1
|
Liu X, Wang Z, Wang X, Liu J, Waigi MG. Conversion of estriol to estrone: A bacterial strategy for the catabolism of estriol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116564. [PMID: 38865939 DOI: 10.1016/j.ecoenv.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Natural estrogens, including estrone (E1), 17β-estradiol (E2), and estriol (E3), are potentially carcinogenic pollutants commonly found in water and soil environments. Bacterial metabolic pathway of E2 has been studied; however, the catabolic products of E3 have not been discovered thus far. In this study, Novosphingobium sp. ES2-1 was used as the target strain to investigate its catabolic pathway of E3. The metabolites of E3 were identified by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) combined with stable 13C3-labeling. Strain ES2-1 could almost completely degrade 20 mg∙L-1 of E3 within 72 h under the optimal conditions of 30°C and pH 7.0. When inoculated with strain ES2-1, E3 was initially converted to E1 and then to 4-hydroxyestrone (4-OH-E1), which was then cleaved to HIP (metabolite A6) via the 4, 5-seco pathway or cleaved to the B loop via the 9,10-seco pathway to produce metabolite with a long-chain ketone structure (metabolite B4). Although the ring-opening sequence of the above two metabolic pathways was different, the metabolism of E3 was achieved especially through continuous oxidation reactions. This study reveals that, E3 could be firstly converted to E1 and then to 4-OH-E1, and finally degraded into small molecule metabolites through two alternative pathways, thereby reducing E3 pollution in water and soil environments.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiu Wang
- Institute of Animal Husbandry and Poultry Science, Nanjing 210017, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
2
|
Li S, Yang W, Mo J, Wang Y, Lu C, Gao Y, Li Y, Sun K. Adaptive responses and metabolic strategies of Novosphingobium sp. ES2-1-17β-estradiol analyzed through integration of genomic and proteomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132543. [PMID: 37717446 DOI: 10.1016/j.jhazmat.2023.132543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Environmental 17β-estradiol (E2) can cause potential harm to ecological balance and human health. Novosphingobium sp. ES2-1 is an E2-degrading bacterium previously obtained, which converts E2 to estrone (E1) and then to 4-hydroxyestrone (4-OH-E1) followed by oxidation to form metabolites with long-chain structure during upstream degradation. Herein, we found that intracellular enzymes were the major contributors to E2 biodegradation by strain ES2-1. A total of 243 proteins were dys-expressed under E2 condition, 123 were up-regulated and 120 were down-regulated thereinto. The up-regulated members of ABC transport systems, aromatics degradation, and fatty acid degradation indicated a reinforced transfer and utilization of E2. Cytochrome P450 monooxygenase (EstP1), 2-keto-4-pentenoate hydratase, pyruvate dehydrogenase, acetyl-CoA acetyltransferase, TonB-dependent receptor were involved in E2 catabolism. During downstream degradation, the metabolites with long-chain structure were decomposed adopting β-oxidation pattern and ultimately entered the TCA cycle; 2-keto-4-pentenoic acid might be an emblematic product of such process. Furthermore, E2 converting to E1 was catalyzed by 17β-dehydrogenase probably encoded by IM701_16645 or IM701_16910; 4-OH-E1 meta-cleavage was catalyzed by a dioxygenase encoded by IM701_20340 or IM701_21000 or IM701_09625. Our study provided an in-depth insight into the adaptive responses and metabolic strategies of Novosphingobium to E2.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China.
| | - Wei Yang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Jingjing Mo
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Yubing Wang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Chao Lu
- National Agricultural Experimental Station for Agricultural Environment, Luhe, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yucheng Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Jiulong Road 111, Hefei 230601, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
3
|
Odinga ES, Chen X, Mbao EO, Waigi MG, Gudda FO, Zhou X, Ling W, Czech B, Oleszczuk P, Abdalmegeed D, Gao Y. Estrogens and xenoestrogen residues in manure-based fertilizers and their potential ecological risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118609. [PMID: 37473553 DOI: 10.1016/j.jenvman.2023.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Optimal manure treatment aimed at usage as agricultural soil fertilizers is a prerequisite ecological pollution control strategy. In this work, livestock manure-based fertilizers were collected from 71 animal farms across 14 provinces in China. The contamination levels and potential ecotoxicological risks of residual steroid estrogens (SEs): estrone (E1), estriol (E3), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2) and xenoestrogen (XE) bisphenol A (BPA), were investigated. The results showed that the occurrence frequencies for SEs and XE ranged from 66.67% to 100%, and the mean concentration varied considerably across the study locations. The total content of SEs and XE in Hebei province was the highest, and swine manure-based fertilizers concentrations were higher than the levels reported in other animal fertilizers. Compared with farm level manure, manure-based fertilizers are processed by composting, and the micropollutants quantities are significantly reduced (mean: 87.65 - 534.02 μg/kg). The total estradiol equivalent quantity (EEQ) that might migrate to the soil was estimated to be 1.23 μg/kg. Based on the estimated application rate of manure, 38% of the fertilizers risk quotients exceeded 0.1, indicating medium to high risks pressure on terrestrial organisms. Nonetheless, the estrogenic risk was lower in manure-based fertilizers than in manure. This study highlights the significance of proper treatment of livestock manure and designing an optimal manure fertilization strategy to mitigate the risks posed by SEs and XEs to the agroecosystems.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Dyaaaldin Abdalmegeed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
5
|
Lewis AJ, Ebrahimi F, McKenzie ER, Suri R, Sales CM. Influence of microbial weathering on the partitioning of per- and polyfluoroalkyl substances (PFAS) in biosolids. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:415-431. [PMID: 36637091 DOI: 10.1039/d2em00350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of man-made fluorinated organic chemicals that can accumulate in the environment. In water resource recovery facilities (WRRFs), some commonly detected PFAS tend to partition to and concentrate in biosolids where they can act as a source to ecological receptors and may leach to groundwater when land-applied. Although biosolids undergo some stabilization to reduce pathogens before land application, they still contain many microorganisms, contributing to the eventual decomposition of different components of the biosolids. This work demonstrates ways in which microbial weathering can influence biosolids decomposition, degrade PFAS, and impact PFAS partitioning in small-scale, controlled laboratory experiments. In the microbial weathering experiments, compound-specific PFAS biosolids-water partitioning coefficients (Kd) were demonstrated to decrease, on average, 0.4 logs over the course of the 91 day study, with the most rapid changes occurring during the first 10 days. Additionally, the highest rates of lipid, protein, and organic matter removal occurred during the same time. Among the evaluated independent variables, statistical analyses demonstrated that the most significant solids characteristics that impacted PFAS partitioning were organic matter, proteins, lipids, and molecular weight of organics. A multiple linear regression model was built to predict PFAS partitioning behavior in biosolids based on solid characteristics of the biosolids and PFAS characteristics with a R2 value of 0.7391 when plotting predicted and measured log Kd. The findings from this work reveal that microbial weathering can play a significant role in the eventual fate and transport of PFAS and their precursors from biosolids.
Collapse
Affiliation(s)
- Asa J Lewis
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3100 Market St., Philadelphia, PA, 19104, USA.
| | - Farshad Ebrahimi
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Christopher M Sales
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3100 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Masoner JR, Kolpin DW, Cozzarelli IM, Bradley PM, Arnall BB, Forshay KJ, Gray JL, Groves JF, Hladik ML, Hubbard LE, Iwanowicz LR, Jaeschke JB, Lane RF, McCleskey RB, Polite BF, Roth DA, Pettijohn MB, Wilson MC. Contaminant Exposure and Transport from Three Potential Reuse Waters within a Single Watershed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1353-1365. [PMID: 36626647 PMCID: PMC9878729 DOI: 10.1021/acs.est.2c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.
Collapse
Affiliation(s)
- Jason R. Masoner
- U.S.
Geological Survey, Oklahoma
City, Oklahoma 73116, United States
| | - Dana W. Kolpin
- U.S.
Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | - Brian B. Arnall
- Oklahoma
State University, Stillwater, Oklahoma 74078, United States
| | - Kenneth J. Forshay
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80225, United States
| | - Justin F. Groves
- U.S. Environmental
Protection Agency, Ada, Oklahoma 74820, United States
| | | | | | - Luke R. Iwanowicz
- U.S.
Geological Survey, Kearneysville, West Virginia, 25430, United States
| | | | - Rachael F. Lane
- U.S. Geological
Survey, Lawrence, Kansas 66049, United States
| | | | | | - David A. Roth
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | | | | |
Collapse
|
7
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Kiesling RL, Elliott SM, Kennedy JL, Hummel SL. Validation of a vulnerability index of exposure to chemicals of emerging concern in surface water and sediment of Great Lakes tributaries of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154618. [PMID: 35307448 DOI: 10.1016/j.scitotenv.2022.154618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Widespread occurrence of emerging contaminants in Great Lakes tributaries led to the development and publication of a vulnerability index (VI) to assess the potential exposure of aquatic communities to chemicals of emerging concern (CEC) in the Great Lakes basin. The robust nature of the VI was tested to evaluate the underlying statistical model and expand the spatial domain of the index. Data collected at 131 new sampling sites (Test 1) and published data from independent studies (Test 2) were used to test the model predictions. Test 1 water and sediment samples were analyzed for the same classes of CEC chemicals and compared to the predictions for the original VI. Concentrations and numbers of unique CECs detected in water and sediment samples were similar between the original data and the two test datasets, although CECs tended to have higher detection frequencies in the original dataset compared to the Test 1 and Test 2 datasets. For example, 69 CECs were detected in ≥30% of water samples in the original dataset compared with 17 CECs in the Test 1 data and 59 in the Test 2 data. Predicted vulnerability for test sites agreed with actual vulnerability 64% of the time for water and 71% of the time for sediment. Agreement percentage results were greater when individual sites were grouped by river, with 82% agreement between predictions and actual vulnerability for water and 78% agreement for sediment. For the entire dataset, the VI ranks correlated with an independent estimate of potential biological impact. Agreement percentage was the greatest for low or high vulnerability index values but highly variable for sites that are classified as having medium vulnerability. Despite the underlying variability, there is a significant correlation (R2 = 0.26; p < 0.01) between the VI ranking of tributaries and the independent ranking of potential negative biological impact.
Collapse
Affiliation(s)
| | - Sarah M Elliott
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN 55112, USA.
| | - James L Kennedy
- U.S. Geological Survey, 8551 Research Way, Middleton, WI 53562, USA.
| | - Stephanie L Hummel
- U.S. Fish and Wildlife Service, 5600 American Blvd W #990, Bloomington, MN 55437, USA.
| |
Collapse
|
9
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Álvarez-Ruiz R, Hawker DW, Mueller JF, Gallen M, Kaserzon S, Picó Y, McLachlan MS. Postflood Monitoring in a Subtropical Estuary and Benchmarking with PFASs Allows Measurement of Chemical Persistence on the Scale of Months. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14607-14616. [PMID: 34664504 DOI: 10.1021/acs.est.1c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Measurements of chemical persistence in natural environments can provide insight into behavior not easily replicated in laboratory studies. However, it is difficult to find environmental situations suitable for such measurements, particularly for substances with half-lives exceeding several weeks. The objective of this study was to demonstrate that a strategic postflood monitoring campaign can be used to quantify transformation half-lives on the scale of months in a real aquatic system. Water samples were collected in the upper Brisbane River estuary on 36 occasions over 37 weeks and analyzed for 127 pharmaceuticals and personal care products (PPCPs), pesticides, and perfluoroalkyl substances (PFASs). High quality time trend data were obtained for 41 substances. For many of these, data on the input of a wastewater treatment plant to the upper estuary were also obtained. A mass balance model of the estuary stretch was formulated and parametrized using PFASs as persistent benchmarking chemicals. Transformation half-life estimates were obtained for 10 PPCPs and 7 pesticides ranging from 18 to 260 days. Furthermore, insight was obtained into dominant transformation processes as well as the magnitude of chemical inputs to the estuary and their sources. The approach developed shows that under certain conditions, estuaries can be used to quantify the persistence of organic contaminants with half-lives of the order of several months.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Ruiz
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE-UV, GV, CSIC), Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia Spain
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Darryl W Hawker
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
- Griffith School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Michael Gallen
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Sarit Kaserzon
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE-UV, GV, CSIC), Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia Spain
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
11
|
Koutnik VS, Leonard J, Alkidim S, DePrima FJ, Ravi S, Hoek EMV, Mohanty SK. Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116552. [PMID: 33545526 DOI: 10.1016/j.envpol.2021.116552] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/22/2023]
Abstract
Microplastics are continuously released into the terrestrial environment from sources where they are used and produced. These microplastics accumulate in soils, sediments, and freshwater bodies, and some are conveyed via wind and water to the oceans. The concentration gradient between terrestrial inland and coastal regions, the factors that influence the concentration, and the fundamental transport processes that could dynamically affect the distribution of microplastics are unclear. We analyzed microplastic concentration reported in 196 studies from 49 countries or territories from all continents and found that microplastic concentrations in soils or sediments and surface water could vary by up to eight orders of magnitude. Mean microplastic concentrations in inland locations such as glacier (191 n L-1) and urban stormwater (55 n L-1) were up to two orders of magnitude greater than the concentrations in rivers (0.63 n L-1) that convey microplastics from inland locations to water bodies in terrestrial boundary such as estuaries (0.15 n L-1). However, only 20% of studies reported microplastics below 20 μm, indicating the concentration in these systems can change with the improvement of microplastic detection technology. Analysis of data from laboratory studies reveals that biodegradation can also reduce the concentration and size of deposited microplastics in the terrestrial environment. Fiber percentage was higher in the sediments in the coastal areas than the sediments in inland water bodies, indicating fibers are preferentially transported to the terrestrial boundary. Finally, we provide theoretical frameworks to predict microplastics transport and identify potential hotspots where microplastics may accumulate.
Collapse
Affiliation(s)
- Vera S Koutnik
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| | - Jamie Leonard
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Sarah Alkidim
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Francesca J DePrima
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
| | - Sujith Ravi
- Department of Earth & Environmental Science, Temple University, Philadelphia, PA, USA
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, California, USA; UCLA California NanoSystems Institute, Los Angeles, California, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA; UCLA Institute of the Environment & Sustainability, Los Angeles, California, USA.
| |
Collapse
|
12
|
Zhong X, Downs CA, Li Y, Zhang Z, Li Y, Liu B, Gao H, Li Q. Comparison of toxicological effects of oxybenzone, avobenzone, octocrylene, and octinoxate sunscreen ingredients on cucumber plants (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136879. [PMID: 32018996 DOI: 10.1016/j.scitotenv.2020.136879] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Oxybenzone (OBZ), avobenzone (AVB), octocrylene (OCR) and octinoxate (OMC) are ultraviolet (UV) filters commonly added to chemical sunscreens. These UV filters are known to widely contaminate the environment through a variety of anthropogenic sources, including sewage discharge. However, systematic studies of the damage caused by these four UV filters and their toxicopathological differences in a variety of plant species are lacking. In this study, we demonstrated that irrigation with water containing these four UV filters could significantly inhibit the aboveground growth of cucumber plant. All of the UV filters decreased photosynthesis through nonstomatal factors but via different inhibitory mechanisms. Only OBZ inhibited photosynthesis by directly inhibiting photosynthetic electron transport, while the other three (AVB, OCR, and OMC) inhibited photosynthesis by inhibiting the Calvin-Benson cycle. Additionally, these four UV filters also decreased plant respiration under long-term treatment. Photosynthesis and respiration inhibition led to the over production of reactive oxygen species (ROS) and the formation of lipid peroxidation damage products, which further damaged the structure and function of plant cells, causing secondary pathologies and potentially leading to reduced crop yields. The study also demonstrated that these four UV filters caused different degrees of phototoxic damage to cucumber plants. On the basis of comprehensive evaluation, we speculated that the order of the four UV filters in terms of plant damage was OBZ > AVB > OMC > OCR. Because of the severe damaging effects of these UV filters on plant growth, the application of contaminated biosolids/reclaimed water in agriculture reduces agricultural production and may damage ecosystems. The results of this study can advance recognition of the hazards associated with environmental and agricultural pollution via UV filters and encourage consumers and the industry to limit or reduce the application of cosmetics and over-the-counter drugs containing these substances.
Collapse
Affiliation(s)
- Xin Zhong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Yuting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yiman Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Huiyuan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qingming Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China.
| |
Collapse
|
13
|
Goldsmith ST, Hanley KM, Waligroski GJ, Wagner EJ, Boschi VL, Grannas AM. Triclosan export from low-volume sources in an urban to rural watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135380. [PMID: 31927440 DOI: 10.1016/j.scitotenv.2019.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS), an emerging contaminant linked to antimicrobial resistance, has been the focus of many surface water studies to date. However, these initial studies have predominantly used sampling locations downstream of large volume (i.e., >0.5 million gallons per day) wastewater treatment plants (WWTPs). This approach overlooks potential inputs from their low volume counterparts as well as non-point sources, such as sewage network leaks, biosolid application to agricultural fields and leach fields associated with septic systems. Here we examine the range of concentrations, overall loading, and potential controls on TCS delivery to the East Branch of the Brandywine Creek (EBBC), a rural to suburban watershed located in southeastern Pennsylvania. TCS measurements were collected from 13 locations in the EBBC during baseflow conditions and immediately following a storm event. A regulatory database review identified WWTP density an order of magnitude greater than the national average, thereby confirming their pervasiveness in rural to urban systems. Detectable concentrations of TCS in the EBBC ranged from 0.2 to 0.6 ng/L during baseflow conditions and 0.5 to over 1000 ng/L following a storm event. The lack of a statistical relationship between TCS concentrations and yields with the number of upstream WWTPs and/or volume of treated effluent during both sampling periods confirm the importance of individual WWTP practices and the volume of the receiving water body, while a positive statistically-significant relationship between TCS concentrations and upstream developed open space following the storm event was likely influenced by runoff of spray-applied treated wastewater and/or sewage network leaks. Furthermore, the presence of detectable concentrations of TCS in sub-watersheds with no WWTP systems implies field applied biosolids or treated wastewater, as well as septic tank related leach fields are all viable sources of TCS. These findings suggest we must greatly expand our consideration of sources for emerging contaminants in waterways.
Collapse
Affiliation(s)
- Steven T Goldsmith
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, USA.
| | - Kaila M Hanley
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, USA
| | | | - Eric J Wagner
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, USA
| | - Vanessa L Boschi
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Amanda M Grannas
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA.
| |
Collapse
|
14
|
Zhao F, Chen L, Yen H, Li G, Sun L, Yang L. An innovative modeling approach of linking land use patterns with soil antibiotic contamination in peri-urban areas. ENVIRONMENT INTERNATIONAL 2020; 134:105327. [PMID: 31760259 DOI: 10.1016/j.envint.2019.105327] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Due to the intensive use and continuous release, high and persistent concentrations of antibiotics are found in soils worldwide. This severe contamination elevates the risks associated with antibiotic exposure and resistance for soil ecosystems and human health. Estimating antibiotic concentrations in soils is a complex and important challenge because the limited information is available on antibiotic use and emission and the high exposure risk to human health occurred in peri-urban areas. In this study, soil antibiotic contamination was linked with land use patterns in a data-scarce peri-urban area in four different seasons, and we established a modeling framework based on land use to estimate spatially explicit distribution of antibiotics in soils. The soil antibiotic concentration was found to be substantially affected by surrounding land use patterns in buffer zones with a radius of 350 m. Agricultural land was the main source of antibiotics entering the soil. Notably, road networks also had considerable impacts on antibiotic residues in soils. Then, a statistical model was developed in describing the linkage between land use patterns and soil antibiotic concentration. Model evaluation suggested that the proposed model successfully simulated the variation of antibiotics in soil with good statistical performance (R2 > 0.7). Finally, the model was extrapolated to investigate detailed distribution of antibiotics in soils. Clear spatial and seasonal dynamics can be found in soil antibiotic concentration. To our knowledge, this was the first attempt to adopt a model focusing on land use pattern to estimate the spatially explicit distribution of antibiotics in soils. Despite of some uncertainties, the research provides a land-use-based modeling approach as a reference for preventing and controlling soil antibiotic contamination in the future.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haw Yen
- Blackland Research and Extension Center, Texas A&M University, Temple, TX 76502, USA
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Bulman DM, Mezyk SP, Remucal CK. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4450-4459. [PMID: 30888799 DOI: 10.1021/acs.est.8b07225] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorine photolysis is an advanced oxidation process which relies on photolytic cleavage of free available chlorine (i.e., hypochlorous acid and hypochlorite) to generate hydroxyl radical, along with ozone and a suite of halogen radicals. Little is known about the impact of wavelength on reactive oxidant generation even though chlorine absorbs light within the solar spectrum. This study investigates the formation of reactive oxidants during chlorine photolysis as a function of pH (6-10) and irradiation wavelength (254, 311, and 365 nm) using a combination of reactive oxidant quantification with validated probe compounds and kinetic modeling. Observed chlorine loss rate constants increase with pH during irradiation at high wavelengths due to the higher molar absorptivity of hypochlorite (p Ka = 7.5), while there is no change at 254 nm. Hydroxyl radical and chlorine radical steady-state concentrations are greatest under acidic conditions for all tested wavelengths and are highest using 254 and 311 nm irradiation. Ozone generation is observed under all conditions, with maximum cumulative concentrations at pH 8 for 311 and 365 nm. A comprehensive kinetic model generally predicts the trends in chlorine loss and oxidant concentrations, but a comparison of previously published kinetic models reveals the challenges of modeling this complex system.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry California State University at Long Beach Long Beach , California 90840 , United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
- Department of Civil and Environmental Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
16
|
Ghirardini A, Verlicchi P. A review of selected microcontaminants and microorganisms in land runoff and tile drainage in treated sludge-amended soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:939-957. [PMID: 30481719 DOI: 10.1016/j.scitotenv.2018.11.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The objective of this study is to provide a snapshot of the quality of surface runoff and tile drainage in sludge-amended soil in terms of 57 microcontaminants, including pharmaceuticals, hormones and fragrances, and 5 different species of bacteria. It also discusses the main factors affecting their occurrence (soil characteristics, applied sludge load and rate, sludge application method, rain intensity and frequency). It is based on 38 investigations carried out by different research groups in Canada, Australia, the USA and Ireland. The most frequently investigated compounds were hormones, the antiseptics triclosan and triclocarban, the analgesics and anti-inflammatories acetaminophen, ibuprofen and naproxen, the antibiotic sulfamethoxazole, the lipid regulator gemfibrozil and the psychiatric drug carbamazepine. Of all the bacteria, E. coli was the most monitored species. It was found that concentrations of the studied pollutants in surface runoff and tile drainage may vary, depending on many factors. They are generally lower than those observed in the secondary municipal effluent and in surface water, but their contribution to the deterioration of surface water quality might be relevant, mainly in wide rural areas. In this context, the reported data or their ranges represent an attempt to provide reference thresholds and bands of observed concentrations for a rough estimation of the contribution made by the release of the selected pollutants into surface water bodies via surface runoff and tile drainage.
Collapse
Affiliation(s)
- A Ghirardini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - P Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy; Terra and Acqua Laboratory of the Technopole network of the University of Ferrara, Via Borsari 46, 44123 Ferrara, Italy.
| |
Collapse
|
17
|
Zhao F, Yang L, Chen L, Li S, Sun L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. CHEMOSPHERE 2019; 219:882-895. [PMID: 30572238 DOI: 10.1016/j.chemosphere.2018.12.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term manure application gives rise to the uptake of antibiotics by plants and antibiotics subsequent entry into the food chain, representing an important alternative pathway for human exposure to antibiotics. The antibiotics can cause negative effects on crop growth and productivity. The bioaccumulation and translocation of 14 target antibiotics in peanuts (Arachis hypogaea L.) and their effects on peanut relative biomass in fields with long-term (≥15 years) manure application were studied. The results showed that all the target antibiotics were found in manures and rhizosphere soils, and most of them were found in all peanut tissues (roots, shells, kernels, stem, and leaves). The antibiotic concentrations in peanut tissues were varied with the characteristics of antibiotics in soils. Tetracyclines were the dominating antibiotic compounds in all peanut tissues, accounting for 61%-80% of total antibiotics due to their relatively high concentration in rhizosphere soil. Most tetracyclines and quinolones preferentially accumulated in the roots and translocated to other peanut tissues than sulfonamides and macrolides. Furthermore, the influence of antibiotics in soil and crops on relative biomass of crop tissues varied with tissues and antibiotic types. Antibiotics significantly inhibited the tissue relative biomass in most cases, although stimulation of some antibiotics to crop biomass was also observed. We found that 18.3% of the variance of the peanut relative biomass was explained by antibiotics in soils and tissues. The estimated threshold of daily intake values suggests that the consumption of peanut kernels grown in field conditions with long-term manure application presents a moderate risk to human health.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Kiesling RL, Elliott SM, Kammel LE, Choy SJ, Hummel SL. Predicting the occurrence of chemicals of emerging concern in surface water and sediment across the U.S. portion of the Great Lakes Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:838-850. [PMID: 30253366 DOI: 10.1016/j.scitotenv.2018.09.201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 04/15/2023]
Abstract
Chemicals of emerging concern (CECs) are introduced into the aquatic environment via various sources, posing a potential risk to aquatic organisms. Previous studies have identified relationships between the presence of CECs in water and broad-scale watershed characteristics. However, relationships between the presence of CECs and source-related watershed characteristics have not been explored across the Great Lakes basin. Boosted regression tree (BRT) analyses were used to develop predictive models of CEC occurrence in water and sediment throughout 24 U.S. tributaries to the Great Lakes. Models were based on the distribution of both broad-scale and source-related watershed characteristics. Twenty-one upstream watershed characteristics, including land cover, number of permitted point sources, and distance to point sources were used to develop models predicting the probability of CEC occurrence in surface water and bottom sediment. Total accuracy of BRT models ranged from 66% to 94% for both matrices. All 21 watershed characteristics were important predictor variables in at least one surface-water model; twenty were important in at least one bottom-sediment model. Among the model variables, developed land use and distance to point sources were important predictors of the presence of CEC classes in both water and sediment. Although limitations exist, BRT models are one tool available for assessing vulnerability of fisheries and aquatic resources to CEC occurrences.
Collapse
Affiliation(s)
- Richard L Kiesling
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN 55112, United States of America.
| | - Sarah M Elliott
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN 55112, United States of America
| | - Leah E Kammel
- U.S. Geological Survey, 1280 Terminal Street, West Sacramento, CA 95691, United States of America
| | - Steven J Choy
- U.S. Fish and Wildlife Service, 505 Science Drive, Suite A, Madison, WI 53711, United States of America
| | - Stephanie L Hummel
- U.S. Fish and Wildlife Service, 5600 American Blvd West, Suite 990, Bloomington, MN 55437, United States of America
| |
Collapse
|
19
|
A simple, fast method for the analysis of 20 contaminants of emerging concern in river water using large-volume direct injection liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2019; 411:1601-1610. [PMID: 30680425 DOI: 10.1007/s00216-019-01602-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
A fast and sensitive method for the determination of a structurally and physico-chemically diverse group of contaminants of emerging concern (CEC) based on large-volume direct injection liquid chromatography-tandem mass spectrometry was developed. The method can be used to determine 20 CECs belonging to different pollutant families (pharmaceuticals, personal care products, and pesticides) in river water at nanogram per liter. A single analytical run is required and the positive and negative ionization modes can be used simultaneously. Because of the large-volume injections of samples and the high sensitivity of the current mass spectrometers, the method has no need of a preconcentration step. The analytes are quantitated with matrix-matched calibration curves. The estimated limits of detection were in the range 0.1-5 ng L-1. The accuracy of the method was in the range 86-114%, and the precision, expressed as a relative standard deviation (RSD %), was below 18% for all the analytes (n = 5, at 5, 10, and 25 ng L-1). The method was applied to water samples taken from different points along the lower course of the Ebro River, Spain. A total of 12 out of the 20 target analytes were detected, and the ones at higher concentrations were caffeine and the pharmaceuticals paracetamol and ibuprofen (184.8 ng L-1, 63.3 ng L-1, and 23.3 ng L-1, respectively).
Collapse
|
20
|
Stefani F, Casatta N, Ferrarin C, Izzotti A, Maicu F, Viganò L. Gene expression and genotoxicity in Manila clam (Ruditapes philippinarum) modulated by sediment contamination and lagoon dynamics in the Po river delta. MARINE ENVIRONMENTAL RESEARCH 2018; 142:257-274. [PMID: 30389237 DOI: 10.1016/j.marenvres.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The lagoons of the Po River delta are potentially exposed to complex mixtures of contaminants, nevertheless, there is a substantial lack of information about the biological effects of these contaminants in the Po delta lagoons. These environments are highly dynamic and the interactions between chemical and environmental stressors could prevent the proper identification of biological effects and their causes. In this study, we aimed to disentangle such interactions focusing on Manila clams, previously exposed to six lagoons of the Po delta, adopting three complementary tools: a) the detailed description via modelling techniques of lagoon dynamics for salinity and water temperature; b) the response sensitivity of a number of target genes (ahr, cyp4, ρ-gst, σ-gst, hsp22, hsp70, hsp90, ikb, dbh, ach, cat, Mn-sod, Cu/Zn-sod, cyp-a, flp, grx, TrxP) investigated in clam digestive glands by Real Time PCR; and c) the relevance of DNA adducts determined in clams as markers of exposure to genotoxic chemicals. The lagoons showed specific dynamics, and two of them (Marinetta and Canarin) could induce osmotic stress. A group of genes (ahr, cyp4, Mn-sod, σ-gst, hsp-22, cyp-a, TrxP) seemed to be associated with overall lagoon characteristics as may be described by salinity and its variations. Lagoon modelling and a second group of genes (hsp70, hsp90, cat, ikb, ach, grx, Cu/Zn-sod) also suggested that moderate increases of river discharge may imply worse exposure conditions. Oxidative stress seemed to be associated with such events but it was slightly evident also under normal exposure conditions. DNA adduct formation was mainly associated with overwhelmed antioxidant defences (e.g. low Cu/Zn-sod) or seemingly with their lack of response in due time. In Po delta lagoons, Manila clam can be affected by chemical and environmental factors which can contribute to induce oxidative stress, DNA adduct formation and, ultimately, to affect clam condition and health.
Collapse
Affiliation(s)
- Fabrizio Stefani
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Nadia Casatta
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Christian Ferrarin
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Francesco Maicu
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Luigi Viganò
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| |
Collapse
|
21
|
Composition-Dependent Sorptive Fractionation of Anthropogenic Dissolved Organic Matter by Fe(III)-Montmorillonite. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System. WATER 2018. [DOI: 10.3390/w10020104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|