1
|
Yang P, Li J, Hou R, Yuan R, Chen Y, Liu W, Yu G, Wang W, Zhou B, Chen Z, Chen H. Mitigating N 2O emissions in land treatment systems: Mechanisms, influences, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175638. [PMID: 39168319 DOI: 10.1016/j.scitotenv.2024.175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Land treatment systems (LTS) are widely used in decentralized domestic wastewater treatment due to low energy requirements and effective treatment outcomes. However, LTS operations are also a significant source of N2O emissions, a potent greenhouse gas threatening the ozone layer and posing risks to human health. Despite the importance of understanding and controlling N2O emissions, existing literature lacks comprehensive analyses of the mechanisms driving N2O generation and effective control strategies within LTS. This study addresses this gap by reviewing current research and identifying key factors influencing N2O emissions in LTS. This review reveals that in addition to traditional nitrification and denitrification processes, co-denitrification and complete ammonia oxidation are crucial for microbial nitrogen removal in LTS. Plant selection is primarily based on their nitrogen absorption capacity while using materials such as biochar and iron can provide carbon sources or electrons to support microbial activities. Optimizing operational parameters is essential for reducing N2O emissions and enhancing nitrogen removal efficiency in LTS. Specifically, the carbon-to‑nitrogen ratio should be maintained between 5 and 12, and the hydraulic loading rate should be kept within 0.08-0.2 m3/(m2·d). Dissolved oxygen and oxidation-reduction potential should be adjusted to meet the aerobic or anaerobic conditions the microorganisms require. Additionally, maintaining a pH range of 6.5-7.5 by adding alkaline substances is crucial for sustaining nitrous oxide reductase activity. The operating temperature should be maintained between 20 and 30 °C to support optimal microbial activity. This review further explores the relationship between environmental factors and microbial enzyme activity, community structure changes, and functional gene expression related to N2O production. Future research directions are proposed to refine N2O flux control strategies. By consolidating current knowledge and identifying research gaps, this review advances LTS management strategies that improve wastewater treatment efficiency while mitigating the environmental and health impacts of N2O emissions.
Collapse
Affiliation(s)
- Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Junhong Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weiqing Liu
- Beijing Institute of Geology for Mineral Resources, Yuanlin East Road, Mi Yun, Beijing 101500, China
| | - Guoqing Yu
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Weiqiang Wang
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Pascual A, Álvarez JA, de la Varga D, Arias CA, Van Oirschot D, Kilian R, Soto M. Horizontal flow aerated constructed wetlands for municipal wastewater treatment: The influence of bed depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168257. [PMID: 37924877 DOI: 10.1016/j.scitotenv.2023.168257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The influence of bed depth on the performance of aerated horizontal constructed wetlands was investigated at the pilot plant scale. Two horizontal flow subsurface constructed wetlands (HF) intensified units of different bed depth (HF1: 0.90 m and HF2: 0.55 m, 0.8 m and 0.5 m water level, respectively) were fitted with forced aeration, while a third one (HFc, 0.55 m bed depth, 0.5 m water level) was used as control and not aerated. The three HF units were operated in parallel, receiving the same municipal wastewater pre-treated in a hydrolytic up-flow sludge blanket anaerobic digester. Applied surface loading rates (SLR) ranged from 20 to 80 g biochemical oxygen demand (BOD5)/m2·d and from 3.7 to 6.7 g total nitrogen (TN)/m2·d, while it ranges from 6 to 23 g BOD5/m2·d and from 1.1 to 1.7 g TN/m2·d in the control unit. Removal of total suspended solids (TSS) and BOD5 was usually close to a 100 % in all units, whilst chemical oxygen demand (COD) removal was higher for the HF1 unit (97 % on average, range of 96-99 %) than for HF2 (92 %, 82-98 %) and HFc (94 %, 86-99 %). TN removal reached on average 33 % (16-43 %) in HFc, 37 % (10-76 %) in HF2 and 51 % (21-79 %) in HF1. High TN removal required a longer aeration time for nitrification and higher effluent recirculation ratio to enhance denitrification. The results indicate that artificial aeration and a high bed depth allows to increase the SLR by a factor of 4 in HF1 but only by a factor of 2 in HF2.
Collapse
Affiliation(s)
- A Pascual
- Department of Chemistry, University of A Coruña, Spain.
| | | | | | - C A Arias
- Department of Biology, Aarhus University, Denmark.
| | | | | | - M Soto
- Department of Chemistry, University of A Coruña, Spain.
| |
Collapse
|
3
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
4
|
Sánchez M, Ramos DR, Fernández MI, Aguilar S, Ruiz I, Canle M, Soto M. Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156750. [PMID: 35750172 DOI: 10.1016/j.scitotenv.2022.156750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The removal of emerging pollutants from municipal wastewater was studied for the first time using a three-step pilot-scale system: 1) hybrid digester (HD) as first step, 2) subsurface vertical flow constructed wetland (VF) as second step, and 3) photodegradation (PD) unit as third step or post-treatment. The HD and VF units were built and operated in series with effluent recirculation at pilot scale. For the PD post-treatment, three alternatives were studied at lab-scale, i) UVC irradiation at 254 nm (0.5 h exposure time), ii) UVA irradiation at 365 nm using a TiO2-based photocatalyst and iii) sunlight irradiation using a TiO2-based photocatalyst, the last two for 1 and 2 h. Alternative iii) was also tested at pilot-scale. Degradation of nine compounds was evaluated: acetaminophen (ACE), caffeine (CAF), carbamazepine (CBZ), ketoprofen (KET), ibuprofen (IBU), diclofenac (DCL), clofibric acid (ACB), bisphenol A (BPA), and sotalol (SOT). Overall, the HD-VF-UVC system completely removed (>99.5 %) ACE, CAF, KET, IBU, DCL and ACB, and to a lesser extent SOT (98 %), BPA (83 %) and CBZ (51 %). On the other hand, the HD-VF-UVA/TiO2 system (at 2 h) achieved >99.5 % removal of ACE, CAF, KET, IBU and DCL while ACB, BPA, CBZ and SOT were degraded by 83 %, 81 %, 78 % and 68 %, respectively. Working also at 2 h of exposure time, in summer conditions, the HD-VF-Sol/TiO2 system achieved >99.5 % removal of ACE, CAF, KET, IBU, DCL and ACB, and to a minor extent BPA (80 %), SOT (74 %) and CBZ (69 %). Similar results, although slightly lower for SOT (60 %) and CBZ (59 %), were obtained in the pilot sunlight plus TiO2 catalyst unit. However, the use of sunlight irradiation with a TiO2-based photocatalyst clearly showed lower removal efficiency in autumn conditions (i.e., 47 % SOT, 31 % CBZ).
Collapse
Affiliation(s)
- M Sánchez
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - D R Ramos
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M I Fernández
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - S Aguilar
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain; Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - I Ruiz
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M Canle
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain
| | - M Soto
- Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Galiza, Spain.
| |
Collapse
|
5
|
Xu D, Yin X, Zhou S, Jiang Y, Xi X, Sun H, Wang J. A review on the remediation of microplastics using constructed wetlands: Bibliometric, co-occurrence, current trends, and future directions. CHEMOSPHERE 2022; 303:134990. [PMID: 35595118 DOI: 10.1016/j.chemosphere.2022.134990] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Massive prevalence of microplastics (MPs) in the environment has become one of the world's most serious environmental concerns. Human dependence on plastics has created a constant flow of MPs from different sources into natural environment, which has raised public concern regarding consequences of MPs coming into contact with the natural environment. Deploying constructed wetlands (CWs) to reduce MPs pollution is considered a promising method, however there are still barriers for breakthroughs in this technology, particularly knowledge gaps in the mechanisms affect removal process. Recognising this, we provide a comprehensive summary of current advances and theories regarding the mechanisms of occurrence in this research area. In this work, the bibliometric methods were first used to identify annual publication trends and topical topics of research interest. The selected documents were then statistically analyzed using VOSviewer and the 'bibliometrix' package in R to derive the annual productivity of countries or organizations, the most relevant affiliations, the most relevant authors, the most relevant sources, textual analysis, co-occurrence analysis, and cluster analysis of keywords. Finally, detailed information concerning the removal of MPs by CWs was summarised, covering the most common operational and design parameters (i.e., structure types, wetland plants, substrate materials, and microbial communities), to reveal how these parameters can be adjusted for more efficient MPs removal rate. Challenges and future directions were additionally proposed. It is hoped that the review will help identify current research trends, provide insight into the mechanisms of the removal process, and contribute further to the development of this important area.
Collapse
Affiliation(s)
- Duo Xu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China.
| | - Shi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Yanji Jiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xianglong Xi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271000, PR China
| |
Collapse
|
6
|
Carballeira T, Ruiz I, Soto M. Improving the performance of vertical flow constructed wetlands by modifying the filtering media structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56852-56864. [PMID: 34080115 DOI: 10.1007/s11356-021-14389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The aim of this research was to study the influence of the bed media configuration and particle size on the treatment efficiency of subsurface vertical flow (VF) constructed wetlands (CWs) treating municipal wastewater. Two outdoor pilot units (VF1 and VF2, planted with Phragmites australis) with the configuration C1 were operated in parallel for 2 years at similar surface loading rates of 9.7 ± 3.2 (VF1) and 10.1 ± 3.3 (VF2) g biological oxygen demand (BOD5)/m2·day (19.5 ± 6.4 (VF1) and 20.4 ± 6.2 (VF2) g chemical oxygen demand (COD)/m2·day). A different configuration C2 was used during the third year at 16.9 ± 4.6 (VF1) and 18.2 ± 3.0 (VF2) g BOD5/m2·day and 26.0 ± 7.2 (VF1) and 28.0 ± 4.7 (VF2) g COD/m2·day. Two different filtering materials (1-3-mm sand for VF1 and 2-6-mm fine gravel for VF2) were used for configuration C1. The same units were modified after 2 years of operation by adding a 10-cm layer of fine sand (0-2 mm) on the top (configuration C2). In C1 conditions, the unit with the coarse material VF2 showed significantly (p < 0.05) lower removal efficiencies of total suspended solids (TSS) and BOD5 than VF1, and both units failed to meet the BOD5 discharge limit. In C2 conditions, removal efficiencies reached 82% TSS, 97% BOD5, 76-81% ammonia, and 60-66% TN, without significant differences between VF1 and VF2 units. Removal efficiencies were significantly higher for configuration C2 than that for C1, due to the positive effect of the upper fine sand layer. The presence of this fine sand layer doubled the water retention time and increased the removal rates, while the infiltration rates were high enough for an operation free of clogging.
Collapse
Affiliation(s)
- Tania Carballeira
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Galiza, Spain
| | - Isabel Ruiz
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Galiza, Spain
| | - Manuel Soto
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Galiza, Spain.
| |
Collapse
|
7
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
8
|
de Rozari P, Krisnayanti DS, Refli, Yordanis KV, Atie MRR. The use of pumice amended with sand media for domestic wastewater treatment in vertical flow constructed wetlands planted with lemongrass ( Cymbopogon citratus). Heliyon 2021; 7:e07423. [PMID: 34278025 PMCID: PMC8264119 DOI: 10.1016/j.heliyon.2021.e07423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The performance efficiency in constructed wetlands (CWs) technology is primarily affected by the media material and the types of plants used. Recently, investigations into the usage of local materials and plants in CWs has increased. Pumice is a material which is potential used as a media. However, research on amendment of pumice with other media in CWs is still limited. Therefore, this study aims to evaluate the potential of pumice amended with sand media and planted with lemongrass (Cymbopogon citratus) in CWs to remove organic matter, suspended solids, nutrients, and coliform. The adsorbents were characterized using X-ray diffraction, FTIR and XRF followed by adsorption experiments for PO4-P. Furthermore, Six vertical flow (VF) mesocosms with a diameter of 10.2cm and 55cm depth were established over six months. The treatments were based on percentage of sand media amended with pumice and planted with lemongrass. Furthermore, the barren media were applied to investigate the effect of lemongrass. The loading rate of domestic wastewater into the VF mesocosms was 2 L/day while inflows and outflows were determined for nutrients, organic matter, suspended solids and coliform. The adsorption of PO4-P followed the Langmuir model with adsorption capacity was 0.089 and 0.067 mol/g for pumice and sand, respectively. The results also showed that the removal efficiency of TSS, COD, NO3-N, NO2-N, PO4-P and total coliforms were in the range of 93.7-97.3 %, 52-83 %, 63-86 %, 51-74%, 81-88 % and 92-97 %, respectively. Based on the results, the highest removal efficiency was observed in the sand media amended with 50 % pumice and planted with lemongrass, while the lowest was found in the barren sand media.
Collapse
Affiliation(s)
- Philiphi de Rozari
- Department of Chemistry, Faculty of Science and Engineering, Nusa Cendana University, Kupang, Jalan Adisucipto Penfui Kupang, Indonesia.,Department of Environmental Science Post Graduate Study, Nusa Cendana University, Kupang, Jalan Adisucipto Penfui Kupang, Indonesia
| | - Denik Sri Krisnayanti
- Department of Civil Engineering, Faculty of Science and Engineering, Nusa Cendana University, Kupang, Adisucipto Penfui Kupang, Indonesia
| | - Refli
- Department of Biology, Faculty of Science and Engineering, Nusa Cendana University, Kupang, Adisucipto Penfui Kupang, Indonesia
| | - Krispianus V Yordanis
- Department of Chemistry, Faculty of Science and Engineering, Nusa Cendana University, Kupang, Jalan Adisucipto Penfui Kupang, Indonesia
| | - Maria Ratu Rosari Atie
- Department of Chemistry, Faculty of Science and Engineering, Nusa Cendana University, Kupang, Jalan Adisucipto Penfui Kupang, Indonesia
| |
Collapse
|
9
|
Lai C, Guo Y, Cai Q, Yang P. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. CHEMOSPHERE 2020; 261:127744. [PMID: 32739690 DOI: 10.1016/j.chemosphere.2020.127744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
With the main objective of improving the removal of nitrogen from domestic wastewater and more sustainably, a moving bed and constructed wetland (MBCW) integrated bioreactor was fabricated and evaluated with continuous and intermittent aeration operations. The hybrid system achieves average removal efficiencies up to 90.4 ± 0.8% of chemical oxygen demand (COD), 91.8 ± 1.2% of ammonia nitrogen (NH4+-N), and 77.0 ± 2.6% of total nitrogen (TN), respectively, through a simultaneous nitrification-denitrification and further denitrification (SND-DN) process. This occurs through an intermittent aeration operation followed by continuous aeration with a dissolved oxygen (DO) of 4.0 mg L-1 due to the complementary and coordinated action of mixed biocarriers. It has resulted in the improvement of the efficiency of SND from 5.9 to 35.3% and in the removal via wetland for DN, between 2.42 and 2.45 g m-2·d-1, respectively. The analysis of extracellular polymeric substances (EPS) and high-throughput sequencing demonstrated the enhanced SND mechanism and the evolution of microbial species within the biofilm structure. The total relative abundance of nitrifying bacteria, more aggregated outside the biofilm, decreased by 7.66% compared to denitrifying bacteria, mostly accumulated inside, which increased by 5.49%, respectively.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Mielcarek A, Rodziewicz J, Janczukowicz W, Struk-Sokołowska J. The impact of biodegradable carbon sources on nutrients removal in post-denitrification biofilm reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137377. [PMID: 32143032 DOI: 10.1016/j.scitotenv.2020.137377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Wastewater from households wastewater treatment plants (HWWTP) is discharged to the ground or to the surface waters. Special consideration should be given to the improvement of HWWTP effectiveness, particularly in relation to nutrients. The addition of biodegradable carbon sources to biofilm reactor, can enhance microbial activity but may also lead to filling clogging. The study aimed to compare 3 different organic substrates: acetic acid (commonly applied)and two untypical - citric acid and waste beer, under the same operational conditions in a post-denitrification biofilm reactor. The study investigated the impact of a type of organic substrate, low pH and time on: (1) biofilm growth, (2) the characteristics of extracellular polymeric substances (EPS), (3) the kinetics of nutrients removal and (4) reactor clogging. Results were referred to (5) the effectiveness of nutrients removal. The study demonstrated that low pH assured the development of a thinbiofilm. Citric acid ensured the lowest biomass volume, being by 53% lower than in the reactor with acetic acid and by as much as 61% lower than in the reactor with waste beer. The soluble EPS fraction prevailed in the total EPS in all reactors. The content of the tightly bound EPS fraction ranged from 26.93% (citric acid) to 36.32% (waste beer). Investigations showed also a high ratio of exoproteins to polysaccharide in all fractions, which indicated a significant role of proteins in developing a highly-proliferating biofilm. The treated wastewater met requirements of Polish regulations concerning COD and nitrogen concentrations.
Collapse
Affiliation(s)
- Artur Mielcarek
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Joanna Rodziewicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Wojciech Janczukowicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Department of Environmental Engineering Technology, Wiejska St. 45E, Bialystok 15-351, Poland.
| |
Collapse
|
11
|
Niu S, Wang X, Yu J, Kim Y. Pollution reduction by recirculated fill-and-drain mesocosm wetlands packed with woodchip/pumice treating impervious road stormwater. ENVIRONMENTAL TECHNOLOGY 2020; 41:1627-1636. [PMID: 30382010 DOI: 10.1080/09593330.2018.1543356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Constructed wetlands (CWs) are natural-friendly method to eliminate the pollutants stormwater pollutants. For this study, a pilot-scale treatment system consisting of a sedimentation tank (ST) and five recirculated fill-and-drain wetlands (namely CW-1, CW-2, CW-3, CW-4 and CW-5) were constructed to treat the first-flush from the impervious road. From bottom to top, the main substrates of CWs were selected as 0 cm woodchip + 60 cm pumice for CW-1, 15 cm woodchip + 45 cm pumice for CW-2, 30 cm woodchip + 30 cm pumice CW-3, 45 cm woodchip + 15 cm pumice CW-4 and 60 cm woodchip + 0 cm pumice for CW-5. During the operational period, the reduction efficiencies of TSS, total COD, total nitrogen and total phosphorus were 89-100%, 52-100%, 31-87% and 72-100% by CW-1, 92-100%, -27% to 78%, 8-85%, 49-94% by CW-2, 89-100%, -97% to 77%, -29% to 86%, -46% to 94% by CW-3, 89-100%, -115 to 69%, -21% to 99%, 35-94% by CW-4 and 59-100%, -342%to 88%, -20% to 88%, -77% to 99% by CW-5, respectively. Overall, the reduction efficiency, except for nitrogen, declined as the amount of woodchip increased. As excepted, the employment of woodchip improved denitrification via providing with carbon sources, resulting in low NO3-N but unfavourable COD concentrations in the effluent. And the combination use of woodchip and pumice as CW-3 or CW-4 is suggested, whereas the specific amount of woodchip and pumice should be determined based on the regional environmental goal.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan, People's Republic of China
| | - Xuan Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan, People's Republic of China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan, South Korea
| |
Collapse
|
12
|
Yu G, Peng H, Fu Y, Yan X, Du C, Chen H. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria. BIORESOURCE TECHNOLOGY 2019; 280:337-344. [PMID: 30780093 DOI: 10.1016/j.biortech.2019.02.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The denitrification process for treating low carbon/nitrogen (C/N) wastewater in horizontal subsurface flow constructed wetlands (CWs) is often restricted by the carbon source and both abundance and activity of denitrifying bacteria. In this study, the effects of rice husks or immobilized Pseudomonas fluorescens on N removal were investigated under various conditions in a synthetic wastewater solution. CW mesocosms were added with granules formed by co-immobilizing rice husks and P. fluorescens were also used to investigate organics and N removal performance. A removal efficiency of 96% was achieved for nitrate nitrogen at 30 °C and pH of 7.5 for synthetic wastewaters solutions at different C/N ratios. Much higher average removal rates of COD (79%), ammonia nitrogen (85%), and total nitrogen (78%) were achieved in CW mesocosms with granule addition. These results suggest granule addition to the CW mesocosms as an effective strategy for treating the low C/N wastewater.
Collapse
Affiliation(s)
- Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Haiyuan Peng
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Yongjiang Fu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, PR China
| | - Xiaojiang Yan
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, PR China
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China.
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| |
Collapse
|
13
|
Leiva AM, Reyes-Contreras C, Vidal G. Influence of Agapanthus africanus on nitrification in a vertical subsurface flow constructed wetland. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:530-537. [PMID: 29688050 DOI: 10.1080/15226514.2017.1393390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study is to evaluate the influence of Agapanthus africanus (A. africanus) on nitrification in a vertical subsurface flow constructed wetlands (VSSFs) system. Two lab-scale VSSFs were operated: a) one was planted with A. africanus (vertical flow planted, VFP), and b) the other was unplanted (vertical flow control, VFC). The operation strategy was divided into three phases and consisted of increasing the ammoniacal nitrogen loading rate (ALR) (Phase I: 1.4; Phase II: 2.4; Phase III: 4.4 g NH4+-N·m-2·d-1). Nitrification was evaluated in the system at two different depths in the VSSFs (30.5 cm and 60.3 cm, from the top of the system). The removal efficiencies of COD, BOD5, TP, and PO4-3-P were above 40% in the VFP and VFC during all operation. The mean removal efficiencies of NH4+-N were above 70%. Nitrification was the principal NH4+-N removal mechanism in both systems and transformed more than 50% of the NH4+-N to NO3--N. In terms of the effect of A. africanus on NH4+-N removal during the three operational phases, nonsignificant differences between the two VSSFs were noted (p > 0.05). Thus, A. africanus did not influence nitrification. Finally, the analysis at different depths showed that nitrification occurred in the upper 30.5 cm.
Collapse
Affiliation(s)
- Ana María Leiva
- a Engineering and Biotechnology Environmental Group, Environmental Science Faculty & Center EULA-Chile, University of Concepción , Concepción , Chile
| | - Carolina Reyes-Contreras
- a Engineering and Biotechnology Environmental Group, Environmental Science Faculty & Center EULA-Chile, University of Concepción , Concepción , Chile
| | - Gladys Vidal
- a Engineering and Biotechnology Environmental Group, Environmental Science Faculty & Center EULA-Chile, University of Concepción , Concepción , Chile
| |
Collapse
|
14
|
García-Galán MJ, Uggetti E, Garfi M, Olguín EJ, García J, Puigagut J. Biotechnology: a highly efficient tool for the current environmental challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1664-1667. [PMID: 29128123 DOI: 10.1016/j.scitotenv.2017.10.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
| | - Enrica Uggetti
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marianna Garfi
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | | | - Joan García
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Jaume Puigagut
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| |
Collapse
|