer of Antimicrobial Resistance and Virulence-Associated Factors Among Extended Spectrum β-lactamases Producing E. coli. Microorganisms 2020; 8:microorganisms8040568. [PMID: 32326434 PMCID: PMC7232254 DOI: 10.3390/microorganisms8040568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
One of the main public health problems nowadays is the increase of antimicrobial resistance, both in the hospital environment and outside it (animal environment, food and aquatic ecosystems, among others). It is necessary to investigate the virulence-associated factors and the ability of horizontal gene transfer among bacteria for a better understanding of the pathogenicity and the mechanisms of dissemination of resistant bacteria. Therefore, the objective of this work was to detect several virulence factors genes (fimA, papC, papG III, cnf1, hlyA and aer) and to determine the conjugative capacity in a wide collection of extended-spectrum β-lactamases-producing E. coli isolated from different sources (human, food, farms, rivers, and wastewater treatment plants). Regarding virulence genes, fimA, papC, and aer were distributed throughout all the studied environments, papG III was mostly related to clinical strains and wastewater is a route of dissemination for cnf1 and hlyA. Strains isolated from aquatic environments showed an average conjugation frequencies of 1.15 × 10−1 ± 5 × 10−1, being significantly higher than those observed in strains isolated from farms and food (p < 0.05), with frequencies of 1.53 × 10−4 ± 2.85 × 10−4 and 9.61 × 10−4 ± 1.96 × 10−3, respectively. The reported data suggest the importance that the aquatic environment (especially WWTPs) acquires for the exchange of genes and the dispersion of resistance. Therefore, specific surveillance programs of AMR indicators in wastewaters from animal or human origin are needed, in order to apply sanitation measures to reduce the burden of resistant bacteria arriving to risky environments as WWTPs.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Correspondence: ; Tel.: +34-948-425-600
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| |
Collapse
|
42
|
Alegría Á, Arias-Temprano M, Fernández-Natal I, Rodríguez-Calleja JM, García-López ML, Santos JA. Molecular Diversity of ESBL-Producing Escherichia coli from Foods of Animal Origin and Human Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1312. [PMID: 32085569 PMCID: PMC7068493 DOI: 10.3390/ijerph17041312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/21/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
Dissemination of enterobacteria that produce extended spectrum β-lactamases (ESBL) throughout the food chain has become an important health concern. This work aimed to evaluate the occurrence of ESBL-producing bacteria in foods of animal origin and to investigate the similarities between food and human isolates. The presence of beta-lactam-resistant Enterobacteriaceae was analyzed in 108 food samples, isolating 10 strains of Escherichia coli, one strain of Citrobacter freundi, and one of Hafnia alvei. E. coli isolates were compared to a group of 15 strains isolated from human patients by antibiotic susceptibility testing, characterization of ESBL genes (blaTEM, blaCTX,), multilocus sequence typing (MLST) and pulse-field gel electrophoresis (PFGE). Nineteen (14 clinical and five food) isolates carried blaCTX, 14 (six clinical and eight food) carried blaTEM, and three (one clinical and two food) carried blaSHV gen. MLST analysis revealed the prevalence of ST131 among the clinical strains, which grouped together in a PFGE cluster. Food isolates showed higher diversity and two of them (ST57) grouped with clinical strains, whereas another two belonged to clonal groups with virulence potential (ST59). In conclusion, the results showed that foods of animal origin must be regarded as a reservoir of ESBL-producing bacteria of clinical relevance, which might spread through the food chain.
Collapse
Affiliation(s)
- Ángel Alegría
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, ES24071 León, Spain; (Á.A.); (J.M.R.-C.); (M.-L.G.-L.)
| | - Marta Arias-Temprano
- Department of Clinical Microbiology, Complejo Asistencial Universitario de León (CAULE), ES24071 León, Spain; (M.A.-T.); (I.F.-N.)
| | - Isabel Fernández-Natal
- Department of Clinical Microbiology, Complejo Asistencial Universitario de León (CAULE), ES24071 León, Spain; (M.A.-T.); (I.F.-N.)
| | - Jose M. Rodríguez-Calleja
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, ES24071 León, Spain; (Á.A.); (J.M.R.-C.); (M.-L.G.-L.)
| | - María-Luisa García-López
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, ES24071 León, Spain; (Á.A.); (J.M.R.-C.); (M.-L.G.-L.)
| | - Jesús A. Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, ES24071 León, Spain; (Á.A.); (J.M.R.-C.); (M.-L.G.-L.)
| |
Collapse
|
43
|
Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, Morris JG, Jeong KC. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 2020; 46:1-14. [PMID: 31976793 DOI: 10.1080/1040841x.2020.1715339] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Raies A Mir
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, School of Biological Sciences, and Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Department of Wildlife Ecology and Conservation, University of Florida, Ona, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| |
Collapse
|
44
|
Zendri F, Maciuca IE, Moon S, Jones PH, Wattret A, Jenkins R, Baxter A, Timofte D. Occurrence of ESBL-Producing Escherichia coli ST131, Including the H30-Rx and C1-M27 Subclones, Among Urban Seagulls from the United Kingdom. Microb Drug Resist 2019; 26:697-708. [PMID: 32519936 DOI: 10.1089/mdr.2019.0351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial resistance is a public health concern. Understanding any role that urban seagulls may have as a reservoir of resistant bacteria could be important for reducing transmission. This study investigated fecal Escherichia coli isolates from seagulls (herring gulls and lesser black-backed gulls) to determine the prevalence of extended-spectrum cephalosporin-resistant (ESC-R) and fluoroquinolone-resistant E. coli among gull species from two cities (Taunton and Birmingham) in the United Kingdom (UK). We characterized the genetic background and carriage of plasmid-mediated resistance genes in extended-spectrum β-lactamase (ESBL)-producing E. coli obtained from these birds. Sixty ESC-R E. coli isolates were obtained from 39 seagulls (39/78, 50%), of which 28 (28/60, 46.7%) were positive for plasmid-mediated CTX-M and/or AmpC β-lactamase resistance genes. Among these, blaCTX-M-15, blaCTX-M-14, and blaCMY-2 predominated. Three isolates belonging to the B2-ST131 clone were detected, of which two harbored blaCTX-M-15 (typed to C2/H30Rx) and one harbored blaCTX-M-27 and was typed to C1/H30-R (recently described as the C1-M27 sublineage). The plasmid-mediated quinolone resistance (PMQR) gene carriage prevalence (11.7%) consisted of aac(6')-Ib-cr and qnrB genes. No carbapenem or colistin resistance genes were detected. Urban seagulls in the UK are colonized and can spread major antimicrobial-resistant E. coli isolates harboring ESBL and PMQR determinants, including clinically important strains such as the pandemic clone B2-ST131 and the C1-M27 subclade. This is the first report of ST131-C1-M27 subclade in wildlife in the UK and in seagulls worldwide.
Collapse
Affiliation(s)
- Flavia Zendri
- Department of Veterinary Pathology and Public Health, Faculty of Health and Life Sciences, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Iuliana E Maciuca
- Department of Veterinary Pathology and Public Health, Faculty of Health and Life Sciences, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Simon Moon
- Somerset West and Taunton Council, Environmental Health, Taunton, United Kingdom
| | - Philip H Jones
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, United Kingdom
| | - Andy Wattret
- Department of Veterinary Pathology and Public Health, Faculty of Health and Life Sciences, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Richard Jenkins
- School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Andy Baxter
- Birdstrike Management Ltd., York, United Kingdom
| | - Dorina Timofte
- Department of Veterinary Pathology and Public Health, Faculty of Health and Life Sciences, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
45
|
Nüesch-Inderbinen M, Käppeli N, Morach M, Eicher C, Corti S, Stephan R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet Rec Open 2019; 6:e000369. [PMID: 31897302 PMCID: PMC6924703 DOI: 10.1136/vetreco-2019-000369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/04/2023] Open
Abstract
Background Escherichia coli is an important aetiological agent of bovine mastitis worldwide. Methods In this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method. Results The most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively. Conclusion Among the study's sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.
Collapse
Affiliation(s)
| | - Nadine Käppeli
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marina Morach
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Corinne Eicher
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sabrina Corti
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Fagerström A, Mölling P, Khan FA, Sundqvist M, Jass J, Söderquist B. Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLoS One 2019; 14:e0224861. [PMID: 31697734 PMCID: PMC6837386 DOI: 10.1371/journal.pone.0224861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli have been reported in natural environments, and may be released through wastewater. In this study, the genetic relationship between ESBL-producing E. coli collected from patient urine samples (n = 45, both hospitalized patients and out-patients) and from environmental water (n = 82, from five locations), during the same time period, was investigated. Three independent water samples were collected from the municipal wastewater treatment plant, both incoming water and treated effluent water; the receiving river and lake; and a bird sanctuary near the lake, on two different occasions. The water was filtered and cultured on selective chromID ESBL agar plates in order to detect and isolate ESBL-producing E. coli. Illumina whole genome sequencing was performed on all bacterial isolates (n = 127). Phylogenetic group B2 was more common among the clinical isolates than the environmental isolates (44.4% vs. 17.1%, p < 0.01) due to a significantly higher prevalence of sequence type (ST) 131 (33.3% vs. 13.4%, p < 0.01). ST131 was, however, one of the most prevalent STs among the environmental isolates. There was no significant difference in diversity between the clinical isolates (DI 0.872 (0.790-0.953)) and the environmental isolates (DI 0.947 (0.920-0.969)). The distribution of ESBL genes was similar: blaCTX-M-15 dominated, followed by blaCTX-M-14 and blaCTX-M-27 in both the clinical (60.0%, 8.9%, and 6.7%) and the environmental isolates (62.2%, 12.2%, and 8.5%). Core genome multi-locus sequence typing showed that five environmental isolates, from incoming wastewater, treated wastewater, Svartån river and Hjälmaren lake, were indistinguishable or closely related (≤10 allele differences) to clinical isolates. Isolates of ST131, serotype O25:H4 and fimtype H30, from the environment were as closely related to the clinical isolates as the isolates from different patients were. This study confirms that ESBL-producing E. coli are common in the aquatic environment even in low-endemic regions and suggests that wastewater discharge is an important route for the release of ESBL-producing E. coli into the aquatic environment.
Collapse
Affiliation(s)
- Anna Fagerström
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Faisal Ahmad Khan
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre–Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
47
|
Tymensen L, Booker CW, Hannon SJ, Cook SR, Jokinen CC, Zaheer R, Read R, Boerlin P, McAllister TA. Plasmid Distribution among Escherichia coli from Livestock and Associated Wastewater: Unraveling Factors That Shape the Presence of Genes Conferring Third-Generation Cephalosporin Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11666-11674. [PMID: 31532641 DOI: 10.1021/acs.est.9b03486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A key concern with agricultural wastewater storage ponds is that they may provide an environment conducive for horizontal exchange of antibiotic resistance genes (ARGs), thereby facilitating the emergence of antibiotic resistant pathogens. Central to this exchange are mobile genetic elements like plasmids; yet, the factors shaping their presence in agricultural environments remain poorly understood. Here, using Escherichia coli as a model bacterium, we examined genetic backgrounds and plasmid profiles of generic fecal and wastewater isolates and those possessing blaCTX-M and blaCMY-2 genes (which confer resistance to third-generation cephalosporins) to delineate factors shaping the environmental persistence of plasmid-associated ARGs in beef cattle feedlots. The wastewater environment exerted minimal influence on plasmid repertoires, as the number of plasmids and distribution of different incompatibility groups did not differ between generic fecal and wastewater isolates. The blaCTX-M and blaCMY-2 genes were associated with IncF and IncA/C plasmids, respectively, and host isolates possessing these ARGs had fewer plasmids than generic isolates, suggesting ARG-bearing plasmids may associate predominantly with such hosts to compensate for the metabolic burden imposed by these plasmids. Phylogeny also appeared to be a factor for blaCTX-M genes, as their bacterial hosts were restricted to particular genetic lineages, including the environmentally adapted ET-1 clade, as noted previously for these genes. Ultimately, these findings have important implications for evaluating human health risks of agricultural wastewater with respect to environmental persistence of ARGs and may help identify options for improving wastewater treatment.
Collapse
Affiliation(s)
- Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd. , Okotoks , Alberta Canada , T1S 2A2
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd. , Okotoks , Alberta Canada , T1S 2A2
| | - Shaun R Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| | - Cassandra C Jokinen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry , Lethbridge , Alberta Canada , T1J 4V6
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta Canada , T1Y 6J4
| | - Patrick Boerlin
- Department of Pathobiology , University of Guelph , 50 Stone Road East , Guelph , Ontario Canada , N1G 2W1
| | - Tim A McAllister
- Agriculture and Agri-Food Canada , Lethbridge , Alberta Canada , T1J 4B1
| |
Collapse
|
48
|
Hassen B, Saloua B, Abbassi MS, Ruiz-Ripa L, Mama OM, Hassen A, Hammami S, Torres C. mcr-1 encoding colistin resistance in CTX-M-1/CTX-M-15- producing Escherichia coli isolates of bovine and caprine origins in Tunisia. First report of CTX-M-15-ST394/D E. coli from goats. Comp Immunol Microbiol Infect Dis 2019; 67:101366. [PMID: 31627036 DOI: 10.1016/j.cimid.2019.101366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
The objective of this study was to isolate and characterize ESBL-producing Escherichia coli (ESBL-EC) from raw bovine and caprine milk samples, as well as from bovine faeces in Tunisia. Therefore, 120 bovine faecal samples and 9 caprine raw milk samples were collected from 2 extensive dairy-cow-farms and 5 ovine farms, respectively. In addition, 94 raw bovine milk samples, from containers and holding tanks from 50 small public-markets in the North of Tunisia, were processed for the isolation of cefotaxime-resistant E. coli (CTXR). Antimicrobial susceptibility testing was carried out by disc-diffusion/broth-microdilution methods. The presence of genes encoding ESBL, as well as those encoding colistin (mcr-1 to 5 genes)- sulfonamide-, tetracycline-, gentamicin-, quinolone and chloramphenicol-resistance and class 1 integrons were tested by PCR (and sequencing in some cases). ESBL-EC isolates were further characterized by phylogrouping and MLST/PFGE typing. Eight samples (3.6%) contained ESBL-EC isolates (3/2 from raw bovine/goat milk and 3 from cattle faeces) and one isolate/sample was characterized. Four ESBL-EC isolates, all of bovine origin (3 faeces/1 milk), were resistant to colistin (MIC: 8-16 μg/ml), harboured the mcr-1 gene and carried IncP- and IncFIB-type plasmids. The 8 ESBL-EC strains had the following characteristics: a) bovine faeces: mcr-1/CTX-M-1/D-ST1642 (3 strains); b) raw milk: mcr-1/CTX-M-1/A-ST10 (1 strain); CTX-M-15/B1-ST394 (3 strains), and CTX-M-15/A-ST46 (1 strain). Most of bovine ESBL-EC isolates were multidrug-resistant (4/5). Our results showed that ESBL-EC were detected in bovine and caprine samples (CTX-M-1/CTX-M-15 producers), being some of them colistin-resistant (associated with mcr-1 gene), and they belonged to international clonal lineages.
Collapse
Affiliation(s)
- Bilel Hassen
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Benlabidi Saloua
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis 1006, Tunisia; Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Salah Hammami
- Université de la Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain.
| |
Collapse
|
49
|
Thermal inactivation of extraintestinal pathogenic Escherichia coli suspended in ground chicken meat. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Nüesch-Inderbinen M, Treier A, Zurfluh K, Stephan R. Raw meat-based diets for companion animals: a potential source of transmission of pathogenic and antimicrobial-resistant Enterobacteriaceae. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191170. [PMID: 31824726 PMCID: PMC6837177 DOI: 10.1098/rsos.191170] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/18/2019] [Indexed: 05/12/2023]
Abstract
Feeding pets raw meat-based diets (RMBDs) has become increasingly popular but may constitute a risk due to the contamination with pathogenic and antimicrobial-resistant (AMR) bacteria. The aim of this study was to evaluate commercially available RMBDs with regard to microbiological quality and occurrence of AMR Enterobacteriaceae. Of 51 RMBD samples, 72.5% did not meet the microbiological standards for Enterobacteriaceae set out by EU regulations for animal by-products intended for pet food. Furthermore, Salmonella was detected in 3.9% of the samples. AMR bacteria were found in 62.7% of the samples, the majority thereof were resistant to third-generation cephalosporins due to the production of extended-spectrum β-lactamases (ESBLs) including CTX-M-1, which is widespread in livestock, and CTX-M-15, which is the most common ESBL variant worldwide. Colistin- and aminoglycoside-resistant isolates, producing MCR-1 and RMTB, were identified in 3.9 and 2% of the samples, respectively. The majority of the AMR Escherichia coli belonged to commensal groups A or B1 and were associated with clonal complexes CC155 and CC10. Two belonged to the emerging extraintestinal pathogenic CC648, and one to the globally disseminated uropathogenic E. coli sequence type ST69, suggesting zoonotic potential. The microbiological quality and the high prevalence of AMR producing Enterobacteriaceae in RMBDs raise concerns for animal and public health.
Collapse
Affiliation(s)
- Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|