1
|
Huang H, Chen Q, Ding Y, Zhao B, Wang Z, Li D. New insights into odor release from sediments in Lake Chaohu and the potential role of sediment microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138007. [PMID: 40132271 DOI: 10.1016/j.jhazmat.2025.138007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Odor events often occur along with algal blooms, posing potential threats to water quality and human health. However, studies on the role of sediments and microbial communities in the production and release of odor compounds remain limited. Seasonal monitoring of Lake Chaohu revealed that pore-terpenoids significantly contributed to terpenoid concentrations in water, explaining 37.1 % of their variability. Environmental factors like temperature primarily influenced terpenoid concentrations by regulating the diffusion of pore-terpenoids. Conversely, pore-nor-carotenoids explained only 11.2 % of nor-carotenoid variability, with phytoplankton communities explaining 59.4 %. Abiotic factors like nutrients influenced nor-carotenoid levels by impacting phytoplankton growth. Microbial communities with a greater proportion of cyanobacteria exhibited more fragile microbial networks, increased competition, and enhanced metabolic activity. We hypothesized that microbial community composition may influence odor production. Laboratory experiments further supported this: sediments with added cyanobacteria showed a 48.1 % reduction in 2-methylisoborneol contents after 30-day incubation, whereas the control group exhibited a 66.38 % increase. Conversely, the experimental group showed significant increases in β-cyclocitral (99.19 %) and β-ionone (48.55 %), while the control group experienced reductions of 54.01 % and 43.53 %, respectively. These findings underscore the importance of considering microbial interactions and sediment dynamics in future odor research, offering insights for water quality management in eutrophic lakes.
Collapse
Affiliation(s)
- Haining Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinyi Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuang Ding
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjie Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Xu X, Ma X, Dou J, Chen W, Chen J, Zhou M, Shen A, Liu X. β-ionone inhibits the grazing of Daphnia sinensis by reducing the activity of acetylcholinesterase. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135690. [PMID: 39255669 DOI: 10.1016/j.jhazmat.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
β-ionone is a volatile metabolite of Microcystis aeruginosa that is toxic to aquatic organisms. Using Daphnia sinensis as model, our present study found that β-ionone could significantly reduce heart rate and feeding rate, and induce intestinal emptying. Transcriptomic analysis showed that β-ionone could significantly inhibit the expression of acetylcholinesterase (AchE) mRNA, while metabolomics further revealed that β-ionone could significantly increase the level of acetylcholine (Ach) in D. sinensis. These results indicated that β-ionone might act as an AchE inhibitor, resulting in an increase in Ach levels. To test this hypothesis, both in vivo and in vitro experiments demonstrated that β-ionone could significantly reduce AchE activity. Furthermore, the inhibitory effects of β-ionone on heart rate and feeding rate could be blocked by the M-type Ach receptor (mAchR) blocker. These findings confirm that β-ionone is a novel AchE inhibitor. β-ionone could inhibit the activity of AchE, which in turn resulted in an increase of Ach in D. sinensis. Consequently, elevated levels of Ach could suppress the heart rate and feeding rate of D. sinensis by activating the mAchR, while concurrently accelerating the rate of intestinal emptying by stimulating intestinal peristalsis, thereby obstructing the digestion of algae within the intestinal tract.
Collapse
Affiliation(s)
- Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingsen Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Anfu Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Lin Y, Cheng C, Dai Y, Li W, Chen J, Chen M, Xie P, Gao Q, Fan X, Deng X. The origins of odor (β-cyclocitral) under different water nutrient conditions: Algae or submerged plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173024. [PMID: 38719048 DOI: 10.1016/j.scitotenv.2024.173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. β-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on β-cyclocitral levels in water. Here, we conducted a study on the β-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), β-cyclocitral in the water (Wcyc), β-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, β-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of β-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit β-cyclocitral, the release of β-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of β-cyclocitral.
Collapse
Affiliation(s)
- Yu Lin
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yutai Dai
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Weijie Li
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiping Chen
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Ecology and Environment, Tibet University, Lhasa 850012, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Mo Chen
- Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Xiaoyue Fan
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
4
|
Wang X, Cao H, Zhu Y, Zhou T, Teng F, Tao Y. β-cyclocitral induced rapid cell death of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123824. [PMID: 38513945 DOI: 10.1016/j.envpol.2024.123824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
β-cyclocitral (BCC) is an odorous compound that can be produced by bloom-forming cyanobacteria, for example, Microcystis aeruginosa. BCC has been proposed to explain the rapid decline of cyanobacterial blooms in natural water bodies due to its lytic effects on cyanobacteria cells. However, few insights have been gained regarding the mechanisms of its lethality on cyanobacteria. In this study, M. aeruginosa was exposed to 0-300 mg/L BCC, and the physiological responses were comprehensively studied at the cellular, molecular, and transcriptomic levels. The result indicated that the lethal effect was concentration-dependent; 100 mg/L BCC only caused recoverable stress, while 150-300 mg/L BCC caused rapid rupture of cyanobacterial cells. Scanning electron microscope images suggested two typical morphological changes exposed to above 150 mg/LBCC: wrinkled/shrank with limited holes on the surface at 150 and 200 mg/L BCC exposure; no apparent shrinkage at the surface but with cell perforation at 250 and 300 mg/L BCC exposure. BCC can rapidly inhibit the photosynthetic activity of M. aeruginosa cells (40%∼100% decreases for 100-300 mg/L BCC) and significantly down-regulate photosynthetic system Ⅰ-related genes. Also, chlorophyll a (by 30%∼90%) and ATP (by ∼80%) contents severely decreased, suggesting overwhelming pressure on the energy metabolism in cells. Glutathione levels increased significantly, and stress response-related genes were upregulated, indicating the perturbation of intracellular redox homeostasis. Two cell death pathways were proposed to explain the lethal effect: apoptosis-like death as revealed by the upregulation of SOS response genes when exposed to 200 mg/L BCC and mazEF-mediated death as revealed by the upregulation of mazEF system genes when exposed to 300 mg/L BCC. Results of the current work not only provide insights into the potential role of BCC in inducing programmed cell death during bloom demise but also indicate the potential of using BCC for harmful algal control.
Collapse
Affiliation(s)
- Xuejian Wang
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Yinjie Zhu
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Tingru Zhou
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Fei Teng
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yi Tao
- Groundwater Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China; Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Chen W, Dou J, Xu X, Ma X, Chen J, Liu X. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133248. [PMID: 38147752 DOI: 10.1016/j.jhazmat.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
β-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of β-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to β-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to β-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release β-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of β-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that β-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Pan N, Xu H, Chen W, Liu Z, Liu Y, Huang T, Du S, Xu S, Zheng T, Zuo Z. Cyanobacterial VOCs β-ionone and β-cyclocitral poisoning Lemna turionifera by triggering programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123059. [PMID: 38042469 DOI: 10.1016/j.envpol.2023.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
β-Ionone and β-cyclocitral are two typical components in cyanobacterial volatiles, which can poison aquatic plants and even cause death. To reveal the toxic mechanisms of the two compounds on aquatic plants through programmed cell death (PCD), the photosynthetic capacities, caspase-3-like activity, DNA fragmentation and ladders, as well as expression of the genes associated with PCD in Lemna turionifera were investigated in exposure to β-ionone (0.2 mM) and β-cyclocitral (0.4 mM) at lethal concentration. With prolonging the treatment time, L. turionifera fronds gradually died, and photosynthetic capacities gradually reduced and even disappeared at the 96th h. This demonstrated that the death process might be a PCD rather than a necrosis, due to the gradual loss of physiological activities. When L. turionifera underwent the death, caspase-3-like was activated after 3 h, and reached to the strongest activity at the 24th h. TUNEL-positive nuclei were detected after 12 h, and appeared in large numbers at the 48th h. The DNA was cleaved by Ca2+-dependent endonucleases and showed obviously ladders. In addition, the expression of 5 genes (TSPO, ERN1, CTSB, CYC, and ATR) positively related with PCD initiation was up-regulated, while the expression of 2 genes (RRM2 and TUBA) negatively related with PCD initiation was down-regulated. Therefore, β-ionone and β-cyclocitral can poison L. turionifera by adjusting related gene expression to trigger PCD.
Collapse
Affiliation(s)
- Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wangbo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zijian Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yichi Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Li Z, Wu S, Yu H, Qiu H, Jiang Q, Deng Y, Gui H, Wang G, Xu X. Distribution pattern of dissolved organic matter in pore water of sediments from three typical areas of western Lake Taihu and its environmental implications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2733-2750. [PMID: 38096065 PMCID: wst_2023_364 DOI: 10.2166/wst.2023.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The migration, transformation, and accumulation of dissolved organic matter (DOM) in pore water of sediment cores play a pivotal role in lacustrine carbon cycling. In order to understand the dynamics of DOM in the sediments of large shallow eutrophic lakes, we examined the vertical profiles of DOM and the benthic fluxes of dissolved organic carbon (DOC) in sediment cores located in algae accumulated, dredged, and central areas of eutrophic Lake Taihu, China. Optical properties showed the significant influence of terrestrial inputs on the DOM components of pore water in the algae accumulated area but an abundant accumulation of autochthonous DOM in the central area. The benthic fluxes of DOC ranging from -458.2 to -139.4 mg·m-2·d-1 in the algae accumulated area displayed an opposite diffusion direction to the other two areas. The flux ranges of 9.5-31.2 mg·m-2·d-1 in the dredged area and 14.6-48.0 mg·m-2·d-1 in the central area were relatively smaller than those in the previously reported lake ecosystems with low trophic levels. Dredging engineering disturbed the pre-dredging distribution patterns of DOM in sediment cores. The deposition, accumulation, and transformation of massive algae scums in eutrophic lakes probably promoted the humification degree of sediments.
Collapse
Affiliation(s)
- Zhichun Li
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China E-mail:
| | - Songjun Wu
- Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Hao Yu
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Huili Qiu
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Quanliang Jiang
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Herong Gui
- Engineering Research Center of Coal Mine Exploration of Anhui Province, Suzhou University, Suzhou 23400, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Ren R, Xuwei D, Wenze L, Xiao R, Ping X, Jun C. Sediments are important in regulating the algae-derived off-flavor (β-cyclocitral) in eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162536. [PMID: 36870503 DOI: 10.1016/j.scitotenv.2023.162536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In recent years, due to global warming and water eutrophication, cyanobacterial blooms have occurred frequently worldwide, resulting in a series of water quality problems, among which the odor problem in lakes is one of the focuses of attention. In the late stage of the bloom, a large amount of algae accumulated on the surface sediment, which will be a great hidden danger to cause odor pollution in lakes. β-Cyclocitral is one of the typical algae-derived odor compounds that cause odor in lakes. In this study, an annual survey of 13 eutrophic lakes in the Taihu Lake basin was investigated to assess the effects of abiotic and biotic factors on β-cyclocitral in water. Our results showed that high concentrations of β-cyclocitral in the pore water (pore-β-cyclocitral) were detected in the sediment and far exceeded that in the water column, with an average of about 100.37 times. Structural equation modeling indicated that algal biomass and pore-β-cyclocitral can directly regulate the concentrations of β-cyclocitral in the water column, and total phosphorus (TP) and temperature (Temp) promoted the algal biomass which further enhanced the production of β-cyclocitral both in the water column and pore water. It was worth noting that when Chla ≥30 μg/L, the effects of algae on pore-β-cyclocitral were significantly enhanced, and pore-β-cyclocitral played a major role in the regulation of β-cyclocitral concentrations in water column. Overall, our study facilitated a comprehensive and systematic understanding of the effects of algae on odorants and the dynamic regulatory processes in complex aquatic ecosystems, and revealed a long-neglected process, that was, the important contribution of sediments to β-cyclocitral in the water column in eutrophic lakes, which would conduce to a more accurate understanding of the evolution of off flavors in lakes and also useful for the management of odors in lakes in the future.
Collapse
Affiliation(s)
- Ren Ren
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Deng Xuwei
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Lu Wenze
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Rao Xiao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xie Ping
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Chen Jun
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
9
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
10
|
Zuo Z. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Front Microbiol 2023; 14:1097712. [PMID: 36891397 PMCID: PMC9987517 DOI: 10.3389/fmicb.2023.1097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes and one of dominant species in eutrophicated waters, which easily burst blooms in summer with high irradiance and temperature conditions. In response to high irradiance, high temperature, and nutrient conditions, cyanobacteria release abundant of volatile organic compounds (VOCs) by up-regulating related gene expression and oxidatively degrading β-carotene. These VOCs not only increase offensive odor in waters, but also transfer allelopathic signals to algae and aquatic plants, resulting in cyanobacteria dominating eutrophicated waters. Among these VOCs, β-cyclocitral, α-ionone, β-ionone, limonene, longifolene, and eucalyptol have been identified as the main allelopathic agents, which even directly kill algae by inducing programmed cell death (PCD). The VOCs released from cyanobacteria, especially the ruptured cells, exhibit repelling effects on the herbivores, which is beneficial to survival of the population. Cyanobacterial VOCs might transfer aggregating information among homogeneous species, so the acceptors initiate aggregation to resist the coming stresses. It can be speculated that the adverse conditions can promote VOC emission from cyanobacteria, which play important roles in cyanobacteria dominating eutrophicated waters and even bursting blooms.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Du S, Xu H, Yang M, Pan N, Zheng T, Xu C, Li Y, Zuo Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119711. [PMID: 35809713 DOI: 10.1016/j.envpol.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) promote cyanobacteria dominating eutrophicated waters, with aquatic plant decrease and even disappearance. To uncover the toxic mechanism of cyanobacterial VOCs on aquatic plants, we investigated the growth, photosynthetic pigment levels, photosynthetic abilities and related gene expression in duckweed treated with β-cyclocitral and β-ionone, 2 main components in the VOCs. The levels of chlorophylls and carotenoids gradually declined with raising the concentration of the 2 compounds and prolonging the treatment time. Their decline should result from the down-regulation of 8 genes associated with photosynthetic pigment biosynthesis and up-regulation of 2 genes involved in carotenoid degradation. The reduction was also found in the photosystem II (PSII) efficiency and O2 evolution rate, which should result from the lowered photosynthetic pigment levels and down-regulation of 38 genes related with photosynthetic process. The frond numbers, total frond area and fresh weight gradually decreased with raising the 2 compound concentration, which may result from the lowered photosynthetic abilities as well as down-regulated expression of 7 genes associated with growth-promoting hormone biosynthesis and signal transduction. It can be speculated that cyanobacterial VOCs may poison aquatic plants by lowering the photosynthesis and growth through altering related gene expression.
Collapse
Affiliation(s)
- Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mengdan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
12
|
Zhou W, Wang Y, Wang J, Peng C, Wang Z, Qin H, Li G, Li D. β-Ionone causes endocrine disruption, hyperpigmentation and hypoactivity in zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155433. [PMID: 35461947 DOI: 10.1016/j.scitotenv.2022.155433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In nature, the odorous substance β-ionone has been widely detected in aquatic ecosystems. However, little is known about its ecotoxicological effects on freshwater vertebrates. In this study, we aimed to assess the acute toxicity of β-ionone in zebrafish (Danio rerio) embryos from 2 to 120 h post fertilization (hpf) and investigate embryo development, locomotor behavior and pigmentation under different concentrations. The results showed that exposure to β-ionone had an acute toxicity to early life stages of zebrafish and induced a decrease in hatching rate and an increase in the mortality and malformation rate. The median lethal concentration (LC50) of β-ionone at 96 h was observed as 1321 μg/L. In addition, β-ionone not only affected the body length of zebrafish larvae but also regulated the transcription of genes and the levels of hormones involved in the growth hormone/insulin-like growth factor (GH/IGF) and the hypothalamic-pituitary-thyroid (HPT) axes. Moreover, exposure to β-ionone induced significant decreases in locomotor activity and catecholamine neurotransmitters levels. Furthermore, β-ionone stimulated pigmentation via regulation of tyrosinase activity and melanin-related gene expression. Overall, this research could provide new insights into the potential risk of odorants to aquatic organisms.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, PR China
| | - Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
13
|
Distribution and Release of Volatile Organic Sulfur Compounds in Yangcheng Lake. WATER 2022. [DOI: 10.3390/w14081199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volatile organic sulfur compounds (VOSCs) function as a water–atmosphere link in the global sulfur cycle. It is generally believed that the vast majority of VOSCs are released from the ocean. However, due to the pervasive eutrophication and pollution of inland waters, the VOSC production and emission in rivers, lakes and reservoirs are attracting more attention. In this study, the temporal and spatial distributions of three VOSCs, including methanethiol, Dimethyl sulfide, and dimethyl disulfide in Yangcheng Lake, a eutrophic shallow lake, are investigated monthly and seasonally. Results show that VOSCs are higher in summer and autumn, with the western region as a hotspot. Our results show a positive correlation between VOSC and phytoplankton biomass (p < 0.05). Interestingly, from algal phylum composition, all the phylum, except those with low biomass, played a positive effect on VOSCs’ concentration. We did not find any specific phylum or species of cyanobacteria that contributed solely to the VOSCs. The water-air effluxes of Dimethyl sulfide (DMS) are estimated by a stagnant film model. The DMS effluxes from Yangcheng Lakes were higher than deep lakes and similar to the ocean, indicating that VOSCs, particularly DMS, in those eutrophic shallow lakes were non-negligible.
Collapse
|
14
|
Production of β-Cyclocitral and Its Precursor β-Carotene in Microcystis aeruginosa: Variation at Population and Single-Cell Levels. Toxins (Basel) 2022; 14:toxins14030201. [PMID: 35324698 PMCID: PMC8955627 DOI: 10.3390/toxins14030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Bloom-forming cyanobacteria produce and release odorous compounds and pose threats to the biodiversity of aquatic ecosystem and to the drinking water supply. In this study, the concentrations of β-cyclocitral in different bacterial growth phases were investigated using GC–MS to determine the growth stage of Microcystis aeruginosa at high risk for β-cyclocitral production. Moreover, the synchronicity of the production of β-cyclocitral and its precursor β-carotene at both population and single-cell levels was assessed. The results indicated that β-cyclocitral was the main odorous compound produced by M. aeruginosa cells. The intracellular concentration of β-cyclocitral (Cβ-cc) as well as its cellular quota (Qβ-cc) increased synchronously in the log phase, along with the increase of cell density. However, they reached the maximum values of 415 μg/L and 10.7 fg/cell in the late stationary phase and early stationary phase, respectively. The early stage of the stationary phase is more important for β-cyclocitral monitoring, and the sharp increase in Qβ-cc is valuable for anticipating the subsequent increase in Cβ-cc. The molar concentrations of β-cyclocitral and β-carotene showed a linear relationship, with an R2 value of 0.92, suggesting that the production of β-cyclocitral was linearly dependent on that of β-carotene, especially during the log phase. However, the increase in Qβ-cc was slower than that in β-carotene during the stationary phase, suggesting that β-cyclocitral production turned to be carotene oxygenase-limited when the growth rate decreased. These results demonstrate that variations of β-cyclocitral production on a single-cell level during different bacterial growth phases should be given serious consideration when monitoring and controlling the production of odorous compounds by M. aeruginosa blooms.
Collapse
|
15
|
Zhou C, Peng Y, Yu M, Deng Y, Chen L, Zhang L, Xu X, Zhang S, Yan Y, Wang G. Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118443. [PMID: 34728323 DOI: 10.1016/j.envpol.2021.118443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Although cyanobacteria blooms lead to an increase in methane (CH4) emissions in eutrophic lakes have been intensively studied, the methane production pathways and driving mechanisms of the associated CH4 emissions are still unclear. In this study, the hypereutrophic Lake Taihu, which has extreme cyanobacteria accumulation, was selected to test hypothesis of a potential methylotrophic CH4 production pathway. Field observation displayed that the CH4 emission flux from the area with cyanobacteria accumulation was 867.01 μg m-2·min-1, much higher than the flux of 3.44 μg m-2·min-1 in the non-cyanobacteria accumulation area. The corresponding abundance of methane-producing archaea (MPA) in the cyanobacteria-concentrated area was 77.33% higher than that in the non-concentrated area via RT-qPCR technologies. Synchronously, sediments from these areas were incubated in anaerobic bottles, and results exhibited the high CH4 emission potential of the cyanobacteria concentrated area versus the non-concentrated area (1199.26 vs. 205.76 μmol/L) and more active biological processes (CO2 emission, 2072.8 vs. -714.62 μmol/L). We also found evidence for the methylotrophic methane producing pathway, which contributed to the high CH4 emission flux from the cyanobacteria accumulation area. Firstly, cyanobacteria decomposition provided the prerequisite of abundant methyl thioether substances, including DMS, DMDS, and DMTS. Results showed that the content of methyl thioethers increased with the biomass of cyanobacteria, and the released DMS, DMDS, and DMTS was up to 96.35, 3.22 and 13.61 μg/L, respectively, in the highly concentrated 25000 g/cm3 cyanobacteria treatment. Then, cyanobacteria decomposition created anaerobic microenvironments (DO 0.06 mg/L and Eh -304.8Mv) for methylotrophic methane production. Lastly, the relative abundance of Methanosarcinales was increased from 7.67% at the initial stage to 36.02% at the final stage within a sediment treatment with 10 mmol/L N(CH3)3. Quantitatively, the proportion of the methylotrophic methane production pathway was as high as 32.58%. This finding is crucial for accurately evaluating the methane emission flux, and evaluating future management strategies of eutrophic lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Yu Peng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Miaotong Yu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Li Chen
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Lanqing Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| | - Siyuan Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| |
Collapse
|
16
|
Liu M, Wu T, Zhao X, Zan F, Yang G, Miao Y. Cyanobacteria blooms potentially enhance volatile organic compound (VOC) emissions from a eutrophic lake: Field and experimental evidence. ENVIRONMENTAL RESEARCH 2021; 202:111664. [PMID: 34256073 DOI: 10.1016/j.envres.2021.111664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication promotes massive cyanobacteria blooms (CBBs), leading to the release of volatile organic compounds (VOCs). To investigate the effects of cyanobacteria on VOC emissions, field campaigns were carried out in eutrophic Chaohu Lake at six sites with different microalgae densities during CBBs in summer 2019, and incubation experiments were performed in the laboratory. The results showed that the lake water was the primary source of VOCs at six sampling sites in Chaohu Lake during CBBs, with an average total VOC flux of 81.2 ± 20.6 μg m-2 h-1. Alkanes were the most abundantly emitted VOCs, with a share of 23.1-63.7% of total emitted VOCs, followed by aromatics (16.6-46.3%). The fluxes of total VOCs were significantly greater at sites B and/or C than at site A in July, and at site B' and/or C' than at site A' in August in Chaohu Lake. The fluxes of total VOCs from living and decayed cyanobacteria in the experimental treatments were two orders of magnitude higher than the corresponding values in the control treatments in the laboratory incubation. Taken together, these results suggested that CBBs potentially enhanced VOC emissions from the eutrophic lake, and that cyanobacteria acted as an important source of VOCs. Additionally, non-methane hydrocarbons (i.e., alkanes, alkenes, and aromatics) predominated among the released VOCs during the stabilization and senescence stages, while oxygenated volatile organic compounds (i.e. alcohols, aldehydes, ketones, esters, and furans) prevailed during the apoptosis stage and aromatics and volatile organic sulfur compounds predominated during the decomposition stage, suggesting that VOC emissions varied markedly at different life stages.
Collapse
Affiliation(s)
- Mengdi Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Xiaoyu Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| | - Fengyu Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China.
| | - Geng Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, 241000, China
| | - Yuqing Miao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
17
|
Qi C, Fang J, Wang G, Huang H, Wang Z, Si Z, Zhang L. Characterization of odorants in contrasting ecotypes of Lake Taihu: algae-dominated versus macrophyte-dominated zones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42221-42229. [PMID: 32037493 DOI: 10.1007/s11356-020-07896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Globally, odorant incidents are occurring at an increasing frequency, magnitude, and duration under the dual influences of eutrophication and climate change. However, the contribution of multiple ecotypes to odorant production in the complicated and dynamic lake ecosystems remains unclear. In this study, the odorants and environmental conditions in algae-dominated zones (ADZs) and macrophyte-dominated zones (MDZs) in Lake Taihu were identified and characterized. Results showed that the ADZs were characterized by an abundance of pigments and nutrients and low DO levels, while the MDZs were featured as high TOC/TN ratios and high DO levels. Most odorants in ADZs and several in MDZs exceeded the odorant threshold content. The dominant odorants were dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), β-ionone and β-cyclocitral in ADZs, which were associated with the accumulation and decomposition of algal detritus. For MDZs, the dominant odorants were 2-methylisoborneol (2-MIB) and geosmin, which were at least partially attributed to the massive addition of bait in a traditional aquaculture area. In addition, the odorant concentration in the water of ADZs was approximately 3 to 21 times higher than that in MDZs, while in the benthic sediment, the odorant concentration in ADZs was approximately 2 to 3 orders of magnitude higher than in MDZs. This study highlights the production and accumulation of nuisance odorants in the benthic sediment of ADZs, indicating a risk of diffusion from the sediment to the water column. This was supported by the correlation of odorants in the water column with that in the sediment. The results of this study will be helpful for the management of different ecotypes suffering from nuisance odorants problems.
Collapse
Affiliation(s)
- Chuang Qi
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiaqi Fang
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| | - Hexiao Huang
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhuosen Wang
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zejun Si
- School of Computer Science and Software Engineering, East China Normal University, Shanghai, 200062, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| |
Collapse
|
18
|
Zhou Y, Song K, Han R, Riya S, Xu X, Yeerken S, Geng S, Ma Y, Terada A. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114919. [PMID: 32540596 DOI: 10.1016/j.envpol.2020.114919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Shallow lakes are a crucial source of methane (CH4), a potent greenhouse gas, to the atmosphere. However, large uncertainties still exist regarding the response of CH4 emissions to the increasing trophic levels of lakes as well as the underlying mechanisms. Here, we investigate the CH4 emission flux from lakes with different trophic states in the middle and lower reaches of the Yangtze River basin, China to evaluate the effect of the trophic lake index (TLI) on CH4 emissions. The mean CH4 emission fluxes from mesotrophic, eutrophic, middle-eutrophic, and hyper-eutrophic lakes were 0.1, 4.4, 12.0, and 130.4 mg m-2 h-1, respectively. Thus, the CH4 emission flux ranged widely and was positively correlated with the degree of eutrophication. The relative abundance of methanogens with respect to the total population for the mesotrophic, eutrophic, mid-eutrophic, and hyper-eutrophic states was 0.03%, 0.35%, 0.94%, and 1.17%, respectively. The biogeographic-scale pattern of lakes classified as each of these four trophic states indicated that CH4 emissions could be well-predicted by the NH4+-N concentration in the water column, as both NH4+-N and CH4 were produced during mineralisation of labile organic matter in lake sediment. In addition, the shift from clear to turbid water, which is an unhealthy evolution for lakes, was associated with a nonlinear increase in the CH4 emissions from the studied lakes. In particular, the hypereutrophic lakes functioned as CH4 emission hotspots. Our findings highlight that nutrient levels, as a potential facilitator of CH4 emissions, should be considered in future research to accurately evaluate the greenhouse gas emissions from shallow lakes.
Collapse
Affiliation(s)
- Yiwen Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shixiong Geng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - You Ma
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
19
|
Ma J, Xu X, Yu C, Liu H, Wang G, Li Z, Xu B, Shi R. Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134328. [PMID: 31783469 DOI: 10.1016/j.scitotenv.2019.134328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In eutrophic lacustrine ecosystems, drifting algal blooms are easily trapped by emergent macrophytes in downwind littoral zones, potentially altering carbon cycling processes; yet, knowledge remains limited about the mechanisms driving these changes. In this study, Microcystis and Phragmites, two dominant photosynthetic organisms in a hypereutrophic (Lake Taihu, China), were collected to simulate their co-decomposition processes. We demonstrate how molecular-level biomarkers could be used to elucidate the degradation dynamics of these two distinct organic forms in mixtures. Microcystis-derived carbon accelerated the decomposition rate of mixed systems (positive co-metabolism effect), rather than retarding it. The decomposition rate of TOC (total organic carbon) directly measured in the mixed treatments was 14% higher than when the two substrates were incubated alone. The use of specific fatty acid biomarkers facilitated more accurate tracking, demonstrating 1.09 times higher decomposition rates for Phragmites detritus in mixed treatments than in single Phragmites treatments. Furthermore, Microcystis showed 0.98 times higher decomposition rates in mixed treatments than in single treatments. The addition of Microcystis detritus to Phragmites detritus might meet microbial stoichiometric requirements, increasing the abundance of decomposing bacteria in Phragmites detritus, and accelerating decomposition rates, resulting in the co-metabolism of Microcystis and Phragmites carbon. Given the increasing occurrence of algal blooms in eutrophic lakes, the processes documented here might enhance greenhouse gas emissions from lakes with continued global climate warming.
Collapse
Affiliation(s)
- Jie Ma
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Sino-Japan Friendship Center for Environmental Protection, No. 1 Yu Hui Nan Road, Beijing 100029, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Cencen Yu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huichao Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhichun Li
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Bin Xu
- Sino-Japan Friendship Center for Environmental Protection, No. 1 Yu Hui Nan Road, Beijing 100029, China; Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Ruijie Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Qi C, Zhang L, Fang J, Lei B, Tang X, Huang H, Wang Z, Si Z, Wang G. Benthic cyanobacterial detritus mats in lacustrine sediment: Characterization and odorant producing potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113453. [PMID: 31672349 DOI: 10.1016/j.envpol.2019.113453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Eutrophic freshwater lake ecosystems are receiving increasing public attention due to a global increase in large-scale harmful cyanobacterial blooms in surface waters. However, the contribution of phytodetritus accumulation in benthic sediments post-bloom remains unclear. In this study, field investigations were performed using microsensors to evaluate benthic phytodetritus mats by measuring TOC/TN ratios, pigments, biodegradable compounds and odorants as descriptive parameters. Results show that the massive amount of phytodetritus trapped by aquatic plants gradually evolved into benthic cyanobacterial detritus mats, which were characterized as anoxic, reductive and low pH. It was confirmed that the occurrence of odorants is more serious in the detritus mats due to decay and decomposition of the accumulated phytodetritus. The mean odorant content in the vegetated zones was 3-52 times higher than that in the unvegetated zones. The dominant odorants were dimethyl trisulfide (DMTS), β-ionone and β-cyclocitral, with mean contents of 52.38 ng·(g·dw)-1, 162.20 ng·(g·dw)-1 and 307.51 ng·(g·dw)-1, respectively, in the sediment. In addition, odorant production appears to be associated with the distribution of biodegradable compounds in the sediment. This is supported by the marked correlation observed between biodegradable compounds and odorants. Multiple regression analysis showed that biodegradable compounds can be used as indicators to predict odorant content in the sediment. It is noteworthy that the odorant trend in the water column and sediment is symmetrical, indicating a risk of diffusion from the sediment to the water column. This study helps to clarifying the contributions of benthic cyanobacterial detritus mats to odorant production in shallow eutrophic lakes. The information provided herein may also be useful for future management of aquatic ecosystems.
Collapse
Affiliation(s)
- Chuang Qi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China.
| | - Jiaqi Fang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Bo Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xiangcheng Tang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Hexiao Huang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhuosen Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zejun Si
- School of Computer Science and Software Engineering, East China Normal University, Shanghai, 200062, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, China
| |
Collapse
|
21
|
Yu C, Shi C, Tang J, Ji Q, Wang X, Xu X, Wang G. Release of taste and odour compounds during Zizania latifolia decay: A microcosm system study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112954. [PMID: 31398637 DOI: 10.1016/j.envpol.2019.07.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Organic matter-induced black bloom frequently occurs in a number of large eutrophic shallow lakes; this can result in the release of malodorous compounds and has a negative impact on water quality. In the study, a microcosm system containing Zizania latifolia (Z. latifolia), a common aquatic plant, was established and the release of seven taste and odour compounds, dimethyl sulphide (DMS), dimethyl disulphide (DMDS), dimethyl trisulphide (DMTS), 2-methylisoborneol (MIB), geosmin (GSM), β-cyclocitral, and β-ionone, was investigated. The results showed that these compounds were all detected during Z. latifolia decay, and that volatile organic sulphur compounds (VOSCs), such as DMS, DMDS, and DMTS, were the main factors responsible for the strong foul odour (the maximum reached 5.0 μg L-1). The release of odorous compounds was stronger during the initial seven days, and then progressively decreased in the middle stage of the experiment. Furthermore, large amounts of nutrients were released into the overlying water; nutrient concentration increased with increasing plant biomass. A positive correlation was observed between the odorant concentration and plant biomass. These results indicate that the density of aquatic plants should be controlled as part of future management of aquatic ecosystems.
Collapse
Affiliation(s)
- Cencen Yu
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chenfei Shi
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Jing Tang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
22
|
Yu C, Shi C, Ji M, Xu X, Zhang Z, Ma J, Wang G. Taste and odor compounds associated with aquatic plants in Taihu Lake: distribution and producing potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34510-34520. [PMID: 31643015 DOI: 10.1007/s11356-019-06188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The odor problem caused by the decay of aquatic plants is widespread in many freshwater lakes. In this study, the spatial distributions of seven taste and odor (T&O) compounds (dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, 2-methylisoborneol, geosmin, β-cyclocitral, and β-ionone) in the sediments and overlying water of the east of Taihu Lake were investigated. The effects of plant and physico-chemical parameters on the release of T&O compounds were also analyzed. The results showed that high concentrations of T&O compounds were detected in the area where Eichhornia crassipes was flourishing. Volatile organic sulfur compounds were not found in the water source area, which was not covered by aquatic plants. High plant biomass and aquiculture activities might increase the release of the taste and odor compounds. The correlation between the concentrations of odorous compounds and nutrients in the sediment was also analyzed. The production of odorants was positively correlated with the nitrogen, and they may migrate from sediment to overlying water. The result suggested that controlling the plant density and aquaculture activities could reduce the release of odorous compounds.
Collapse
Affiliation(s)
- Cencen Yu
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Chenfei Shi
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Ming Ji
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Zhongqian Zhang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Jie Ma
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| |
Collapse
|
23
|
Zhang R, Qi F, Liu C, Zhang Y, Wang Y, Song Z, Kumirska J, Sun D. Cyanobacteria derived taste and odor characteristics in various lakes in China: Songhua Lake, Chaohu Lake and Taihu Lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:499-507. [PMID: 31229840 DOI: 10.1016/j.ecoenv.2019.06.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
In recent years, increasing eutrophication in large freshwater lakes, which are an important drinking water source for cities in China, have been resulted in substantial cyanobacteria blooms that could cause serious taste and odor (T&O) problems. In this investigation, three typical lakes (Songhua Lake, Chaohu Lake and Taihu Lake) as drinking water sources located in different geographical areas in China, were selected to study the problems of cyanobacteria-derived T&O (i.e., 2-methylisobornoel, geosmin, β-ionone, 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, and 2-methylbenzofuran). The occurrence of T&O in target lakes was compared across various nutrition states and geographic locations, to get more information for early warning for algal bloom and T&O occurrence, being useful lake water management and purification. Results show that the occurrence of T&O in Songhua Lake was the poorest for the lowest nutrient state, as a first report in T&O research field in China. This is a lake located in Northeast China at high latitude, with lower water temperatures. The occurrence of T&O in Chaohu Lake was ranked in the middle. That in Taihu Lake was the most intensive. Finally, the relationship between water quality, T&O and its origin was analyzed by multivariate statistical methods (correlation analysis, principal component, and cluster analyses).
Collapse
Affiliation(s)
- Rui Zhang
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Fei Qi
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Chao Liu
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yuting Zhang
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Yiping Wang
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Zilong Song
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Poland
| | - Dezhi Sun
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
24
|
Zhou Y, Xu X, Han R, Li L, Feng Y, Yeerken S, Song K, Wang Q. Suspended particles potentially enhance nitrous oxide (N 2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1225-1234. [PMID: 31252120 DOI: 10.1016/j.envpol.2019.06.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Estuaries are considered hot spots for the production and emissions of nitrous oxide (N2O) and easily occur suspended particles (SPS), however, current understanding about the role of SPS in the N2O emissions from the oxic estuarine waters of lacustrine ecosystems is still limited. In this study, field investigations were performed in the estuaries of hypereutrophic Taihu Lake, and laboratory simulations were simultaneously conducted to ascertain the characteristics of N2O emissions with different SPS concentrations. The results showed that the N2O emission fluxes ranged from 9.75 to 118.38 μg m-2 h-1, indicating a high spatial heterogeneity for the N2O emissions from the estuaries of Taihu Lake. Although the dissolved oxygen (DO) concentrations were up to 7.85 mg L-1 in the estuarine waters, from where the N2O emissions fluxes were approximately three times that of the lake regions. Multiple regression model selected the total nitrogen (TN), SPS, and DO concentrations as the crucial factors influencing the N2O emission fluxes. Particularly for SPS, the simulation results showed that the N2O concentrations increased gradually with the increase in the SPS concentrations of an oxic water column containing 4 mg L-1 of NO3--N, indicating that a high SPS concentration can accelerate the N2O emissions. It was related to the change of denitrifying bacteria population in the SPS, as evidenced by its significantly positive correlation with N2O emissions (p < 0.01). Our findings will draw attentions to the role of SPS playing in the N2O productions and emissions in eutrophic lakes, and its effect on nitrogen cycle should be considered in the future study.
Collapse
Affiliation(s)
- Yiwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment, Nanjing Normal University, 210023 Nanjing, China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
25
|
Xu X, Zhou Y, Han R, Song K, Zhou X, Wang G, Wang Q. Eutrophication triggers the shift of nutrient absorption pathway of submerged macrophytes: Implications for the phytoremediation of eutrophic waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:376-384. [PMID: 30925407 DOI: 10.1016/j.jenvman.2019.03.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Ecologically restoring eutrophic water bodies by using submerged macrophytes is an economical, effective and sustainable technology worldwide. However, current understanding on the nutrient absorption pathway of submerged macrophytes in freshwater ecosystems, especially under different trophic states, is still limited. In this study, two strategically designed systems were established to form isolated units for preventing nutrient exchange amongst Potamogeton crispus, water column and sediments. Results showed that, in oligotrophic state, P. crispus mainly relied on their roots to absorb nutrients from sediments for maintaining stable growth, with the maximum average height, fresh weight and relative growth rate of 12.85 cm, 4.86 g ind-1 and 0.062, respectively. However, the eutrophic conditions (TN of 4 mg L-1 and TP of 0.3 mg L-1) triggered the shift of the nutrient absorption pathway from the roots to the shoots to some extent, that is, the shoots of P. crispus gradually became a remarkable pathway to directly absorb nutrients from the water column. Approximately 49.85% and 18.35% of total nitrogen (TN) and total phosphorus (TP) from overlying water were allocated to the shoots of P. crispus, but had no effects on the growth, photosynthesis and ecological stoichiometric differences (p > 0.05). Sediments acting as a nitrogen (N) source supported nearly 11.56% of TN for shoot uptake and simultaneously received around 13.33% of TP subsidy from the overlying water. The no longer sole dependence of submerged macrophytes on their root system to absorb N and phosphorus nutrients indicated that the ability of shoots to absorb nutrients increased with the gradual increase in nutrients in water column. These findings imply that the large specific surface area of shoots is beneficial for restoring eutrophic waters.
Collapse
Affiliation(s)
- Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yiwen Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
26
|
Jiang M, Ji X, Zhou Y, Zhang W, Zhang C, Zhang J, Zheng Z. Nutrient limitation and enzymolysis of phosphorus in Meiliang Bay, Lake Taihu, during algal blooms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:369-376. [PMID: 30714277 DOI: 10.1002/wer.1021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
In this study, algal growth potential tests were performed in water samples collected from six sampling sites in Meiliang Bay, Lake Taihu. The potential release of soluble reactive phosphorus (SRP) by enzymatic hydrolysis of enzymatically hydrolyzable phosphorus (EHP) was simultaneously evaluated. Results show that all studied regions were in highly eutrophic states, with additional nitrogen (N) or phosphorus (P) inputs, inducing negligible further increase in algal growth. EHP in water could be rapidly transformed into SRP, further supporting the proliferation of algal blooms. The shortest EHP mineralization time was calculated as 69 minutes; therefore, limiting specific nutrient inputs alone in extremely eutrophic lakes can have a limited effect on suppressing the proliferation of algal blooms. Methods to establish a suitable environmental fate for excessive nitrogen and phosphorus nutrients may be more effective and provide more significant results. PRACTITIONER POINTS: N and P were no longer serving as the limiting factors in Meiliang Bay. Enzymatically hydrolysable phosphorus could be hydrolyzed into soluble reactive phosphorus in a very short period during algal blooms. Both enzymatically hydrolysable phosphorus and soluble reactive phosphorus are required to be curbed in practical eutrophication control.
Collapse
Affiliation(s)
- Mengqi Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiyan Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yanping Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Weizhen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Chengjin Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Characteristics of Dissolved Organic Nitrogen in the Sediments of Six Water Sources in Taihu Lake, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060929. [PMID: 30875848 PMCID: PMC6466175 DOI: 10.3390/ijerph16060929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
KCl-extractable sediment dissolved organic nitrogen (KS-DON) extracted from sediments near drinking water intakes of six drinking water sources in Taihu Lake in China was partitioned into hydrophobic and hydrophilic fractions and high/low molecular weight fractions. The results showed that the total dissolved nitrogen (TDN) contents of the extracts ranged from 67.78 to 128.27 mg/kg. KS-DON was the main TDN species, accounting for more than 50%, with NH4+-N and NO3−-N averaging 30% and 20%, respectively. The molecular weight fractions of <1 kDa accounted for almost half of KS-DON. Hydrophilic compounds accounted for more than 75% of KS-DON. Three fluorescence peaks were identified: soluble microbial byproducts (A); protein-like substances (B); and humic acid-like substances (C). It is concluded that the KS-DON in Taihu Lake sources has higher bioavailability and higher risk of endogenous release. Ecological dredging and establishment of constructed wetlands are possible measures to reduce the release of endogenous nitrogen.
Collapse
|
28
|
Zhao Y, Zhang Z, Wang G, Li X, Ma J, Chen S, Deng H, Annalisa OH. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:163-172. [PMID: 30196216 DOI: 10.1016/j.scitotenv.2018.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
This study is devoted to addressing the effects of algae blooms on sulfur cycle and the consequent phosphorus mobility in the sediments of freshwater lake ecosystems. A mesocosm experiment was conducted to investigate these effects through monitoring the dynamics of sulfur (S), iron (Fe) and phosphorus (P) in water and sediments, and their diffusion fluxes at the sediment-water interface (SWI). In addition, the abundance of sulfate-reducing bacteria (SRB) in the water column was also detected. The addition of the algae lead to an increase of SRB, a drastic decline of sulfate and a significant increase of total dissolved sulfide (ΣS2-, the peak value of near 3.0 mmol/L on day 6) in the water column. These results suggest the sulfate reduction was dramatically promoted during algae decomposition. Indeed the ΣS2- was 2 to 3 times of SO42- initial concentration, and higher ΣS2- was produced with higher algal biomass. Moreover, the diffusive flux of ΣS2- at the SWI was negative, indicating that diffusion of ΣS2- from water column toward sediment was occurring. These results indicated that algae decomposition might also be another important source of ΣS2- (termed "algae-derived ΣS2-") in addition to sulfate reduction. The increase of Fe(II) in surface sediment pore-water was slightly delayed compared to the ΣS2- generation in the water column, which illustrated that Fe oxyhydroxides in sediments were transformed into Fe(II) through chemical reduction of ΣS2-. Concomitantly, the vertical distribution of PO43- in high amounts algae group suggested that desorption and release of iron oxides-bound PO43- occurred in sediments. Collectively, algae bloom can boost the lake eutrophication not only through direct release of nutrients but also through the high production of ΣS2-and indirect promotion of phosphorus mobility in sediment.
Collapse
Affiliation(s)
- Yanping Zhao
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| | - Zhongqian Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaojun Li
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shuang Chen
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan Deng
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Onnis-Hayden Annalisa
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
29
|
Li Z, Zhao Y, Xu X, Han R, Wang M, Wang G. Migration and transformation of dissolved carbon during accumulated cyanobacteria decomposition in shallow eutrophic lakes: a simulated microcosm study. PeerJ 2018; 6:e5922. [PMID: 30425899 PMCID: PMC6228553 DOI: 10.7717/peerj.5922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
The decomposition processes of accumulated cyanobacteria can release large amounts of organic carbon and affect the carbon cycling in shallow eutrophic lakes. However, the migration and transformation mechanisms of dissolved carbon (DC) require further study and discussion. In this study, a 73-day laboratory microcosm experiment using suction samplers (Rhizon and syringe) was conducted to understand the migration and transformation of DC during the cyanobacteria decomposition. The decomposition of cyanobacteria biomass caused anoxic and reduction conditions, and changed the acid-base environment in the water column. During the early incubation (days 0–18), a large amount of cyanobacteria-derived particulate organic matter (POM) was decomposed into dissolved organic carbon (DOC) in the overlying water, reaching the highest peak value of 1.82 g L−1 in the treatment added the high cyanobacteria biomass (470 g). After 18 days of incubation, the mineralization of increased DOC to dissolved inorganic carbon (DIC) maintained a high DIC level of overlying water in treatments added cyanobacteria biomass. The treatment added the medium cyanobacteria biomass (235 g) presented the lower DOC/total dissolved carbon ratio than the high cyanobacteria biomass associated with the lower mineralization from DOC to DIC. Due to the concentration differences of DIC at water-sediment interface, the main migration of DIC from pore water to overlying water occurred in the treatment without added cyanobacteria biomass. However, the treatments added the cyanobacteria biomass presented the obvious diffusion of DOC and the low migration of DIC at the water-sediment interface. The diffusive fluxes of DOC at the water-sediment interface increased with the cyanobacteria biomass added, reaching the maximum value of 411.01 mg/(m2·d) in the treatment added the high cyanobacteria biomass. In the overlying water, the group added the sediment and medium cyanobacteria biomass presented a faster degradation of cyanobacteria-derived POM to DOC and a higher mineralization level of DOC to DIC than added the medium cyanobacteria biomass without sediment. Therefore, during accumulated cyanobacteria decomposition, the biomass of accumulated cyanobacteria and sediment property can influence the migration and transformation of DC, playing an important role in carbon cycling in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Zhichun Li
- School of Geography Science, Nanjing Normal University, Nanjing, Jiangsu Province, China.,School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui Province, China.,National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou, Anhui Province, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Mingyue Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Guoxiang Wang
- School of Geography Science, Nanjing Normal University, Nanjing, Jiangsu Province, China.,School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
30
|
Liu Y, Song N, Guo R, Xu H, Zhang Q, Han Z, Feng M, Li D, Zhang S, Chen J. Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake): Implication for eco-toxicity risk. CHEMOSPHERE 2018; 202:255-263. [PMID: 29571146 DOI: 10.1016/j.chemosphere.2018.03.108] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) are ubiquitous in the aquatic environment, which have been considered or suspected as carcinogens and neurotoxicants. In this study, the occurrence, spatial distribution, potential sources, partitioning character and potential risks of OPEs in the surface water and sediment collected from Taihu Lake were investigated. The concentrations of ∑12 OPEs varied from 1.0 × 102 to 1.7 × 103 ng/L for the surface water and from 8.1 to 4.2 × 102 ng/g dw for the sediment. Trimethyl phosphate (TEP) was the predominant congener in the surface water, while Tris(2-ethylhexyl) phosphate (TEHP) in the sediment. Positive correlations between OPEs indicated that they may have the same sources and/or similar environmental behavior. The pseudo-partitioning values of OPEs ranged from 0.59 to 6.5 × 104 L/kg. TEHP has the highest pseudo-partitioning coefficient, which indicated that TEHP inclined to be enriched in the sediment in Taihu Lake. Risk assessment (RQ) showed that individual OPEs in the surface water and sediment posed no/low risk to aquatic organisms, except 2-Ethylhexyl diphenyl phosphate (EHDPP) (moderate risk) in water.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Huaizhou Xu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Qin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Mengjuan Feng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Li
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
31
|
Chen M, Liu Y, Guo R, Xu H, Song N, Han Z, Chen N, Zhang S, Chen J. Spatiotemporal distribution and risk assessment of organophosphate esters in sediment from Taihu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13787-13795. [PMID: 29508199 DOI: 10.1007/s11356-018-1434-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
The occurrence and spatiotemporal distribution of 12 organophosphate esters (OPEs) were investigated in the sediments collected from Taihu Lake. Compared to the same lake in 2012 (3.4-14 ng/g dw), the concentrations of ∑12 OPEs in sediments ranged from 10.76 to 335.37 ng/g dw and from 8.06 to 425.39 ng/g dw in 2015 and in 2016, respectively, indicating that the OPEs levels in Taihu Lake have aggravated, recently. TEHP was the most abundant compound of the OPEs, which suggested that TEHP was the most widely used around Taihu Lake recently. The positive correlations between some of individual OPEs and the principal components analysis suggested the same potential sources for them. The strong positive correlation between ∑BPs and TOC content indicated that TOC content was one of the factors affected the distribution of ∑OPEs in the sediment. Risk quotient (RQ) for OPEs showed no high eco-toxicity risk in sediment for aquatic organisms.
Collapse
Affiliation(s)
- Meihong Chen
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Huaizhou Xu
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Ninghui Song
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Zhihua Han
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Nannan Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shenghu Zhang
- Ministry of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
32
|
Huang H, Xu X, Liu X, Han R, Liu J, Wang G. Distributions of four taste and odor compounds in the sediment and overlying water at different ecology environment in Taihu Lake. Sci Rep 2018; 8:6179. [PMID: 29670292 PMCID: PMC5906450 DOI: 10.1038/s41598-018-24564-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/04/2018] [Indexed: 11/09/2022] Open
Abstract
Organic matter-induced black blooms, such as cyanobacterial and vegetation blooms, are a serious ecosystem disasters that have occurred in Taihu Lake. After large-scale outbreaks of blooms in eutrophic water, a large number of cyanobacterial and vegetation residue accumulate in the coastal areas, and rapidly fermented into odorous compounds. In this study, four taste and odor compounds have been analyzed in sediments and overlying water of different ecology environment in Taihu Lake. High concentrations of DMDS (up to 7165.25 ngg-1 dw-1), DMTS (up to 50.93 ngg-1 dw-1), β-cyclocitral (up to 5441.69 ngg-1 dw-1), β-ionone (up to 1669.37 ngg-1 dw-1) were detected in sediments. Also, the spatial distributions of DMDS, DMTS, β-cyclocitral and β-ionone in the sediments were investigated. As the depth of sediment increases, nutrients and odorous compounds are greatly reduced. The results showed that during the degradation of cyanobacterial and vegetation residues, DMDS, DMTS, β-cyclocitral, β-ionone and nutrients are gradually released. In addition, when assessing the source of odorous compounds in overlying water, it should also be considered that it may be released from the sediment. This study shows that odorous compounds are ubiquitous in near-shore zones Taihu Lake, and may take potential hazard to aquatic ecosystems.
Collapse
Affiliation(s)
- Heyong Huang
- School of Geography Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China.,Analysis and Testing Center, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China
| | - Xiansheng Liu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China
| | - Jine Liu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, P. R. China.
| |
Collapse
|
33
|
Liu Y, Zhang S, Song N, Guo R, Chen M, Mai D, Yan Z, Han Z, Chen J. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake): Implications for ecological and human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1090-1098. [PMID: 28511354 DOI: 10.1016/j.scitotenv.2017.05.069] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
Since the production and use of BPA were regulated in China around 2008, several bisphenol analogues were widely used to substitute BPA in the manufacture of polycarbonates, epoxy resins, and plastics. However, there is limited understanding of the spatial distribution, potential sources and risk assessment for those bisphenol analogues. In this study, seven bisphenol analogues were investigated in water and sediment samples from Taihu Lake, China. Compared to the same lake in 2013 (range: 5.4-87ng/L for waters and 0.37-8.3ng/g dw for sediments), the samples from Taihu Lake contained comparatively higher BPs (2.0×102-9.5×102ng/L and 23-4.3×102ng/gdw) in 2016, indicating that the BPs levels in Taihu Lake have aggravated recently. In waters, BPAF has become the predominant congener in Taihu Lake, suggesting that BPAF was the most widely used substitute of BPA, recently. In sediments, BPA was the most abundant compound. Moderate or strong correlations between some individual BPs indicated that those BPs may have the common sources and/or similar environmental behavior. The strongly positive correlation between ∑BPs and TOC content indicated that TOC content was one of the major factors controlled the distribution of ∑BPs in the sediment. The risk assessment at the sampling sites showed no high eco-toxicity or estrogenic risk in Taihu Lake.
Collapse
Affiliation(s)
- Yanhua Liu
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Ruixin Guo
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
| | - Meihong Chen
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Dina Mai
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Yan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China.
| | - Zhihua Han
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China.
| | - Jianqiu Chen
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|