1
|
Bundschuh M, Mesquita-Joanes F, Rico A, Camacho A. Understanding Ecological Complexity in a Chemical Stress Context: A Reflection on Recolonization, Recovery, and Adaptation of Aquatic Populations and Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1857-1866. [PMID: 37204216 DOI: 10.1002/etc.5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Recovery, recolonization, and adaptation in a chemical stress context are processes that regenerate local populations and communities as well as the functions these communities perform. Recolonization, either by species previously present or by new species able to occupy the niches left empty, refers to a metacommunity process with stressed ecosystems benefiting from the dispersal of organisms from other areas. A potential consequence of recolonization is a limited capacity of local populations to adapt to potentially repeating events of chemical stress exposure when their niches have been effectively occupied by the new colonizers or by new genetic lineages of the taxa previously present. Recovery, instead, is an internal process occurring within stressed ecosystems. More specifically, the impact of a stressor on a community benefits less sensitive individuals of a local population as well as less sensitive taxa within a community. Finally, adaptation refers to phenotypic and, sometimes, genetic changes at the individual and population levels, allowing the permanence of individuals of previously existing taxa without necessarily changing the community taxonomic composition (i.e., not replacing sensitive species). Because these processes are usually operating in parallel in nature, though at different degrees, it seems relevant to try to understand their relative importance for the regeneration of community structure and ecosystem functioning after chemical exposure. In the present critical perspective, we employed case studies supporting our understanding of the underlying processes with the hope to provide a theoretical framework to disentangle the relevance of the three processes for the regeneration of a biological community after chemical exposure. Finally, we provide some recommendations to experimentally compare their relative importance so that the net effects of these processes can be used to parameterize risk-assessment models and inform ecosystem management. Environ Toxicol Chem 2023;42:1857-1866. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francesc Mesquita-Joanes
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, València, Spain
| |
Collapse
|
2
|
Dornelas ASP, Pestana JLT, de Souza Saraiva A, Barbosa RS, Cavallini GS, Gravato C, da Maia Soares AMV, Sarmento RA. The combined effects of microbial insecticides and sodium chloride on the development and emergence of Chironomus xanthus. PEST MANAGEMENT SCIENCE 2023; 79:2255-2263. [PMID: 36775861 DOI: 10.1002/ps.7407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | | | - Rone Silva Barbosa
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| |
Collapse
|
3
|
Jesus F, Patrício Silva AL, Pereira JL, Ré A, Campos I, Gonçalves FJM, Nogueira AJA, Abrantes N, Serpa D. Do sediment-bound nickel and lead affect chironomids life-history? Toxicity assessment under environmentally relevant conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106347. [PMID: 36343614 DOI: 10.1016/j.aquatox.2022.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Metal pollution in aquatic ecosystems translates into increased concentrations of sediment-bound metals, representing a risk for benthic species. This risk might be enhanced in soft and moderately hard waters, world widely distributed, due to the protective role of hardness against metal toxicity. As lead (Pb) and nickel (Ni) are amongst the more abundant metals in aquatic systems, and since their combined effects to benthic species have been overlooked, in this study we aimed to investigate the life-cycle toxicity of Pb and Ni (using spiked sediment) to the benthic species Chironomus riparius, considering both single and mixture exposures, in moderately hard water. Environmentally relevant concentrations of each metal were used (25 and 75 mg kg-1, based on a scenario of pollution by runoff waters from burnt forests), following a full factorial design. Effects of the mixture with the highest metal concentrations (Pb 75 mg kg-1 dw + Ni 75 mg kg-1 dw) were also assessed in the second generation. In the first generation, exposure to Pb increased emergence and the weight of males, and decreased time to emergence of both males and females. Conversely, exposure to Ni delayed female emergence and decreased the weight of imagoes. Summarizing, Pb affected more endpoints but showed an apparent positive effect, whereas Ni affected less endpoints but exhibited adverse effects. Reproduction was not affected by these metals. In the second generation, the mixture Pb 75 mg kg-1 + Ni 75 mg kg-1 dw delayed emergence and reduced the emerged female fraction and their weight. These results highlight that Pb and Ni can alter the structure of C. riparius populations at environmentally relevant concentrations, which signals potential repercussions in the dynamics and functioning of freshwater ecosystems under these contamination scenarios. The findings of the present study are relevant not only for metal-polluted environments, in general, but also for fire-affected ecosystems.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Ana Luísa Patrício Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana Ré
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal
| | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - António J A Nogueira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Dalila Serpa
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
Delnat V, Verheyen J, Van Hileghem I, Stoks R. Genetic variation of the interaction type between two stressors in a single population: From antagonism to synergism when combining a heat spike and a pesticide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119654. [PMID: 35738518 DOI: 10.1016/j.envpol.2022.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Despite the surging interest in the interactions between toxicants and non-chemical stressors, and in evolutionary ecotoxicology, we have poor knowledge whether these patterns differ among genotypes within a population. Warming and toxicants are two widespread stressors in aquatic systems that are known to modify each other's effects. We studied to what extent effects of sequential exposure to a heat spike and the pesticide esfenvalerate differed among genotypes in the water flea Daphnia magna. Esfenvalerate had similar negative effects on survival and body size across genotypes, and for most genotypes it increased time to maturation, yet the effects on the reproductive performance were only detected in some genotypes and were inconsistent in direction. Across genotypes, the heat spike increased the heat tolerance, yet the negative effects of the heat spike on survival, reproductive performance and body size, and the positive effects on grazing rate and the shortened time to maturation were only seen in some genotypes. Notably, the interaction type between both stressors differed among genotypes. In contrast to our expectation, the impact of esfenvalerate was only magnified by the heat spike in some genotypes and only for a subset of the traits. For survival and time to maturation, the interaction type for the same stressor combination covered all three categories: additions, synergisms and antagonisms. This illustrates that categorizing the interaction type between stressors at the level of populations may hide considerable intrapopulation variation among genotypes. Opposite to our expectation, the more pesticide-tolerant genotypes showed a stronger synergism between both stressors. Genotype-dependent interaction patterns between toxicants and non-chemical stressors may explain inconsistencies among studies and challenges ecological risk assessment based on single genotypes. The observed genetic differences in the responses to the (combined) stressors may fuel the evolution of the stressor interaction pattern, a largely ignored topic in evolutionary ecotoxicology.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Ine Van Hileghem
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
5
|
Doria HB, Hannappel P, Pfenninger M. Whole genome sequencing and RNA-seq evaluation allowed to detect Cd adaptation footprint in Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152843. [PMID: 35033566 DOI: 10.1016/j.scitotenv.2021.152843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Evolutionary adaptation and phenotypic plasticity are important processes on how organisms respond to pollutant exposure. We dissected here the contribution of both processes to increased tolerance in Chironomus riparius to cadmium (Cd) exposure in a multi-generation experiment and inferred the underlying genomic basis. We simulated environmentally realistic conditions by continuously increasing contaminant concentration in six replicates initiated with 1000 larvae each, three pre-exposed to Cd and three not exposed to Cd (no-Cd) over eight generations. We measured life-cycle traits, transcriptomic responses and genome-wide allele frequency changes from this evolve and resequencing (E&R) experiment. Overall, life cycle tests revealed little phenotypic adaptation to Cd exposure, but a slightly increase in survival in the first larval stage was observed. Population genomic analyses showed a strong genome-wide selective response in all replicates, highlighting two main biological functions involved in development and growth of the chironomids. Emphasizing that laboratory conditions continually exert selective pressure. However, the integration of the transcriptomic to the genomic data allowed to distinguish pathways specifically selected by the Cd exposure related to microtubules and organelles and cellular movement. Those pathways could be functionally related to an excretion of metals. Thus, our results indicate that genetic adaptation to Cd in C. riparius can happen within few generations under an environmentally relevant exposure scenario, but substantial phenotypic tolerance might take more time to arise. With our approach, we introduce an experimental setup to fill the existing gap in evolutionary ecotoxicology to investigate these early signs of genetic adaptation.
Collapse
Affiliation(s)
- Halina Binde Doria
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| | - Pauline Hannappel
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| |
Collapse
|
6
|
Orr JA, Luijckx P, Arnoldi JF, Jackson AL, Piggott JJ. Rapid evolution generates synergism between multiple stressors: Linking theory and an evolution experiment. GLOBAL CHANGE BIOLOGY 2022; 28:1740-1752. [PMID: 33829610 DOI: 10.1111/gcb.15633] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Global change encompasses many co-occurring anthropogenic stressors. Understanding the interactions between these multiple stressors, whether they be additive, antagonistic or synergistic, is critical for ecosystem managers when prioritizing which stressors to mitigate in the face of global change. While such interactions between stressors appear prevalent, it remains unclear if and how these interactions change over time, as the majority of multiple-stressor studies rarely span multiple generations of study organisms. Although meta-analyses have reported some intriguing temporal trends in stressor interactions, for example that synergism may take time to emerge, the mechanistic basis for such observations is unknown. In this study, by analysing data from an evolution experiment with the rotifer Brachionus calyciflorus (~35 generations and 31,320 observations), we show that adaptation to multiple stressors shifts stressor interactions towards synergism. We show that trade-offs, where populations cannot optimally perform multiple tasks (i.e. adapting to multiple stressors), generate this bias towards synergism. We also show that removal of stressors from evolved populations does not necessarily increase fitness and that there is variation in the evolutionary trajectories of populations that experienced the same stressor regimes. Our results highlight outstanding questions at the interface between evolution and global change biology, and illustrate the importance of considering rapid adaptation when managing or restoring ecosystems subjected to multiple stressors under global change.
Collapse
Affiliation(s)
- James A Orr
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Pepijn Luijckx
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jean-François Arnoldi
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Centre National de la Recherche Scientifique, Experimental and Theoretical Ecology Station, Moulis, France
| | - Andrew L Jackson
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Ishimota M, Kodama M, Tomiyama N. Possible enzymatic mechanism underlying chemical tolerance and characteristics of tolerant population in Scapholeberis kingi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18989-19002. [PMID: 34705208 DOI: 10.1007/s11356-021-17071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
To determine the potential effects of pesticides on aquatic organisms inhabiting a realistic environment, we explored the characteristics and mechanisms of chemical tolerance in Scapholeberis kingi(Cladocera). We established a chemical-tolerant population via continuous exposure to pirimicarb, an acetylcholinesterase (AChE) inhibitor, and examined the effects of pirimicarb concentration on the intrinsic growth rates (r) of tolerant cladocerans. We also explored the association between r and feeding rate and tested the involvement of antioxidant enzymes [peroxidase (PO) and superoxide dismutase] and AChE in pirimicarb sensitivity. S. kingi was continuously exposed to lethal and sublethal pirimicarb concentrations (0, 2.5, 5, and 10 µg/L) for 15 generations, and changes (half maximal effective concentration at 48 h, 48 h-EC50) in chemical sensitivity were investigated. In the F14 generation, the sensitivity of the 10 µg/L group was three times lower than that of the control group, suggesting the acquisition of chemical tolerance. Moreover, r was significantly and negatively correlated with 48 h-EC50, suggesting a fitness cost for tolerance. Surprisingly, there was no significant correlation between r and feeding rate. There was a weak but significant positive correlation between each enzyme activity and the 48 h-EC50 value (p < 0.05). Thus, oxidative stress regulation and enhanced AChE may be involved in the acquisition of chemical tolerance in cladocerans. These findings will help elucidate the characteristics and mechanisms of chemical tolerance in aquatic organisms.
Collapse
Affiliation(s)
- Makoto Ishimota
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, 4321, Ibaraki, 303-0043, Japan.
| | - Mebuki Kodama
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, 4321, Ibaraki, 303-0043, Japan
| | - Naruto Tomiyama
- Laboratory of Residue Analysis II, Chemistry Division, The Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, 4321, Ibaraki, 303-0043, Japan
| |
Collapse
|
8
|
Dornelas ASP, Sarmento RA, Cavallini GS, da Silva Barbosa R, Vieira MM, de Souza Saraiva A, Bordalo MD, Soares AMVM, Pestana JLT. Lethal and sublethal effects of the saline stressor sodium chloride on Chironomus xanthus and Girardia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34223-34233. [PMID: 32557035 DOI: 10.1007/s11356-020-09556-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Salinization in freshwaters is gradually increasing as a result of human activities and climatic changes. Higher salt content causes stress for freshwater organisms. Sodium chloride (NaCl) is among the most frequently occurring salts in freshwater ecosystems. The objective of the present study was to investigate the lethal and sublethal effects of NaCl on freshwater ecosystems, using as test organism the dipteran Chironomus xanthus and the planarian Girardia tigrina. Acute tests showed that C. xanthus was more sensitive (48-h LC50 (median lethal concentration) of 2.97 g NaCl L-1) than G. tigrina (48-h LC50 of 7.77 g NaCl L-1). C. xanthus larvae growth rate (larvae length and head capsule width) was significantly reduced under exposure to concentrations as low as 0.19 g L-1 NaCl and higher. A delay in the emergence time (EmT50) was also demonstrated for the same concentration. Sublethal NaCl effects in G. tigrina included feeding inhibition (LOEC (lowest observed effect concentration) of 0.4 g L-1), reduced locomotion (LOEC = 0.2 g L-1), and 24-48-h blastema regeneration (LOEC = 0.2 g L-1 and 0.1 g L-1, respectively). The results demonstrated the toxicity of NaCl to C. xanthus and G. tigrina including sublethal effects that can result in negative consequences for populations in natural freshwaters under salinization.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil.
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins (UFT), Campus Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Rone da Silva Barbosa
- Curso de Engenharia Florestal, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77410-530, Gurupi, Tocantins, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuaria (Conservacao de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educacao, Ciência e Tecnologia Goiano - Campus Campos Belos, Campos Belos, Goias, 73840-000, Brazil
| | - Maria D Bordalo
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Marziali L, Rosignoli F, Valsecchi S, Polesello S, Stefani F. Effects of Perfluoralkyl Substances on a Multigenerational Scale: A Case Study with Chironomus riparius (Diptera, Chironomidae). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:988-999. [PMID: 30790355 DOI: 10.1002/etc.4392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
A multigenerational test with Chironomus riparius was performed to assess long-term effects on life-traits of exposure to selected perfluoroalkyl compounds: perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorobutane sulfonate (PFBS). These persistent contaminants are widespread in aquatic ecosystems at low concentrations, possibly exerting long-term toxicity. Larvae of C. riparius of a native population were exposed for 10 generations to 10 μg/L nominal concentrations of PFOS, PFOA, and PFBS, comparable with the maximum values found in European rivers. All treatments showed reduced growth at most/several generations. No effects on survival, development, and reproduction were found. A final tolerance-induction test was performed exposing the pre-exposed experimental cohorts to 100 µg/L PFOS and 150 µg/L PFOA for a whole life cycle. Factorial analysis of variance revealed no difference between treatments (i.e., PFOS vs PFOA), indicating no induced tolerance. Instead, organisms pre-exposed to PFBS were the most stressed, followed by those pre-exposed to PFOA and PFOS, with earlier emergence and reduced adult weight. The results may be related to general stress and genetic erosion induced by long-term laboratory culture, but also to long-term toxicant exposure. However, no effects at the population level (population growth rate) were proved, and thus a toxicity risk in real ecosystems at the tested concentrations seems unlikely. Environ Toxicol Chem 2019;00:1-12. © 2019 SETAC.
Collapse
Affiliation(s)
- Laura Marziali
- Water Research Institute, Italian National Research Council, Brugherio, Italy
| | - Federica Rosignoli
- Water Research Institute, Italian National Research Council, Brugherio, Italy
| | - Sara Valsecchi
- Water Research Institute, Italian National Research Council, Brugherio, Italy
| | - Stefano Polesello
- Water Research Institute, Italian National Research Council, Brugherio, Italy
| | - Fabrizio Stefani
- Water Research Institute, Italian National Research Council, Brugherio, Italy
| |
Collapse
|
10
|
Breitwieser M, Vigneau E, Viricel A, Becquet V, Lacroix C, Erb M, Huet V, Churlaud C, Le Floch S, Guillot B, Graber M, Thomas H. What is the relationship between the bioaccumulation of chemical contaminants in the variegated scallop Mimachlamys varia and its health status? A study carried out on the French Atlantic coast using the Path ComDim model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:662-670. [PMID: 29870942 DOI: 10.1016/j.scitotenv.2018.05.317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 05/19/2023]
Abstract
Increasing activity along the French Atlantic coast has led to chronic pollution with, in particular, mixtures of contaminants such as hydrocarbons, phytosanitary products, PCBs and heavy metals. Based on previous research, pollution biomarkers were used in this study as they can indicate health status when monitoring the impact of pollutants on coastal species such as the marine bivalve Mimachlamys varia. Mollusc bivalves were sampled in March 2016, in open and semi-open areas (a harbour zone), from thirteen sites which differed in terms of their level of pollution, and were located along the Atlantic coast from Brittany down to the Nouvelle-Aquitaine region. First, analyses of heavy metals and organic contaminants (e.g. pesticides, polycyclic aromatic hydrocarbons, polychlorobiphenyl) in the digestive gland of bivalves were performed. Second, biochemical assays were used to study defence biomarkers: oxidative stress with Superoxide Dismutase (SOD), detoxification of organic compounds with Glutathione-S Transferase (GST), lipid peroxidation with Malondialdehyde (MDA), and immune processes with Laccase. In addition to the biochemical assays, a genetic approach was used to measure genetic diversity (haplotype and nucleotide diversity) at each site. Biomarker assays and genetic diversity were correlated with the chemical contaminants in bivalves using the Path-ComDim statistical model. Our results showed specific correlations between biochemical assays in the digestive glands with heavy metal contaminants, and between genetic diversity and organic pollution. Blocks of responses were analysed for correlations in order to develop standardized tools and guidelines that could improve our understanding of the short-term and long-term impact of contaminants on physiological parameters.
Collapse
Affiliation(s)
- Marine Breitwieser
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | | | - Amélia Viricel
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Vanessa Becquet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Camille Lacroix
- Cedre, Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux, 715 rue Alain Colas, CS 41836, Brest, Cedex 2, France
| | - Marina Erb
- Cedre, Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux, 715 rue Alain Colas, CS 41836, Brest, Cedex 2, France
| | - Valérie Huet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Stéphane Le Floch
- Cedre, Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux, 715 rue Alain Colas, CS 41836, Brest, Cedex 2, France
| | - Benoit Guillot
- UMR CNRS 5805 EPOC-OASU-Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023 33615 Pessac Cedex, France
| | - Marianne Graber
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| |
Collapse
|
11
|
Waldvogel AM, Wieser A, Schell T, Patel S, Schmidt H, Hankeln T, Feldmeyer B, Pfenninger M. The genomic footprint of climate adaptation in Chironomus riparius. Mol Ecol 2018; 27:1439-1456. [PMID: 29473242 DOI: 10.1111/mec.14543] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data and population genetic modelling. Common-garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.
Collapse
Affiliation(s)
- Ann-Marie Waldvogel
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Andreas Wieser
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Tilman Schell
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Simit Patel
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Hanno Schmidt
- Pathology, Microbiology & Immunology, University of California - Davis, Davis, CA, USA
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
12
|
Pedrosa JAM, Cocchiararo B, Verdelhos T, Soares AMVM, Pestana JLT, Nowak C. Population genetic structure and hybridization patterns in the cryptic sister species Chironomus riparius and Chironomus piger across differentially polluted freshwater systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:280-289. [PMID: 28359994 DOI: 10.1016/j.ecoenv.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Chironomids are an integral and functionally important part of many freshwater ecosystems. Yet, to date, there is limited understanding of their microevolutionary processes under chemically polluted natural environments. In this study, we investigated the genetic variation within populations of the ecotoxicological model species Chironomus riparius and its cryptic sister species Chironomus piger at 18 metal-contaminated and reference sites in northwestern Portugal. Microsatellite analysis was conducted on 909 samples to answer if metal contamination affects genetic variation in natural chironomid populations as previously suggested from controlled laboratory experiments. Similarly high levels of genetic diversity and significant but weak genetic substructuring were found across all sites and temporal replicates, with no effects of metal contamination on the genetic variation or species' abundance, although C. piger tended to be less frequent at highly contaminated sites. Our results indicate that high levels of gene flow and population dynamic processes may overlay potential pollutant effects. At least for our study species, we conclude that the "genetic erosion hypothesis", which suggests that chemical pollution will reduce genome-wide genetic variability in affected populations, does not hold under natural conditions. Interestingly, our study provides evidence of successful hybridization between the two sister species under natural conditions.
Collapse
Affiliation(s)
- João A M Pedrosa
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Tiago Verdelhos
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| |
Collapse
|