1
|
Wang X, Zhang J, Liu Y, Li Y, Zhu Y, Dong Z, Sun D, Ding L. Green synthesis of iron nanoparticles using mulberry leaf extract: characterization, identification of active biomolecules, and catalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20311-20329. [PMID: 38369662 DOI: 10.1007/s11356-024-32405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The synthesis of iron-based nanoparticles (Fe NPs) using traditional preparation methods suffered from the disadvantages of high cost, environmental harm, and easy agglomeration. In this study, a novel eco-friendly method was proposed for the synthesis of iron nanomaterials (ML-Fe NPs): using antioxidant components extracted from mulberry leaf to reduce divalent iron (II). The preparation conditions of ML-Fe NPs were optimized by orthogonal tests. The prepared ML-Fe NPs exhibited an amorphous core-shell structure, displaying excellent dispersion and stability. During the synthesis process of ML-Fe NPs, the polyphenol molecules in mulberry leaf extract played a dominant role. A possible synthetic mechanism involving complexation, reduction, and encapsulation was proposed. Furthermore, the ML-Fe NPs were utilized to construct an ML-Fe NPs/peroxymonosulfate catalytic system for the degradation of Rhodamine B dye wastewater. The ML-Fe NPs demonstrated remarkable catalytic potential, achieving a 99% degradation efficiency for Rhodamine B within a span of 40 min.
Collapse
Affiliation(s)
- Xinxiang Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Jinwei Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yiqi Liu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yuntao Zhu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China
| | - Zhiqiang Dong
- Municipal Environmental Protection Engineering Co, Ltd of CREC Shanghai Group, Shanghai, 201906, China
| | - Dongxiao Sun
- Municipal Environmental Protection Engineering Co, Ltd of CREC Shanghai Group, Shanghai, 201906, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243032, China.
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| |
Collapse
|
2
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
3
|
Kobylinska N, Klymchuk D, Khaynakova O, Duplij V, Matvieieva N. Morphology-Controlled Green Synthesis of Magnetic Nanoparticles Using Extracts of 'Hairy' Roots: Environmental Application and Toxicity Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4231. [PMID: 36500853 PMCID: PMC9739509 DOI: 10.3390/nano12234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles (MNPs) were "green" synthesized from a FeCl3/FeSO4/CoCl2 mixture using ethanolic extracts of Artemisia tilesii Ledeb 'hairy' roots. The effect of chemical composition and reducing power of ethanolic extracts on the morphology, size destribution and other features of obtained MNPs was evaluated. Depending on the extract properties, nanosized magnetic materials of spherical (8-11 nm), nanorod-like (15-24 nm) and cubic (14-24 nm) shapes were obtained via self-assembly. Microspherical MNPs composed of nanoclusters were observed when using extract of the control root line in the synthesis. Polyhedral magnetic nanoparticles with an average size of ~30 nm were formed using 'hairy' root ethanolic extract without any additive. Studied samples manifested excellent magnetic characteristics. Field-dependent magnetic measurements of most MNPs demonstrated a saturation magnetization of 42.0-72.9 emu/g with negligible coercivity (∼0.02-0.29 emu/g), indicating superparamagnetic behaviour only for solids with a magnetite phase. The synthesized MNPs were minimally aggregated and well-dispersed in aqueous medium, probably due to their stabilization by bioactive compounds in the initial extract. The nanoparticles were tested for magnetic solid-phase extraction of copper (Cu), cadmium (Cd) and arsenic (As) pollutants in aqueous solution, followed by ICP-OES analysis. The magnetic oxides, mainly magnetite, showed high adsorption capacity and effectively removed arsenic ions at pH 6.7. The maximum adsorption capacity was ~150 mg/g for As(III, V) on the selected MNPs with cubic morphology, which is higher than that of previously reported adsorbents. The best adsorption was achieved using Fe3O4-based nanomaterials with low crystallinity, non-spherical form and a large number of surface-localized organic molecules. The phytotoxicity of the obtained MNPs was estimated in vitro using lettuce and chicory as model plants. The obtained MNPs did not exhibit inhibitory activity. This work provides novel insights on the morphology of "green" synthesized magnetic nanoparticles that can be used for applications in adsorption technologies.
Collapse
Affiliation(s)
- Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Science of Ukraine, 42 Akad. Vernadskoho Blvd., 03142 Kyiv, Ukraine
| | - Dmytro Klymchuk
- Kholodny Institute of Botany, National Academy of Science of Ukraine, 2 Tereshchenkivska Str., 02000 Kyiv, Ukraine
| | - Olena Khaynakova
- Faculty of Chemistry, University of Oviedo, 8 Julián Claveria Av., 33006 Oviedo, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, 148 Zabolotnogo Str., 03143 Kyiv, Ukraine
| |
Collapse
|
4
|
Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D. Synthesis methods and applications of palladium nanoparticles: A review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1062608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Palladium (Pd) is a key component of many catalysts. Nanoparticles (NPs) offer a larger surface area than bulk materials, and with Pd cost increasing 5-fold in the last 10 years, Pd NPs are in increasing demand. Due to novel or enhanced physicochemical properties that Pd NPs exhibit at the nanoscale, Pd NPs have a wide range of applications not only in chemical catalysis, but also for example in hydrogen sensing and storage, and in medicine in photothermal, antibacterial, and anticancer therapies. Pd NPs, on the industrial scale, are currently synthesized using various chemical and physical methods. The physical methods require energy-intensive processes that include maintaining high temperatures and/or pressure. The chemical methods usually involve harmful solvents, hazardous reducing or stabilizing agents, or produce toxic pollutants and by-products. Lately, more environmentally friendly approaches for the synthesis of Pd NPs have emerged. These new approaches are based on the use of the reducing ability of phytochemicals and other biomolecules to chemically reduce Pd ions and form NPs. In this review, we describe the common physical and chemical methods used for the synthesis of Pd NPs and compare them to the plant- and bacteria-mediated biogenic synthesis methods. As size and shape determine many of the unique properties of Pd NPs on the nanoscale, special emphasis is given to the control of these parameters, clarifying how they impact current and future applications of this exciting nanomaterial.
Collapse
|
5
|
Sun H, Hua Y, Zhao Y. Synchronous Efficient Reduction of Cr (VI) and Removal of Total Chromium by Corn Extract / Fe (III) System. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28552-28564. [PMID: 34989997 DOI: 10.1007/s11356-021-18234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In this study, a cost-effective and environmentally friendly composite system for the remediation of Cr (VI)-polluted groundwater was developed. The system of simultaneous reduction of Cr (VI) and precipitation of Cr (III) was innovatively constructed, using corncob extract as electron donor and Fe (III) as strengthening reagent. In the process of the total chromium removal, the addition of alkaline substances was not required, when pH ≤ 4 it showed an optimal reduction of Cr (VI). In addition, the removal rate of total chromium reached 88% within 120 min. To understand the mechanism of this system, we characterized the corn extract and particulate matter before and after the reaction. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry suggested that alcohols, phenols, and aldehydes provided the electrons that were required to reduce Cr (VI). As an electron shuttle, Fe (III) improved the efficiency of electron transfer, and Fe (II) and nano-zerovalent iron (nZVI) particles were formed during this process. X-ray diffraction and transmission electron microscopy analyses showed that FeOCl was formed under the action of the plant extract and adsorbed Cr (III), thus reducing total chromium. Both nZVI and FeOCl were covered with a layer of paste cap, which maintained the stability of their physical and chemical properties. The regulation of pH during the repair process was not required, and the cost of the process was significantly reduced. Therefore, this technology provides a new strategy for the in situ remediation of Cr (VI) pollution in groundwater.
Collapse
Affiliation(s)
- He Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yuduo Hua
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, China.
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Kubendiran H, Alex SA, Pulimi M, Chandrasekaran N, Nancharaiah YV, Venugopalan VP, Mukherjee A. Development of biogenic bimetallic Pd/Fe nanoparticle-impregnated aerobic microbial granules with potential for dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112789. [PMID: 34029979 DOI: 10.1016/j.jenvman.2021.112789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to develop bimetallic core-shell Pd/Fe nanoparticles on the surface of aerobic microbial granules (Bio-Pd/Fe) and to evaluate their dye removal potential using a representative dye, methyl orange (MO). The aerobic microbial granules (1.5 ± 0.32 mm) were grown for 70 days in a 3-L glass sequencing batch reactor (SBR) with a 12-h cycle time. The Bio-Pd/Fe formation was catalyzed by the Bio-H2 gas produced by the granules. The developed Bio-Pd/Fe was further used for MO removal from aqueous solutions, and the reaction parameters were optimized by response surface methodology (RSM). The XRD, SEM, EDAX, elemental mapping, and XPS studies confirmed the formation of Bio-Pd/Fe. Under the optimized removal conditions, 99.33% MO could be removed by Bio-Pd/Fe, whereas removal by Bio-Pd, Bio-Fe, aerobic microbial granules, and heat-killed granules were found to be quite low (68.91 ± 0.2%, 76.8 ± 0.3%, 19.8 ± 0.6%, and 6.59 ± 0.2%, respectively). The mechanism of removal was investigated by UV-visible spectroscopy, redox potential analysis, HR-LCMS analyses of the solution phase, and XRD and XPS analyses of the solid sorbent. The degradation products of MO exhibited m/z values corresponding to 292, 212, and 160 m/z. The remnant toxicity of the intermediate degradation products was analysed using freshwater algae, Scenedesmus sp. And Allium cepa, as indicator organisms. These assays suggested that after the treatment with Bio-Pd/Fe, MO was transformed to a lesser toxic form.
Collapse
Affiliation(s)
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Y V Nancharaiah
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India
| | - V P Venugopalan
- Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
7
|
Abstract
Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.
Collapse
|
8
|
Kobylinska N, Klymchuk D, Shakhovsky A, Khainakova O, Ratushnyak Y, Duplij V, Matvieieva N. Biosynthesis of magnetite and cobalt ferrite nanoparticles using extracts of "hairy" roots: preparation, characterization, estimation for environmental remediation and biological application. RSC Adv 2021; 11:26974-26987. [PMID: 35480010 PMCID: PMC9037682 DOI: 10.1039/d1ra04080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
The "green" synthesis of magnetite and cobalt ferrite nanoparticles (Fe3O4-NPs and CoFe2O4-NPs) using extracts of Artemisia annua L "hairy" roots was proposed. In particular, the effect and role of important variables in the 'green' synthesis process, including the metal-salt ratio, various counter ions in the reaction mixture, concentration of total flavonoids and reducing power of the extract, were evaluated. The morphology and size distribution of the magnetic nanoparticles (MNPs) depended on the metal oxidation state and ratio of Fe(iii) : Fe(ii) in the initial reaction mixture. MNPs obtained from divalent metal salts in the reaction mixture were non-uniform in size with high aggregation level. Samples obtained by the FeCl3/FeSO4 mixture with a ratio of Fe(iii) : Fe(ii) = 1 : 2 showed an irregular shape of the nanoparticles and high aggregation level. MNPs obtained by the FeCl3/FeSO4/CoCl2 mixture showed a regular shape with slight aggregation, and were in the nanosize range (10-17 nm). Thus, this mixture as a metal-precursor was used for MNP biosynthesis in the subsequent experiments. The XRD data showed that the magnetic specimens contained mainly spinel type phase. The data of EDX and XPS analysis indicated that the product of the "green" synthesis was magnetite with some impurities, owing to the obtained ratio of Fe : O being similar to the theoretical atomic ratio of magnetite (3 : 4). The Fe3O4-NP samples were superparamagnetic with high magnetization (until 68 emu g-1). The Co-containing MNPs demonstrated low ferromagnetic properties. The MNPs with pure magnetite phase, very good magnetization and uniform size distribution (ca. 12-14 nm) were prepared by the "hairy" root extract characterized by the highest amount of total flavonoids. According to the FTIR data, the synthesized Fe3O4-NPs had a core-shell like structure, in which the core was composed of Fe3O4, and the shell was formed by bioactive molecules. The presence of several organic compounds (such as flavonoids or carboxylic acids) plays a key role in the suppression of Fe3O4-NP aggregation without addition of a stabilizing agents. Synthesized Fe3O4-NP samples effectively removed Cu(ii) and Cd(ii) with the maximum adsorption capacity, reaching 29.9 mg g-1 and 33.5 mg g-1, respectively. It is probable that the presence of organic components in extracts plays an important role in the adsorption properties of biosynthesised MNPs. The obtained MNPs were successfully applied to the removal of heavy metal ions in the environmental water samples. Fe3O4-NPs also negatively affected plant growth in the case of using "hairy" roots as a test model, and the greatest inhibitory activity (99.56 wt%) was possessed by MNPs with high magnetic properties.
Collapse
Affiliation(s)
- Natalia Kobylinska
- A. V. Dumansky Institute of Colloid and Water Chemistry, NAS of Ukraine Ak. Vernadsky blv. 42 Kyiv 03142 Ukraine
| | - Dmytro Klymchuk
- M. G. Kholodny Institute of Botany, NAS of Ukraine 2 Tereshchenkivska Str Kyiv 02000 Ukraine
| | - Anatolij Shakhovsky
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | | | - Yakiv Ratushnyak
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine 148 Zabolotnogo Str. Kyiv 03143 Ukraine
| |
Collapse
|
9
|
Sasireka KS, Lalitha P. Biogenic synthesis of bimetallic nanoparticles and their applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The current advancements in nanotechnology suggest a sustainable development in the green synthesis of bimetallic nanoparticles (BMNPs) through green approaches. Though challenging, nano phyto technology has versatile methods to achieve desired unique properties like optic, electronic, magnetic, therapeutic, and catalytic efficiencies. Bio-inspired, facile synthesis of bifunctional BMNPs is possible using abundant, readily available natural plant sources, bio-mass wastes and microorganisms. Synergistic effects of two different metals on mixing, bring new insight for the vast applications, which is not achievable in using monometallic NPs. By adopting bio-inspired greener approaches for synthesizing NPs, the risk of environmental toxicity caused by conventional physicochemical methods become negligible. This article hopes to provide the significance of cost-effective, one-step, eco-friendly and facile synthesis of noble/transition bimetallic NPs. This review article endows an overview of the bio-mediated synthesis of bimetallic NPs, classifications of BMNPs, current characterization techniques, possible mechanistic aspects for reducing metal ions, and the stability of formed NPs and bio-medical/industrial applications of fabricated NPs. The review also highlights the prospective future direction to improve reliability, reproducibility of biosynthesis methods, its actual mechanism in research works and extensive application of biogenic bimetallic NPs.
Collapse
Affiliation(s)
- Krishnan Sundarrajan Sasireka
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| | - Pottail Lalitha
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| |
Collapse
|
10
|
Abstract
The heterocyclic molecules are medicinally important and are applied in different
other fields. The environmentally benign synthetic method for the synthesis of this
important group of compounds is always explored. Bimetallic nanoparticles are getting
attention as heterogeneous catalysts for their synthesis. The bimetallic nanoparticles have
been usually synthesized by chemical or physical methods or both in combination. Chemists
are also using part of plants in the synthesis of bimetallic nanoparticles and these have
been successful. The present review work will be going to enrich the existing literature by
compiling the use of plant parts in the synthesis of bimetallic nanoparticles and their utility
in the synthesis of heterocyclic molecules.
Collapse
Affiliation(s)
- Poonam
- Department of Applied Chemistry, Delhi Technological University, Delhi-110 042, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi-110 042, India
| |
Collapse
|
11
|
Application of biosynthesized metal nanoparticles in electrochemical sensors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc200521077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.
Collapse
|
12
|
Monga Y, Kumar P, Sharma RK, Filip J, Varma RS, Zbořil R, Gawande MB. Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. CHEMSUSCHEM 2020; 13:3288-3305. [PMID: 32357282 DOI: 10.1002/cssc.202000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Nanoscale zerovalent iron (nZVI) particles represent an important material for diverse environmental applications because of their exceptional electron-donating properties, which can be exploited for applications such as reduction, catalysis, adsorption, and degradation of a broad range of pollutants. The synthesis and assembly of nZVI by using biological and natural sustainable resources is an attractive option for alleviating environmental contamination worldwide. In this Review, various green synthesis pathways for generating nZVI particles are summarized and compared with conventional chemical and physical methods. In addition to describing the latest environmentally benign methods for the synthesis of nZVI, their properties and interactions with diverse biomolecules are discussed, especially in the context of environmental remediation and catalysis. Future prospects in the field are also considered.
Collapse
Affiliation(s)
- Yukti Monga
- Green Chem. Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Rakesh K Sharma
- Green Chem. Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
13
|
pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01159-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111682. [DOI: 10.1016/j.jphotobiol.2019.111682] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022]
|
15
|
Catalytic peroxygen activation by biosynthesized iron nanoparticles for enhanced degradation of Congo red dye. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.08.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Surya C, Arul John NA, Pandiyan V, Ravikumar S, Amutha P, Sobral AJ, Krishnakumar B. Costus speciosus leaf extract assisted CS-Pt-TiO2 composites: Synthesis, characterization and their bio and photocatalytic applications. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Yi Y, Wei Y, Tsang PE, Fang Z. Aging effects on the stabilisation and reactivity of iron-based nanoparticles green synthesised using aqueous extracts of Eichhornia crassipes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28361-28371. [PMID: 31372953 DOI: 10.1007/s11356-019-06006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Aging effects play a crucial role in determining applications of green-synthesised iron-based nanoparticles in wastewater treatment from laboratory scale to practical applications. In this study, iron-based nanoparticles (Ec-Fe-NPs) were synthesised using the extract of Eichhornia crassipes and ferric chloride. Scanning electron microscopy (SEM) revealed that the fresh Ec-Fe-NPs were spherical and had a narrow particle size range (50 to 80 nm). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that the Ec-Fe-NPs were mainly amorphous in nature and consisted of Fe0, FeO, Fe2O3 and Fe3O4. As they aged, the particle size of the liquid Ec-Fe-NPs gradually increased and then tended to stabilise. Ec-Fe-NPs that were aged for 28 days were only 19% less efficient than fresh material at removing Cr(VI). Extracts aged up to 28 days were also tested, and their antioxidant capacity was found to be 15.4% lower than that of the fresh extracts. Furthermore, the removal efficiency of Cr(VI) using iron-based nanoparticles synthesised with the aged extracts was 67.2%. Finally, the active components of the extracts, which were responsible for the reactivity and stability of the iron-based nanoparticles, were identified by liquid chromatography-mass spectrometry. Overall, green-synthesised iron-based nanoparticles show promise for Cr(VI) removal from wastewater in practical applications.
Collapse
Affiliation(s)
- Yunqiang Yi
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Yufen Wei
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. NANOMATERIALS 2018; 8:nano8110946. [PMID: 30453600 PMCID: PMC6266962 DOI: 10.3390/nano8110946] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
The chemical synthesis of silver nanoparticles (Ag-NPs) by using an environmentally friendly methodology for their preparation is presented. Thus, considering that plants possess components that can act as reducing agents and stabilizers in nanoparticles’ production, the synthesis of Ag-NPs by using an extract aqueous solution of grape stalk waste as a reducing and capping agent is studied. First, the total polyphenols and reducing sugars contained in the produced extracts at different conditions are characterized. After that, Ag-NPs are synthesized regarding the interaction of Ag ions (from silver nitrate) and the grape stalk extract. The effect of temperature, contact time, extract/metal solution volume ratio and pH solution in the synthesis of metal nanoparticles are also studied. Different sets of nanoparticle samples are characterized by means of Electron Microscopy coupled with Energy Dispersive X-Ray for qualitative chemical identification. Ag-NPs with an average diameter of 27.7 ± 0.6 nm are selected to proof their suitability for sensing purposes. Finally, screen-printed electrodes modified with Ag-NPs are tested for the simultaneous stripping voltammetric determination of Pb(II) and Cd(II). Results indicate good reproducibility, sensitivity and limits of detection around 2.7 µg L−1 for both metal ions.
Collapse
|
19
|
Liu Y, Jin X, Chen Z. The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:470-479. [PMID: 29426170 DOI: 10.1016/j.scitotenv.2018.01.241] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The advantages of green synthesized iron nanoparticles by plant extracts include simplicity, high efficiency and sustainability. However, there are limitations in our understanding of the formation of Fe NPs. In this report, the synthesized iron nanoparticles by eucalyptus leaf extract (Fe NPs) showed that Cr(VI) removal efficiency reached approximately 100% at volume ratio of leaf extract and iron(III) solution of 2:1 and pH 4. In addition, the morphology, surface and compositions of Fe NPs were characterized by various techniques. The diameter distribution of 95 ± 5 nm with a capping layer was observed, containing polyphenols and aliphatic acids confirmed by FTIR and XRD. XPS indicated that Fe NPs contained iron oxides, as well as a layer covering on Fe NPs created by biomolecules from eucalyptus leaf extract. Furthermore, the biomolecules identified by GC-MS indicated that alcohol phenols and alkylaldehyde acted as reducing agents, while alcohol acids, alkanols, phytols, acetate and aromatic ketones acted as capping agents. It can be concluded that aldehydes, phenols and alcoholic compounds played dominant roles during the synthesis of Fe NPs. Finally, the mechanism for the formation of Fe NPs was proposed, including both that of Fe NPs and capped Fe NPs.
Collapse
Affiliation(s)
- Yong Liu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China..
| |
Collapse
|
20
|
Ivashchenko O, Peplińska B, Gapiński J, Flak D, Jarek M, Załęski K, Nowaczyk G, Pietralik Z, Jurga S. Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 2018; 8:4041. [PMID: 29511277 PMCID: PMC5840429 DOI: 10.1038/s41598-018-22426-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
Micro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids. Consequences of such induced changes were further investigated in terms of their potential effect on the biological activity in vitro. Physicochemical characterization included X-ray diffraction (XRD), optical microscopies (SEM, cryo-SEM, TEM, fluorescence), dynamic light scattering (DLS) techniques, energy dispersive (EDS), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, zeta-potential and magnetic measurements. The results showed that magnetic field affected the hydrocolloids microstructure uniformity, fluorescence properties and photodynamic activity. Likewise, increased temperature caused changes in NPs hydrodynamic size distribution and in hydrocolloids microstructure. Magnetic field significantly improved photodynamic activity that was attributed to enhanced generation of reactive oxygen species due to reorganization of the microstructure.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland.
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Jacek Gapiński
- Department of Molecular Biophysics, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, 61614, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| |
Collapse
|
21
|
Harnessing the wine dregs: An approach towards a more sustainable synthesis of gold and silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:302-309. [PMID: 29175604 DOI: 10.1016/j.jphotobiol.2017.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022]
Abstract
In recent years, the management of food waste processing has emerged as a major concern. One such type of food waste, grape pomace, has been shown to be a great source of bioactive compounds which might be used for more environmentally - friendly processes for the synthesis of nanomaterials. In this study, grape pomace of Vitis vinifera has been used for the obtainment of an aqueous extract. Firstly, the reducing activity, total phenolic content and DPPH scavenging activity of the aqueous extract were determined. Then, the aqueous extract was used for the synthesis of gold and silver nanoparticles. The formation of spherical and stable nanoparticles with mean diameters of 35.3±5.2nm for Au@GP and 42.9±6.4nm for Ag@GP was confirmed by UV-vis spectroscopy and transmission electron microscopy. Furthermore, the functional group of biomolecules present in grape pomace extract, Au@GP and Ag@GP, were characterized by Fourier transform infrared spectroscopy prior to and after the synthesis, in order to obtain information about the biomolecules involved in the reducing and stabilization process. This study is the first to deal with the use of Vitis vinifera grape pomace in obtaining gold and silver nanoparticles through an eco-friendly, quick, one-pot synthetic route.
Collapse
|
22
|
Vishnukumar P, Vivekanandhan S, Muthuramkumar S. Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Perumalsamy Vishnukumar
- VHNSN College; Sustainable Materials and Nanotechnology Lab (SMNL); Department of Physics; 626 001 Virudhunagar Tamilnadu India
| | - Singaravelu Vivekanandhan
- VHNSN College; Sustainable Materials and Nanotechnology Lab (SMNL); Department of Physics; 626 001 Virudhunagar Tamilnadu India
| | | |
Collapse
|
23
|
Guo X, Zhang M, Zheng J, Xu J, Hayat T, Alharbi NS, Xi B, Xiong S. Fabrication of Co@SiO2@C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction. Dalton Trans 2017; 46:11598-11607. [DOI: 10.1039/c7dt02095c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co@SiO2@C/Ni magnetic composites have been synthesized by an extended Stöber method combined with a carbonization process.
Collapse
Affiliation(s)
- Xiaohui Guo
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Tasawar Hayat
- Department of Mathematics
- Quaid-I-Azam University
- Islamabad 44000
- Pakistan
- NAAM Research Group
| | - Njud S. Alharbi
- Biotechnology Research Group
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Baojuan Xi
- Key Laboratory of the Colloid and Interface Chemistry
- Ministry of Education
- and School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry
- Ministry of Education
- and School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|