1
|
Yuan Y, Li Q, Deng J, Ma X, Liao X, Zou J, Liao J, Huang H, Dai H. Response mechanism of soil leachate and disinfection by-product formation to extreme precipitation events under continuous drought scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170123. [PMID: 38232842 DOI: 10.1016/j.scitotenv.2024.170123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In this study, a rainfall simulation device was employed to investigate the response mechanism of soil leachate and disinfection by-products formation potential (DBPsFP) to extreme precipitation events. The results revealed that the aromaticity of dissolved organic matter (DOM) and the concentration of hydrophobic DOM containing aromatic carbon groups in leachate decreased with rising temperature. The humification degree of DOM decreased at 25 °C (99 mm/h), while the humification degree and protein-like level of DOM increased under high temperatures droughts (45 °C and 65 °C). Higher temperatures resulted in the leach of more microbial-derived humus and low molecular phenolic compounds from soil and broadened the range of molecular weight distribution. Increasing temperature increased DBPsFP and DBPs species and caused the precursors of haloacetic acids (HAAs) in leachate to become more hydrophobic, while the precursors of trihalomethanes (THMs) became more hydrophilic. Most importantly, the increased temperature attenuated the rainfall-mediated dilution of organic pollutant concentration, and temperature has a more significant effect than extreme rainfall in DOM abundance and the formation potential (or species) of DBPs. The results help to better understand the impact of climate change on the physicochemical processes of water quality.
Collapse
Affiliation(s)
- Yujin Yuan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaobin Liao
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jie Liao
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Huahan Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China
| | - Huilin Dai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| |
Collapse
|
2
|
Wang Q, Chen M, Min Y, Shi P. Aging of polystyrene microplastics by UV/Sodium percarbonate oxidation: Organic release, mechanism, and disinfection by-product formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132934. [PMID: 37976854 DOI: 10.1016/j.jhazmat.2023.132934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The occurrence and transformation of microplastics (MPs) in environment has attracted considerable attention. However, the release characteristics of MP-derived dissolved organic matter (MP-DOM) under oxidation conditions and the effect of DOM on subsequent chlorination disinfection by-product (DBP) still lacks relevant information. This study focused on the conversion of polystyrene microplastics (PSMPs) in the advanced oxidation of ultraviolet-activated sodium percarbonate (UV/SPC-AOP) and the release characteristics of MP-DOM. The DBP formation potential of MP-DOM was also investigated. As a result, UV/SPC significantly enhanced the aging and fragmentation of PSMPs. Under UV irradiation, the fluorescence peak intensity and position of humus-like and protein-like components of MP-DOM were correlated with SPC concentration. The aging MP suspension was analyzed by gas chromatography-mass spectrometry (GC-MS), and various alkyl-cleavage and oxidation products were identified. Quenching experiments and electron paramagnetic resonance (EPR) detection confirmed that carbonate and hydroxyl radicals jointly dominated the conversion of PSMPs. The formation of DBP was related to the components of MP-DOM. Overall, these results help to understand the aging behavior of MPs in AOP. Moreover, MP-DOM released by MPs after AOP oxidation may be a precursor of DBPs, which deserved more attention.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
3
|
Yuan Y, Li Q, Deng J, Ma X, Liao X, Zou J, Li G, Chen G, Dai H. Rainwater extracting characteristics and its potential impact on DBPs generation: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167282. [PMID: 37769737 DOI: 10.1016/j.scitotenv.2023.167282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Frequent extreme precipitation events due to global warming can lead to large amounts of pollutants entering source water bodies via surface runoff and wet deposition, thus posing a threat to water supply security. In order to better understand the source characteristics and leaching mechanisms of rainwater dissolved organic matter (DOM), as well as its disinfection by-products formation potential (DBPsFP) during disinfection processes, rainwater samples were collected and extracting experiments were conducted. Three components were identified in rainwater through Parallel factor (PARAFAC) analysis, which were microbial humic-like component C1 (63.1 %), protein (tryptophan-like) component C2 (28.9 %), marine or terrestrial humic-like component C3 (8.1 %). The average molecular weight of rainwater fractions was ordered: hydrophobic neutral (HON) < hydrophobic bases (HOB) < hydrophobic acidic (HOA) < hydrophilic (HIS). The HOA and HON fractions of rainwater were the dominant precursors of trihalomethanes (THMs), while the rainwater HON fraction and hydrophilic fraction were the main precursor of haloacetic acids (HAAs) and trihloroacetonitrile (TCAN), respectively. Subsoil extracts had a higher concentration of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) than topsoil extracts. Partial least squares path modeling (PLS-PM) demonstrated that the extraction temperature was the dominant factor affecting the abundance of DOM in the topsoil extracts (R2 = 0.28), while the extraction time accounted more for the abundance of fluorescence substance and physicochemical indices in the subsoil extracts (R2 = 0.23 and 0.32, respectively). These results provide key information for controlling the impacts of global warming, in particular the risk of water sources being heavily contaminated by request rainfalls.
Collapse
Affiliation(s)
- Yujin Yuan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen City, Xiamen 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaobin Liao
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China.
| | - Huilin Dai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| |
Collapse
|
4
|
Li M, Shi Y, Sun S, Qian Y, An D. Degradation pathways and kinetics of chloroacetonitriles by UV/persulfate in the presence of bromide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155373. [PMID: 35460790 DOI: 10.1016/j.scitotenv.2022.155373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Chloroacetonitriles (CANs) are highly toxic nitrogenous disinfection by-products (N-DBPs), which frequently appear in water supply systems and have attracted widespread attention. UV/persulfate (PS) is an effective method to degrade CANs. Bromide (Br-) is widespread in aquatic environments and reacts with oxidative radicals to produce secondary reactive bromine species (RBS), which affects the degradation of CANs by UV/PS. It was found that the degradation of CANs was highly inhibited by Br-. The apparent first-order reaction rate constants of monochloroacetonitrile (MCAN), dichloroacetonitrile (DCAN) and trichloroacetonitrile (TCAN) decreased from 2.63 × 10-3, 2.00 × 10-3 and 8.66 × 10-4 s-1 to 2.58 × 10-4, 1.61 × 10-4 and 1.59 × 10-4 s-1, respectively after adding 20 μM of Br-. HO• was the main radicals contributing to the degradation of CANs when the concentration of Br- was less than 10 μM, compared with SO4•- and direct photolysis. When the concentration of Br- was up to 20 μM, the contributions of RBS accounted for 85.7%, 90.7% and 89.9% of the apparent degradation rate constants of CANs, respectively. During the reaction, about 65% of nitrogen atoms were transformed into NO3- by the CC bond cleavage and oxidation. The yields of Cl- by dechlorination reaction accounted for 83.5%, 71.0% and 41.2% of the chlorine contents in MCAN, DCAN and TCAN, respectively. It was verified that CANs react with free bromine (HOBr) to produce bromochloroacetonitrile (BCAN). DCAN and TCAN are hydrolyzed to produce corresponding haloacetamides (HAMs), which are further reacted with HOBr to produce bromodichloroacetic acid (BDCAA). Furthermore, the generation of bromate was also worth noting via the oxidation of Br- in the UV/PS system.
Collapse
Affiliation(s)
- Miao Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yijun Shi
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Sainan Sun
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Liu J, Ling L, Hu Q, Wang C, Shang C. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. WATER RESEARCH 2022; 220:118631. [PMID: 35635923 DOI: 10.1016/j.watres.2022.118631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
This study systematically quantified the impacts of different operation conditions, e.g., pH, chlorine dosages, contact times, and temperatures towards the disinfection by-product (DBP) formation, integrated toxicity, and structural changes in seawater natural organic matter during seawater chlorination. Higher concentrations of total DBPs were found under longer contact times, higher chlorine dosages, higher temperatures, and lower pH. The concentration of tribromomethane, the most abundant DBP, was found lowest at pH 10. Monobromoacetic acid, dibromoacetonitrile, and dibromoacetaldehyde were the three main contributors to integrated cyto- and geno-toxicity, stressing the need to monitor DBPs based on their contributions to integrated toxicity, regardless they are regulated or nonregulated. The concentrations of total organic chlorine remained stable under different conditions, while those of total organic bromine increased with increasing contact times, chlorine dosages, and temperatures, but with decreasing pH, indicating the changes of toxicity in chlorinated seawater compared to drinking water or groundwater. Changes of ultraviolet absorbance at 254 nm and fluorescence excitation emission matrix values are useful indicators for monitoring the concentrations of high molecular weight adsorbable organic bromine and total organic halogen under all operating conditions.
Collapse
Affiliation(s)
- Jiajian Liu
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Chii Shang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Comparison of Organic Matter Properties and Disinfection By-Product Formation between the Typical Groundwater and Surface Water. WATER 2022. [DOI: 10.3390/w14091418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The disinfection by-product (DBP) formation was affected by the dissolved organic matter (DOM). Therefore, the DOM properties and DBP formation potential of the two most widely used source waters: groundwater (GW) and surface water (SW), were comparatively studied in this work. The results suggested that the GW mainly consisted of protein-like organics with smaller molecular weight (Mw) less than 3000 Da, while the SW contained the humic- and fulvic-like substances with larger Mw. The tap water DBP concentration of GW as source water was lower than that of SW as well as the cytotoxic index (CI). The total DBP formation potential of the SW under chlorine and chloramine disinfection was higher than that of GW, especially the trihalomethanes (THMs) and haloacetic acid (HAAs). The higher THM and HAA formation potential of the SW was mainly attributed to the relatively hydrophobic and aromatic humic and fulvic substances. The halonitromethanes (HANs) formation was mainly due to the less hydrophobic protein-like components with smaller Mw. In addition, the total CI of the GW was lower than the SW under both chlorine and chloramine disinfection. Therefore, for the DBPs control, using the GW as source water was more beneficial to human health.
Collapse
|
7
|
Maeda Y. Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. MEMBRANES 2022; 12:170. [PMID: 35207091 PMCID: PMC8874662 DOI: 10.3390/membranes12020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and has been used for various applications, including seawater desalination, municipal water treatment, wastewater reuse, ultra-pure water (UPW) production, and industrial process waters, etc. RO is a highly integrated system consisting of a series of unit processes: (1) intake system, (2) pretreatment, (3) RO system, (4) post-treatment, and (5) effluent treatment and discharge system. In each step, a variety of chemicals are used. Among those, sulfites (sodium bisulfite and sodium metabisulfite) have played significant roles in RO, such as dechlorination, preservatives, shock treatment, and sanitization, etc. Sulfites especially became necessary as dechlorinating agents because polyamide hollow-fiber and aromatic thin-film composite RO membranes developed in the late 1960s and 1970s were less tolerable with residual chlorine. In this review, key applications of sulfites are explained in detail. Furthermore, as it is reported that sulfites have some adverse effects on RO membranes and processes, such phenomena will be clarified. In particular, the following two are significant concerns using sulfites: RO membrane oxidation catalyzed by heavy metals and a trigger of biofouling. This review sheds light on the mechanism of membrane oxidation and triggering biofouling by sulfites. Some countermeasures are also introduced to alleviate such problems.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
8
|
Valdés H, Saavedra A, Flores M, Vera-Puerto I, Aviña H, Belmonte M. Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies. MEMBRANES 2021; 11:753. [PMID: 34677518 PMCID: PMC8541667 DOI: 10.3390/membranes11100753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
This study's aim is to generate a complete profile of reverse osmosis concentrate (ROC), including physicochemical characteristics, environmental impact, and technologies for ROC treatment, alongside element recovery with potential valorization. A systematic literature review was used to compile and analyze scientific information about ROC, and systematic identification and evaluation of the data/evidence in the articles were conducted using the methodological principles of grounded data theory. The literature analysis revealed that two actions are imperative: (1) countries should impose strict regulations to avoid the contamination of receiving water bodies and (2) desalination plants should apply circular economies. Currently, synergizing conventional and emerging technologies is the most efficient method to mitigate the environmental impact of desalination processes. However, constructed wetlands are an emerging technology that promise to be a viable multi-benefit solution, as they can provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost, and are socially accepted; therefore, they are a sustainable solution.
Collapse
Affiliation(s)
- Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
| | - Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3473620, Chile;
| | - Ismael Vera-Puerto
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3460000, Chile;
| | - Hector Aviña
- iiDEA Group, Department of Industrial and Environmental Process Engineering, Engineering Institute, National Autonomous University of Mexico (UNAM), Ciudad de México 04510, Mexico;
| | - Marisol Belmonte
- Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| |
Collapse
|
9
|
Ding N, Wang X, Jiang L, Zhang J, Geng Y, Dong L, Liu H. Enhancement of sludge dewaterability by a magnetic field combined with coagulation/flocculation: a comparative study on municipal and citric acid-processing waste-activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35728-35737. [PMID: 33675498 DOI: 10.1007/s11356-021-13278-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The difficulties in dewatering waste-activated sludge (WAS) using mechanical devices have caused great problems in sludge transportation and disposal. Herein, coagulation and flocculation are combined with the use of a magnetic field as a clean and low-energy physical treatment method to enhance the dewaterability of municipal and citric acid-processing WAS. It is shown that the use of the magnetic field had a significant effect on the capillary suction time (CST) of municipal WAS but not on the specific resistance filtration (SRF) and CST of the citric acid WAS. The differences in the magnetic field effects were due to differences in the sludge properties. For municipal WAS, the particle size decreased, the zeta potential remained unchanged, and the viscosity decreased, whereas in the citric acid WAS, the particle size increased, the absolute value of the zeta potential decreased, and the viscosity increased. In addition, these effects were also confirmed with studies of the water state and micro-morphology analyses. It is shown that the acidification of the municipal WAS and coagulation of citric acid WAS were likely the reasons for the enhancement of their dewaterability, respectively. This study confirmed that the use of a magnetic field combined with coagulation/flocculation may serve as an effective sludge conditioning method; however, the treatment conditions may vary with the sludge type.
Collapse
Affiliation(s)
- Ning Ding
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China.
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Xiao Wang
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Lin Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Jianxin Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Yue Geng
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Liming Dong
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
- School of Ecology and Environment, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hong Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Jiangsu Province, China
| |
Collapse
|
10
|
Matin A, Laoui T, Falath W, Farooque M. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142721. [PMID: 33129530 DOI: 10.1016/j.scitotenv.2020.142721] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.
Collapse
Affiliation(s)
- Asif Matin
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Center for Environment & Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Tahar Laoui
- Dept. of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Desalination Research Group, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Center for Environment & Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Dept. of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammed Farooque
- Desalination Technologies Research Institute, Saline Water Conversion Corporation, Jubail, Saudi Arabia
| |
Collapse
|
11
|
Elsaid K, Kamil M, Sayed ET, Abdelkareem MA, Wilberforce T, Olabi A. Environmental impact of desalination technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141528. [PMID: 32818886 DOI: 10.1016/j.scitotenv.2020.141528] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Due to the limited availability of freshwater supplies, desalination has become an increasingly reliable process for water supply worldwide, with proved technical and economic feasibility and advantages. Recently, desalination capacity significantly increased from approximately 35 million m3 daily (MCM/day) in 2005 to about 95 MCM/day in 2018. Seawater desalination accounts for about 61% of global desalination capacity, while brackish water desalination accounts for 30%. Membrane desalination, mainly using reverse osmosis (RO), accounts for ¾ of global desalination capacity, with the rest mostly used for thermal desalination using multi-stage flash distillation (MSF), and multi-effect distillation (MED). Despite the undeniable role of desalination for securing water supply in areas where natural freshwater supplies are scarce, desalination impacts the natural environment at different aspects. Environmental impacts (EIs) of the desalination process are different and vary significantly according to the nature of the utilized feedwater, the desalination technology in use, and the management of waste brine generated. In this work, the EIs of each desalination technology were thoroughly investigated, with careful consideration given to different feedwater qualities, and various brine management techniques. Although the different aspects of desalination EIs have been extensively studied in the literature, the literature lacks comprehensive reviews and summaries of all the associated EIs. This article compiles the different EIs associated with the whole desalination process in one-hub, applying an intake-to-outfall approach. The leading desalination technologies of RO, MSF, and MED were analyzed, along with different feedwaters. This article provides a mapping of the different technologies involving feedwater and brine management techniques and a detailed description of their impact on the environment. Finally, recommendations and conclusions were given to minimize the negative impacts of desalination on both the local and global environments.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University, College Station, TX 77843-3122, USA.
| | - Mohammed Kamil
- Department of Mechanical & Nuclear Engineering Department, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Tabbi Wilberforce
- Institute of Engineering and Energy Technologies, University of the West of Scotland, UK
| | - A Olabi
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Kanan A, Karanfil T. Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140987. [PMID: 32693285 DOI: 10.1016/j.scitotenv.2020.140987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
To date, several studies have used formation potential (FP) tests to examine the presence of HAN precursors in water and wastewater. However, given the decomposition of HANs with time at elevated free chlorine levels, FP test results do not provide meaningful results. We conducted side-by-side FP and uniform formation condition (UFC) experiments to demonstrate that, in order to obtain practical, meaningful, and representative information about HANs formation and their precursors during chlorination, it is important to conduct experiments and report results under UFC [or simulated distribution system (SDS)] conditions. The results confirmed higher HAN formation under UFC than FP tests during chlorination of the tested two surface water and three wastewater effluent samples, indicating HAN decomposition at high chlorine conditions of FP tests. In addition, the well reported ratio (~10%) of HAN/THM from previous studies was more consistent with the UFC results but was lower than 10% in the FP results. On the other hand, HAN formation during chloramination of the same samples were lower under the UFC than FP conditions. Furthermore, FP tests under both chlorination and chloramination resulted in lower bromine substitution factor. We concluded that reporting results of HANs FP tests are not representative, and future studies should focus on UFC or distribution system specific (SDS) experiments for chlorination. However, chloramination FP tests may still provide some information about the HAN precursors in waters.
Collapse
Affiliation(s)
- Amer Kanan
- Department of Environment and Earth Sciences, Faculty of Science and Technology, Al-Quds University, Palestine
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC, USA.
| |
Collapse
|
13
|
Elsaid K, Sayed ET, Abdelkareem MA, Baroutaji A, Olabi AG. Environmental impact of desalination processes: Mitigation and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140125. [PMID: 32927546 DOI: 10.1016/j.scitotenv.2020.140125] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Freshwater supplies are in shortage relative to the high demand for different human activities, making desalination of saline water a must. Desalination to extract water from saline water has been well established as a reliable non-conventional water supply. However, desalination as any human-based process has resulted in many impacts on the environment. Brine loaded with chemicals being discharged back to the environment, along with greenhouse gases (GHGs) emissions being released to the atmosphere, are the most significant impacts, which has been extensively studied, with some efforts given to its mitigation and control. The current work discusses the mitigation and control strategies (M&CS) to the different environmental impacts (EIs) of desalination processes. The article compiles the M&CS in one work, instead of the distributed and separate treatment of the EIs of each desalination step and its respective M&CS as currently present in literature. The article tracks the water flow in an intake-to-outfall approach exploring how to minimize the impacts at each step and as a whole process. This starts from intake, pretreatment processes, desalination technology, and finally, brine discharge. The EIs associated with each desalination process element is thoroughly discussed with proposed M&CS. The work shows clearly that many EIs can be eliminated or minimized by incorporating specific design criteria and process improvements. The feedwater source has shown to have a great effect on EIs. Similarly, desalination technology has shown a considerable effect on the EIs related to brine characteristics and energy consumption. Hybrid and emerging desalination systems have shown reduced EIs relative to conventional thermal and membrane desalination technologies, while the utilization of renewable and waste energy sources has shown a significant reduction in EIs related to energy consumption.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University, College Station, TX 77843-3122, USA.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Ahmad Baroutaji
- School of Engineering, University of Wolverhampton, Telford Innovation Campus, TF2 9NT, UK
| | - A G Olabi
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
14
|
Tang M, Hou D, Ding C, Wang K, Wang D, Wang J. Anti-oil-fouling hydrophobic-superoleophobic composite membranes for robust membrane distillation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133883. [PMID: 31446287 DOI: 10.1016/j.scitotenv.2019.133883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
As a promising thermally driven separation process, membrane distillation (MD) is capable of treating challenging wastewaters. However, the traditional hydrophobic membranes are vulnerable to fouling by non-polar contaminants owing to the strong hydrophobic-hydrophobic interactions. To address this problem, we developed novel anti-oil-fouling MD membranes in this study. The composite membranes with asymmetric wettability were fabricated through electrospinning polyacrylonitrile (PAN) fibrous coating on a hydrophobic polytetrafluoroethylene (PTFE) membrane, followed by hydrolyzing the PAN coating with ethylenediamine (EDA) and NaOH, respectively. These two composite membranes exhibited excellent underwater superoleophobicity, with the underwater oil contact angle >150°, which can be attributed to the fibrous and re-entrant surface structure and the optimized surface hydrophilicity of the electrospun coating. During MD process using saline and oily emulsion as feed, the composite membranes presented robust anti-oil-fouling performance, indicating by stable permeate flux and salt rejection. A novel oil-droplet adhesion force probe was introduced to quasi-quantitatively elucidate oil-membrane interaction and evaluate membrane fouling propensity, the force spectroscopy indicated that the fabricated composite membranes had fairly less attractive to crude oil compared with the PTFE membrane. Our research results suggest that the novel composite membranes with asymmetric wettability were competent to serve as an anti-oil-fouling MD membrane for desalinating challenging saline and oily wastewaters.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Deyin Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunli Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Kunpeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dewu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Pan L, Zhang X, Yang M, Han J, Jiang J, Li W, Yang B, Li X. Effects of dechlorination conditions on the developmental toxicity of a chlorinated saline primary sewage effluent: Excessive dechlorination is better than not enough. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:117-126. [PMID: 31344565 DOI: 10.1016/j.scitotenv.2019.07.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 05/07/2023]
Abstract
Chlorine-disinfected sewage effluents are typically dechlorinated by using NaHSO3, Na2SO3, or Na2S2O3, as chlorine residual could be harmful to aquatic organisms upon discharge of sewage effluents into receiving marine water. In this study, we systematically investigated the effects of dechlorination-related factors on the developmental toxicity of a chlorinated saline primary sewage effluent, via direct exposure of the embryos of a marine polychaete to the effluent. The results showed that dechlorination ratio (i.e., the ratio of the dosed amount to the requisite stoichiometric amount of a dechlorination agent) and mixing condition were critical factors affecting the toxicity of the effluent. The toxicity of the effluent under insufficient dechlorination conditions was mainly caused by residual chlorine, especially monochloramine. Although the three dechlorination agents generally performed similarly, dechlorination with Na2S2O3 required a more vigorous mixing condition than that with NaHSO3 or Na2SO3, as the relatively high density of Na2S2O3 might affect the mixing efficiency. Under insufficient mixing conditions, a prolonged dechlorination time was beneficial to achieving complete dechlorination and thus lowered the toxicity of the effluent. Moreover, because disinfection byproducts (DBPs) may have chronic effects on aquatic organisms, the developmental toxicity of the DBP mixtures in the chlorinated effluent in different dechlorination scenarios was also evaluated. The results indicated that increasing the dechlorination ratio reduced the developmental toxicity of the DBP mixture in the chlorinated saline sewage effluent, which might be ascribed to the decrease of the levels of overall brominated and iodinated DBPs; the dechlorination agent (NaHSO3 or Na2S2O3) might act as a nucleophile in the nucleophilic substitution and cause the substitution of bromine or iodine atoms in brominated and iodinated DBPs. The results from this study might aid in the design and operation of dechlorination facilities in sewage treatment plants.
Collapse
Affiliation(s)
- Long Pan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Chang X, Yao X, Ding N, Yin X, Zheng Q, Lu S, Shuai D, Sun Y. Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:200-207. [PMID: 31121346 DOI: 10.1016/j.scitotenv.2019.05.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Trihalomethanes (THMs) and haloacetonitriles (HANs), most common disinfection by-products in drinking water, pose adverse environmental impacts and potential risks to human health. There is a pressing need to develop innovative, economically feasible, and environmentally benign processes to control these persistent contaminants. In this paper, visible-light-responsive graphitic carbon nitride (g-C3N4) samples were synthesized to degrade the THMs and HANs and the photocatalytic degradation mechanism was explored. The results indicated that a carbon-doped g-C3N4 with an optimum dopant content (MCB0.07) displayed the best photocatalytic activity for the total trihalomethanes (TTHM) and total haloacetonitriles (THAN), with the reaction rate constant of 11.6 and 10.4 (10-3 min-1), respectively. MCB0.07 demonstrated a high THMs and HANs removal efficiency under visible light irradiation and could be reused. According to scavenger tests of the selected reactive species and X-ray photoelectron spectroscopy, holes play a dominant role for both THMs and HANs degradation on the MCB0.07. The degradation of HANs by holes proceeded mainly through breakage of the CC bond in the CCN group. The THMs degradation was achieved through hydrogen abstraction or/and dehalogenation. The brominated-THMs/HANs were more photosensitive than their chlorinated analogous and were less stable than bromo-chloro-THMs/HANs. This study sheds light on the mechanism of the photocatalytic degradation of THMs and HANs under visible light irradiation by carbon-doped g-C3N4. Furthermore, it could provide insights for engineering applications and contaminant control in drinking water purification.
Collapse
Affiliation(s)
- Xueming Chang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Ning Ding
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiufeng Yin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Qinmin Zheng
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, US
| | - Songliu Lu
- Tus-Water Group Limited, Shanghai 200072, China
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, US
| | - Yingxue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
Effects of different secondary biological treatment processes followed by flocculation and sand-filtration on subsequent DBPs control from sewage treatment plants. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Fabbricino M, Yan M, Korshin GV. Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts. CHEMOSPHERE 2019; 218:430-437. [PMID: 30481652 DOI: 10.1016/j.chemosphere.2018.11.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Chlorination of coastal (CS) and deep ocean (DO) seawater was accompanied by a prominent decrease (of up to 70%) of the intensity of its emission which was measured using a 315 nm excitation wavelength. Deconvolution of the emission spectra of CS and DO seawater showed that these spectra comprised three Gauss-shaped bands. The intensities of two of these bands decreased rapidly as the halogenation proceeded. For both DO and CS seawater, two stages of changes of their fluorescence were observed. The first stage in which the relative changes of the fluorescence intensity (ΔF/F) were between zero to 0.30 and 0.40 was not accompanied by the release of individual disinfection byproduct (DBP) species. For ΔF/F values above the corresponding thresholds, the relative changes of fluorescence intensity were well correlated with the concentrations of individual DBP species such as trihalomethanes and haloacetonitriles. R2 values for CHBr3, CHBr2Cl and CHBrCl2 formed in DO seawater were 0.83, 0.80 and 0.68, respectively while for CS seawater, the corresponding R2 values were 0.91, 0.93 and 0.92. The presented data demonstrate that the intrinsic chemistry of DBP formation and dissolved organic matter (DOM) halogenation in seawater can be well quantified based on the examination of changes of its fluorescence. This approach can also be employed for practical monitoring of changes of properties of marine DOM and generation of DBPs in desalination, marine aquaculture and other processes.
Collapse
Affiliation(s)
- Massimiliano Fabbricino
- Department of Hydraulic and Environmental Engineering Girolamo Ippolito, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| | - Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, United States
| |
Collapse
|
19
|
Padhi RK, Subramanian S, Satpathy KK. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO 2-,andClO 3-) during treatment of different source water with chlorine and chlorine dioxide. CHEMOSPHERE 2019; 218:540-550. [PMID: 30500715 DOI: 10.1016/j.chemosphere.2018.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Formation potential and speciation characteristics of two important groups of disinfection byproducts (DBPs), namely, trihalomethanes (THMs) and haloacetic acids (HAAS), during Cl2 and ClO2 treatment of water samples collected from three different sources, namely, sea, river, and reservoir, were investigated with reference to key controlling parameters. Formation of inorganic DBPs such as chlorate and chlorite was evaluated. Dissolved organic carbon (DOC) and UV absorbance (UV254) of the sea, river, and reservoir samples were 3.35 ± 0.05, 3.12 ± 0.05, and 3.23 ± 0.05 mg/L and 0.062 ± 0.01, 0.074 ± 0.01, and 0.055 ± 0.01 cm-1, respectively. For Cl2 and ClO2 treatments, the respective formation potential of THMs and HAAs from the three water sources studied exhibited unidentical trend suggesting that higher THM formation was not necessarily associated with higher HAA formation. On chlorination, the concentrations of total HAAs formed were 9.8 μg/L (sea), 12.8 μg/L (river), and 20.6 μg/L (reservoir) and total THM yields were 38.3 μg/L (sea), 18.8 μg/L (river), and 21.5 μg/L (reservoir) for a Cl2 dose of 1 mg/L and 30 min reaction time. The trend of formation of THMs and HAAs for Cl2 treatment was similar to that for ClO2 treatment. However, the amount of HAAs (3.5 μg/L (sea), 1.8 μg/L (river), and 1.9 μg/L (reservoir)) and THMs (not detected) formed was much lower than that formed during chlorination. Regardless of source water type, di-HAAs were the most favored HAAs, followed by tri-HAAs with a small amount of mono-HAAs formed for both Cl2 and ClO2 treatment. Chlorination yielded more THMs than HAAs, whereas it was reverse for chlorine dioxide treatment. Irrespective of treatment with ClO2 or Cl2, seawater samples showed the highest bromine incorporation percentage (BIP) in both THMs and HAAs followed by that for river and reservoir water samples. HAAs were found to be always associated with lower amount of BIP than THMs.
Collapse
Affiliation(s)
- R K Padhi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| | - S Subramanian
- Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - K K Satpathy
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603102, India; Health Safety and Environment Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| |
Collapse
|
20
|
Sun H, Song X, Ye T, Hu J, Hong H, Chen J, Lin H, Yu H. Formation of disinfection by-products during chlorination of organic matter from phoenix tree leaves and Chlorella vulgaris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1887-1893. [PMID: 30408877 DOI: 10.1016/j.envpol.2018.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
To better understand the precursor of disinfection by-products (DBPs) and provide useful information for water utilities to manage the drinking water, a study of DBP formation was conducted through chlorination of leaf organic matter (OM) from phoenix tree and algal OM from Chlorella vulgaris. DBPs investigated include trichloromethane (TCM), trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), chloroacetic acid (CAA), dichloroacetonitrile (DCAN) and trichloroacetonitrile (TCNM). Results show that the specific yields (μg/mg C) of C-DBPs (TCM, CAA, DCAA and TCAA) from leaf OM were higher but the specific yields of N-DBPs (DCAN and TCNM) were lower than those from algal OM. Correlation analysis revealed that C-DBPs yields (μg/L) were significantly (p < 0.01) interrelated with each other (r = 0.937-0.996), and for each C-DBP, the hydrophobic OM contributed more to their formation (61-90% of total yields) as compared with hydrophilic OM. In spite of these characteristics, an in-depth examination was conducted revealing that the hydrophobicity and aromaticity of C-DBPs precursors were in the order of TCAA > DCAA & TCM > CAA. DCAN precursors were highly variable: they were dominated by hydrophobic OM (leaf OM: 86%) or hydrophilic OM (algal OM: 61%). Hydrophilic OM was the most important precursor for TCNM (76-79% of total yields), followed by hydrophobic neutral and base substances (29-45% of total yields), but the hydrophobic acids exhibited an inhibition role in TCNM formation.
Collapse
Affiliation(s)
- Hongjie Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xuhui Song
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ting Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Junbiao Hu
- Jinhua People's Hospital, Jinhua 321004, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| |
Collapse
|
21
|
Ding N, Sun Y, Ye T, Yang Z, Qi F. Control of halophenol formation in seawater during chlorination using pre-ozonation treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28050-28060. [PMID: 30066078 DOI: 10.1007/s11356-018-2828-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The reverse osmosis process is widely used for seawater desalination, whereas the pre-chlorination step for controlling membrane biofouling results in undesirable disinfection by-products, such as halophenols (HPs) which are not yet regulated but of increasing concerns. The formation and speciation of HPs during chlorination of three filtered seawater samples (SA, SB, and SC) with various phenol concentrations (0.25, 0.5, 1.0 mg/L) were evaluated. 4-Bromophenol (4-BrP), 2,4,6-trichlorophenol (2,4,6-TClP), 2,4-dibromophenol (2,4-DBrP), and 2,4,6-tribromophenol (2,4,6-TBrP) were identified during chlorination, with 2,4,6-TBrP as the predominant HP. Ozone as a common oxidant in water and wastewater treatment was subsequently applied to assess its effect in dissolved organic matter (DOM) and its ability of reducing HP precursors in the seawater samples. An initial ozone dose of 5 mg O3/L was capable of reducing dissolved organic carbon (DOC) in SA, and UV absorbance at 254 nm (UV254) in SB, whereas it induced an elevation of UV254 in SC. When ozone dose increased to 10 mg O3/L, the DOC and UV254 levels in all seawater samples were reduced. Ozone was more powerful on degrading DOM with molecular weight (MW) of near 1000 Da than those with MW of 20-100 Da, both of which composed the majority of DOM in the seawater samples. As determined by excitation emission matrix fluorescence spectroscopy, the most ozone-susceptible fraction of DOM was soluble microbial by-product-like substances, while the least was tryptophan-like aromatic proteins. Despite that the initial ozone of 5 mg O3/L was less effective in DOM degradation than the higher dose, it successfully degraded HP precursors. By pre-ozonation at 5 mg O3/L, no chlorophenol was detected during chlorination, and the mean reductions of the three bromophnols formed were above 92% in all seawater samples, with the reduction of 2,4,6-TBrP being the highest of 99.7, 99.6, and 99.1% in SA, SB, and SC, respectively.
Collapse
Affiliation(s)
- Ning Ding
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Comprehensive Utilization of Resources, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Tao Ye
- Department of Civil and Environmental Engineering, George Washington University, Washington, DC, 20052, USA
| | - Zhe Yang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| | - Fei Qi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Fucheng Road No.11, Haidian District, Beijing, 100048, China
| |
Collapse
|
22
|
Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:567-583. [PMID: 28399496 DOI: 10.1016/j.scitotenv.2017.03.235] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 05/08/2023]
Abstract
Reverse osmosis (RO) membrane technology is one of the most important technologies for water treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to higher operating pressure, flux decline, frequent chemical cleaning and shorter membrane life. This paper reviews membrane fouling types and fouling control strategies, with a focus on the latest developments. The fundamentals of fouling are discussed in detail, including biofouling, organic fouling, inorganic scaling and colloidal fouling. Furthermore, fouling mitigation technologies are also discussed comprehensively. Pretreatment is widely used in practice to reduce the burden for the following RO operation while real time monitoring of RO has the advantage and potential of providing support for effective and efficient cleaning. Surface modification could slow down membrane fouling by changing surface properties such as surface smoothness and hydrophilicity, while novel membrane materials and synthesis processes build a promising future for the next generation of RO membranes with big advancements in fouling resistance. Especially in this review paper, statistical analysis is conducted where appropriate to reveal the research interests in RO fouling and control.
Collapse
Affiliation(s)
- Shanxue Jiang
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom
| | - Yuening Li
- College of Environmental Science and Engineering, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, United Kingdom.
| |
Collapse
|