1
|
Alriksson S, Voxberg E, Karlsson H, Ljunggren S, Augustsson A. Temporal risk assessment - 20th century Pb emissions to air and exposure via inhalation in the Swedish glass district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159843. [PMID: 36461567 DOI: 10.1016/j.scitotenv.2022.159843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
The objective of the present study was to assess historical emissions of Pb to air around a number of glassworks sites in southeastern Sweden, and the possible implications for human exposure. To do so, a four-step method was applied. First, emissions of Pb to air around 10 glassworks were modelled for the 20th century. Second, an assessment of the resulting exposure was made for a number of scenarios. Third, the number of people potentially exposed at different times was estimated, and fourth, measurements of "current" Pb concentrations in PM10 material from four sites were conducted in 2019. The results show that the highest emissions, and exposures, occurred from 1970 to1980. It coincides with the time period when the highest number of people resided in the villages. At this time, the average Pb concentration in air around the six largest factories was about 2.4 μg Pb/m3, i.e. 16 times the present US national ambient air quality standard (NAAQS) of 0.15 μg Pb/m3. By year 2000 the modelled average concentration had dropped to 0.05 μg Pb/m3, a level that is normal for urban regions today. The PM10 measurements from 2019 indicate a further decline, now with a mean value of about 0.02 μg Pb/m3. Over the entire study period, inhalation hazard quotients (HQs) exceeded the dietary HQ by many orders of magnitude, indicating that inhalation has been the most prevalent exposure pathway in the past. At present, both pathways are judged to be associated with low exposures. Even if only roughly approximated, a picture of the historical exposure can increase our understanding of the connection between exposure and disease, and can be valuable when risks are to be communicated to residents near contaminated areas.
Collapse
Affiliation(s)
- Stina Alriksson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elin Voxberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
2
|
Mahammedi C, Mahdjoubi L, Booth CA, Butt TE. Framework for preliminary risk assessment of brownfield sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151069. [PMID: 34678367 DOI: 10.1016/j.scitotenv.2021.151069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The complexity of hazards, risk and environmental legislation surrounding the reuse of brownfield sites necessitates a preliminary risk assessment prior to their redevelopment. Most prevailing efforts have been targeted at indepth site investigations, which are often costly, time-consuming, and may not be required at the early stages of a site development. However, there is a collective absence of knowledge, methods and computer models that can present a complete framework to carry out a preliminary risk assessment that is simpler, quicker and sufficient, not only for risk assessor but also effectively communicative for a diverse range of stakeholders with or without risk assessment expertise. Therefore, this study aims to bridge this gap by designing and creating a framework, by not only identifying hazards but also exposing the degree of presence. Sixty-five potential hazards have been identified from a comprehensive literature review. A questionnaire survey was then shared with brownfield site experts (n = 76) that asked then to rank the priority of the potential hazards. Kendall's W test and Kruskal-Wallis H test were subsequently conducted to determine the level of agreement among the respondents. Mean weightings were calculated by using the Voting Analytic Hierarchy Process (VAHP) to prioritize the potential hazards from 'more likely' to 'least likely'. Based on this information, the framework has been developed. It is anticipated that the framework can assist professionals to conduct a preliminary assessment of brownfield sites, which enables them to gain informative and rapid guidance on any potential liabilities or risks related to a site's suitability for acquisition or redevelopment. In this context, the framework outlines a systematic structure to collect appropriate data and information in the three main categories which are sources, pathways and receptors.
Collapse
Affiliation(s)
- C Mahammedi
- Brownfield Research and Innovation Centre (BRIC), University of Wolverhampton, WV10 0JP, United Kingdom.
| | - L Mahdjoubi
- Centre for Architecture and Built Environment Research (CABER), University of the West of England, Bristol BS16 1QY, United Kingdom
| | - C A Booth
- Centre for Architecture and Built Environment Research (CABER), University of the West of England, Bristol BS16 1QY, United Kingdom
| | - T E Butt
- Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
3
|
Sales Junior SF, Mannarino CF, Bila DM, Taveira Parente CE, Correia FV, Saggioro EM. Lethal and long-term effects of landfill leachate on Eisenia andrei earthworms: Behavior, reproduction and risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112029. [PMID: 33578208 DOI: 10.1016/j.jenvman.2021.112029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Leachate is difficult to biodegrade, and presents variable physical, chemical and biological characteristics, as well as high toxicological potential for soil, groundwater and water bodies. In this context, untreated leachate toxicity was evaluated through acute and chronic exposures in Eisenia andrei earthworms. Physico-chemical leachate characterizations indicate a complex composition, with high organic matter (COD - 10,634 mg L-1) and ammoniacal nitrogen (2388 mg L-1) concentrations. Metals with carcinogenic potential, such as Cr, As and Pb, were present at 0.60, 0.14 and 0.01 μg L-1, respectively and endocrine disrupting compounds were detected in estradiol equivalents of 660 ± 50 ng L-1. Acute tests with Eisenia andrei indicated an LC50 (72 h) of 1.3 ± 0.1 μL cm-2 in a filter paper contact test and 53.9 ± 1.3 mL kg-1 in natural soil (14 days). The EC50 in a behavioral test was estimated as 31.6 ± 6.8 mL kg-1, indicating an escape effect for concentrations ranging from 35.0 to 70.0 mL kg-1 and habitat loss from 87.5 mL kg-1 of leachate exposure. Chronic exposure (56 days) led to reproduction effects, resulting in a 4-fold decreased cocoon production and 7-fold juvenile decrease. This effect was mainly attributed to the possible presence of endocrine disrupting compounds. An estimated NOAEL of 1.7 mL L-1 and LOAEL of 3.5 mL L-1 were estimated for earthworms exposed to the assessed effluent. Extremely high-risk quotients (RQ ≥ 1) were estimated based on leachate application in irrigation. Thus, adequate municipal solid waste management is paramount, especially with regard to generated by-products, which can result in high toxicological risks for terrestrial organisms.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Daniele Maia Bila
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, Room 5029-F, 20550-900, Rio de Janeiro, Brazil
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, 21941-902, Rio de Janeiro, Brazil
| | - Fábio Veríssimo Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20, Rio de Janeiro, Brazil.
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Soares MR, de Souza Sarkis JE, Alleoni LRF. Proposal of new distribution coefficients (K d) of potentially toxic elements in soils for improving environmental risk assessment in the State of São Paulo, southeastern Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112044. [PMID: 33676118 DOI: 10.1016/j.jenvman.2021.112044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Soil solid-solution distribution coefficients (Kd) are used in predictive environmental models to assess public health risks. This study was undertaken to determine Kd for potentially toxic elements (PTE) Cd, Co, Cr, Cu, Ni, Pb, and Zn in topsoil samples (0-20 cm) from 30 soils in the State of São Paulo, southeastern Brazil. Batch sorption experiments were carried out, and PTE concentrations in the equilibrium solution were determined by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICPMS). Sorption data was fitted to the Freundlich model. The Kd values were either obtained directly from the slope coefficients of C-type isotherms or derived from the slope of the straight line tangent to the non-linear L-type and H-type isotherms. Stepwise multiple regression models were used to estimate the Kd values through the combined effect of a number of soil attributes [pHH2O, effective cation exchange capacity (ECEC) and contents of clay, organic carbon, and Fe (oxy)hydroxides]. The smallest variation in Kd values was recorded for Cu (105-4598 L kg-1), Pb (121-7020 L kg-1), Ni (6-998 L kg-1), as variation across four orders of magnitude was observed for Cd (7-14,339 L kg-1), Co (2-34,473 L kg-1), and Cr (1-21,267 L kg-1). The Kd values for Zn were between 5 and 123,849 L kg-1. According to median values of Kd, PTE were sorbed in the following preferential order: Pb > Cu > Cd > Ni > Zn > Cr > Co. The Kd values were best predicted using metal-specific and highly significant (p < 0.001) linear regressions that included pHH2O, ECEC, and clay contents. The Kd values reported in this study are a novel result that can help minimize erroneous estimates and improve both environmental and public health risk assessments under humid tropical edaphoclimatic conditions.
Collapse
Affiliation(s)
- Marcio Roberto Soares
- Department of Natural Resources and Environmental Protection, Agrarian Sciences Center, Federal University of São Carlos, Rodovia Anhanguera, km 174, 13600-970, P.O. Box 173, Araras, SP, Brazil.
| | - Jorge Eduardo de Souza Sarkis
- Lasers and Applications Center, Nuclear and Energy Research Institute, Avenida Lineu Prestes n° 2242, 05508-000, São Paulo, SP, Brazil.
| | - Luís Reynaldo Ferracciú Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias n° 11, 12418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
5
|
Shen M, Ren M, Wang Y, Shen F, Du R, Quan L, Wei Y, Zhang T, Li J, Yan G, Peng J, Cao Z. Identifying dust as the dominant source of exposure to heavy metals for residents around battery factories in the Battery Industrial Capital of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144375. [PMID: 33385815 DOI: 10.1016/j.scitotenv.2020.144375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Heavy metals (HMs) are constantly released into the environment during the production and use of batteries. Battery manufacturing has been ongoing for over six decades in the "Battery Industrial Capital" (located in Xinxiang City) of China, but the potential exposure pathways of residents in this region to HMs remain unclear. To clarify the exposure pathways and health risk of human exposure to HMs, hand wipe samples (n=82) and fingernail samples (n=36) were collected from residents (including young children (0-6 years old), children (7-12 years old) and adults (30-60 years old)) living around battery factories. The total concentrations of the target HMs (Zn, Mn, Cu, Pb, Ni, Cr, Cd, Co) in hand wipes ranged from 133 to 8040 μg/m2, and those in fingernails ranged from 9.7-566 μg/g. HM levels in the hand wipe and fingernail samples both decreased with age, and higher HM levels were observed for males than females. The HM composition profiles in these two matrices represented a high degree of similarity, with Zn as the predominant element, and thus, oral ingestion and dermal exposure via dust were expected to be the most important HM exposure pathways for residents in this region. The non-carcinogenic risks (HQs) from dermal and oral ingestion exposure to Cd, Cr, and Pb were higher than those of the other five elements for all three populations, and the HQderm of Cd for young children was 2.1 (HQoral=0.6). Moreover, the hazard index (HI) values of ∑8HMs for young children (HItotal=5.2, HIoral=2.0, HIdermal=3.2) and children (HItotal=1.6, HIoral=1.3, HIdermal=0.3) exceeded the safe threshold (1.0). Therefore, young children and children should be prioritized for protection from HM pollution, and more attention should be paid to young children's dermal exposure to Cd in this region.
Collapse
Affiliation(s)
- Mohai Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Meihui Ren
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yange Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Fangfang Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ruojin Du
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Lijun Quan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ya Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jinghua Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
6
|
Magiera T, Kyzioł-Komosińska J, Dzieniszewska A, Wawer M, Żogała B. Assessment of elements mobility in anthropogenic layer of historical wastes related to glass production in Izera Mountains (SW Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139526. [PMID: 32480156 DOI: 10.1016/j.scitotenv.2020.139526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
A geophysical survey conducted in the remote forest glade, located in the Izery Mountains (SW Poland), revealed the existence of an anthropogenic layer of historical glass wastes dumped in this area during the activity of a glass factory in the 18th and 19th centuries and domestic wastes dumped during the second part of the 20th century. The aim of the study was assessment of potential ecological risk related to the release of potentially toxic elements to the soil, groundwater and surface waters. The assessment was done on the base of classical geochemical analysis supported by calculation of environmental indices as well as on mobility of elements (leaching test and BCR sequential extraction). As an innovative aspect in the geostatistical interpretation of the data, some magnetic parameters (magnetic susceptibility-χ, χ/Fe ratio) were also used. It allowed for a better understanding of the relationship of PTEs with various forms of iron. The BCR sequential extraction found that among the PTEs, only Zn (up to 43%) was in a potentially mobile fraction probably occurring in ionic form, associated with iron oxides only by surface adsorption forces. The leaching has shown a slight increase in Zn and Cu content in the surface waters; however, it was not considered to be a real ecological threat because the pH of the waste material and soil cover is >6.0 and the scenario of a radical decrease in pH is rather unrealistic. The other PTEs were associated with more stable E2, E3 and E4 fractions. Zinc, similar to Ni, Co and Cu in waste samples, was highly correlated with magnetic parameters (χ and χ/Fe). It means that a considerable part of these metals was associated with ferrimagnetic iron oxides, although they can also occur in the form of inclusions in aluminosilicates and enclosed in glassy phases.
Collapse
Affiliation(s)
- Tadeusz Magiera
- Institute of Environmental Engineering Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St, PL-41-819 Zabrze, Poland.
| | - Joanna Kyzioł-Komosińska
- Institute of Environmental Engineering Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St, PL-41-819 Zabrze, Poland
| | - Agnieszka Dzieniszewska
- Institute of Environmental Engineering Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St, PL-41-819 Zabrze, Poland
| | - Małgorzata Wawer
- Institute of Environmental Engineering Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St, PL-41-819 Zabrze, Poland
| | - Bogdan Żogała
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60 Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Augustsson A, Uddh Söderberg T, Fröberg M, Berggren Kleja DB, Åström M, Svensson PA, Jarsjö J. Failure of generic risk assessment model framework to predict groundwater pollution risk at hundreds of metal contaminated sites: Implications for research needs. ENVIRONMENTAL RESEARCH 2020; 185:109252. [PMID: 32330755 DOI: 10.1016/j.envres.2020.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution constitutes one of the major threats to public health, where spreading to groundwater is one of several critical aspects. In most internationally adopted frameworks for routine risk assessments of contaminated land, generic models and soil guideline values are cornerstones. In order to protect the groundwater at contaminated sites, a common practice worldwide today is to depart from health risk-based limit concentrations for groundwater, and use generic soil-to-groundwater spreading models to back-calculate corresponding equilibrium levels (concentration limits) in soil, which must not be exceeded at the site. This study presents an extensive survey of how actual soil and groundwater concentrations, compiled for all high-priority contaminated sites in Sweden, relate to the national model for risk management of contaminated sites, with focus on As, Cu, Pb and Zn. Results show that soil metal concentrations, as well as total amounts, constitute a poor basis for assessing groundwater contamination status. The evaluated model was essentially incapable of predicting groundwater contamination (i.e. concentrations above limit values) based on soil data, and erred on the "unsafe side" in a significant number of cases, with modelled correlations not being conservative enough. Further, the risk of groundwater contamination was almost entirely independent of industry type. In essence, since neither soil contaminant loads nor industry type is conclusive, there is a need for a supportive framework for assessing metal spreading to groundwater accounting for site-specific, geochemical conditions.
Collapse
Affiliation(s)
- A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - T Uddh Söderberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - M Fröberg
- Swedish Geotechnical Institute, Linköping, Sweden
| | - D B Berggren Kleja
- Swedish Geotechnical Institute, Linköping, Sweden; Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - P A Svensson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - J Jarsjö
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Helmfrid I, Ljunggren S, Nosratabadi R, Augustsson A, Filipsson M, Fredrikson M, Karlsson H, Berglund M. Exposure of metals and PAH through local foods and risk of cancer in a historically contaminated glassworks area. ENVIRONMENT INTERNATIONAL 2019; 131:104985. [PMID: 31319292 DOI: 10.1016/j.envint.2019.104985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Production of crystal glass and colored art glassware have been going on in the south-eastern part of Sweden since the 1700s, at over 100 glassworks and smaller glass blowing facilities, resulting in environmental contamination with mainly arsenic (As), cadmium (Cd), lead (Pb) and polycyclic hydrocarbons (PAH). High levels of metals have been found in soil, and moderately elevated levels in vegetables, mushrooms and berries collected around the glassworks sites compared with reference areas. Food in general, is the major exposure source to metals, such as Cd and Pb, and PAHs. Exposure to these toxic metals and PAH has been associated with a variety of adverse health effects in humans including cancer. OBJECTIVE The aim of the present study was to evaluate the occurrence of cancer in a cohort from the contaminated glasswork area in relation to long-term dietary intake of locally produced foods, while taking into account residential, occupational and life styles factors. METHODS The study population was extracted from a population cohort of 34,266 individuals who, at some time between the years 1979-2004, lived within a 2 km radius of a glassworks or glass landfill. Register information on cancer incidence and questionnaire information on consumption of local foods (reflecting 30 years general eating habits), life-time residence in the area, life style factors and occupational exposure was collected. Furthermore, blood (n = 660) and urine (n = 400) samples were collected in a subsample of the population to explore associations between local food consumption frequencies, biomarker concentrations in blood (Cd, Pb, As) and urine (PAH metabolite 1-OHPy) as well as environmental and lifestyle factors. The concurrent exposure to persistent organic pollutants (POPs) from food was also considered. A case-control study was performed for evaluation of associations between intakes of local food and risk of cancer. RESULTS Despite high environmental levels of Cd, Pb and As at glasswork sites and landfills, current metal exposure in the population living in the surrounding areas was similar or only moderately higher in our study population compared to the general population. Reported high consumption of certain local foods was associated with higher Cd and Pb, but not As, concentrations in blood, and 1-OHPy in urine. An increased risk of cancer was associated with smoking, family history of cancer, obesity, and residence in glasswork area before age 5 years. Also, a long-term high consumption of local foods (reflecting 30 years general eating habits), i.e. fish and meat (game, chicken, lamb), was associated with increased risk of various cancer forms. CONCLUSIONS The associations between consumption of local food and different types of cancer may reflect a higher contaminant exposure in the past, and thus, if consumption of local food contributes to the risk of acquiring cancer, that contribution is probably lower today than before. Furthermore, it cannot be ruled out that other contaminants in the food contribute to the increased cancer risks observed.
Collapse
Affiliation(s)
- Ingela Helmfrid
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Reza Nosratabadi
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Monika Filipsson
- Department of Biology and Environmental Sciences, Linnaeus University, Kalmar, Sweden
| | - Mats Fredrikson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Zhang H, Mao Z, Huang K, Wang X, Cheng L, Zeng L, Zhou Y, Jing T. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. ENVIRONMENT INTERNATIONAL 2019; 129:517-524. [PMID: 31158597 DOI: 10.1016/j.envint.2019.04.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/19/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
In the past, most research focused on the children living near a typical contaminated area but ignored the health risks of children living in the fourth or fifth tier cities without typical contaminated sources. These cities are now facing a series of problems, such as serious environmental pollution, undeveloped health system and so on. Furthermore, the development of modern logistics for food delivery has altered lifestyles that directly impact diets and eating patterns. In this study, multiple exposure pathways and health risks of children to heavy metal(loid)s were studied based on questionnaire-based surveys and field sampling of soil, dust, fine particulates, drinking water and food. We found that Pb, Cd and Mn levels in environmental samples were very high indicating a serious pollution problem. Inhalation exposure via aerosol particles was the most important pathway and was greater than exposure by food ingestion. The hazard index for Mn via aerosol particles was >1 even at the 5th percentile and Mn levels in urine was 10 times higher than those of people living in typical contaminated areas. The total incremental lifetime cancer risk (ILCR) for all metal(loid)s was also higher than the threshold at the 95th percentile. This study highlights health risks to children living in fourth tier cities and the importance of air pollution control to protect heavy metal exposure for children.
Collapse
Affiliation(s)
- Hongxing Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ling Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lingshuai Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Wang J. Short-term geochemical investigation and assessment of dissolved elements from simulated ash reclaimed soil into groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:302-311. [PMID: 30685671 DOI: 10.1016/j.envpol.2019.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A soil column migration trough was used to study the leaching behavior and geochemical partitioning of fifteen elements Al, As, Cr, Cu, Fe, Mg, Sn, Sb, Zn, V, Co, Mn, Pb, Ni and Cd in simulated ash reclaimed soil. According to the results of cluster analysis for the sampling stations, there were three clusters: Cluster 1 of 7 wells with relative good groundwater quality originated from the background control area, Cluster 2 of 9 wells with worst groundwater quality in the downstream parts of the simulated ash reclaimed soil, and Cluster 3 of 2 wells with representative of samples influenced by the combined effect of injection of leaching solution and the main current. Statistical analysis identified five factor types that accounted for 83.055% of the total variance, which declined in the order: ash-soil rate > leaching intensity > water depths > flow velocity > leaching time. As, Sb, Cd, Pb and Ni were the dominant contaminants. The water around ash reclaimed soil was unsuitable for drinking. As, Mn, Cd, Sb, Co and V were the largest contributors to health risks. Soils reclaimed with fly ash can consequently be a long-time source for the transfer of toxic elements into groundwater.
Collapse
Affiliation(s)
- Jiao Wang
- Environment and Resources College, Shanxi University, No.92 Wucheng Rd., Taiyuan, 030006, China.
| |
Collapse
|
11
|
Jani Y, Hogland W. Chemical extraction of trace elements from hazardous fine fraction at an old glasswork dump. CHEMOSPHERE 2018; 195:825-830. [PMID: 29289910 DOI: 10.1016/j.chemosphere.2017.12.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Old glassworks sites have been always associated with contamination by different trace elements like Pb, Cd, As, Zn and others. The mixture of soil and waste glass of particle sizes <2 mm at one of the oldest Swedish glassworks (the Pukeberg) was studied by analyzing the trace elements content, organic content (3.6%) and pH (7.4). The results showed hazardous concentrations of Pb (1525 mg/kg), Ba (1312 mg/kg), Sb (128 mg/kg), Cd (36 mg/kg), As (118 mg/kg), Zn (1154 mg/kg) and Co (263 mg/kg) exceeded the Swedish guidelines of contaminated soil. Batch chemical extraction by the chelating agents EDTA, DTPA and the biodegradable NTA were performed to study the effect of chelating agent concentration and mixing time on the extraction efficiencies by following a Box-Wilson design of experiments. The results displayed good extraction efficiencies (less than 41%) of Pb, Cd, As and Zn by the EDTA, DTPA and NTA, which seemed depends on the type of chelator. In addition, high correlation between the extraction efficiencies, the chelators concentration and mixing time was found based on the statistical and experimental results.
Collapse
Affiliation(s)
- Yahya Jani
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden.
| | - William Hogland
- Department of Biology and Environmental Science, Faculty of Health and Life Science, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
12
|
Well Salinization Risk and Effects of Baltic Sea Level Rise on the Groundwater-Dependent Island of Öland, Sweden. WATER 2018. [DOI: 10.3390/w10020141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Increased Cancer Incidence in the Local Population Around Metal-Contaminated Glassworks Sites. J Occup Environ Med 2017; 59:e84-e90. [DOI: 10.1097/jom.0000000000001003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). AMBIO 2017; 46:335-346. [PMID: 27844420 PMCID: PMC5347527 DOI: 10.1007/s13280-016-0848-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are found in aquatic systems, flora, and fauna worldwide. These potentially harmful compounds are also frequently detected in Sweden and have already resulted in severe problems for public drinking water supply, i.e., some wells had to be closed due to high PFAS concentrations both in raw water and produced drinking water. Knowledge on PFAS occurrence in Sweden is still quite low, although monitoring is currently ongoing. This work describes potential sources for PFASs to enter the drinking water supply in Sweden and compares different occurrences of PFASs in raw and drinking water in the country. Moreover, the monitoring history, the legal situation, and remediation actions taken are presented. Finally, future challenges and the way forward in Sweden are discussed.
Collapse
Affiliation(s)
- Stefan Banzhaf
- Department of Earth Sciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| | | | - Jeffrey Lewis
- Tyréns AB, Västra Norrlandsgatan 10B, 903 27 Umeå, Sweden
| | | | - Roland Barthel
- Department of Earth Sciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| |
Collapse
|