1
|
Pal D, Das P, Mukherjee P, Roy S, Chaudhuri S, Kesh SS, Ghosh D, Nandi SK. Biomaterials-Based Strategies to Enhance Angiogenesis in Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:2725-2741. [PMID: 38630965 DOI: 10.1021/acsbiomaterials.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shyam Sundar Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
2
|
Geng B, Zhang S, Yang X, Shi W, Li P, Pan D, Shen L. Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. CHEMICAL ENGINEERING JOURNAL 2022; 435:134777. [DOI: 10.1016/j.cej.2022.134777] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
3
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
4
|
Elshoky HA, Yotsova E, Farghali MA, Farroh KY, El-Sayed K, Elzorkany HE, Rashkov G, Dobrikova A, Borisova P, Stefanov M, Ali MA, Apostolova E. Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:607-618. [PMID: 34464827 DOI: 10.1016/j.plaphy.2021.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the impacts of zinc oxide nanoparticles: bare (ZnO NPs) and ZnO NPs coated with silicon shell (ZnO-Si NPs), on Pisum sativum L. under physiological and salt stress conditions. The experimental results revealed that the foliar spray with ZnO-Si NPs and 200 mg/L ZnO NPs did not influence the stomata structure, the membrane integrity, and the functions of both photosystems under physiological conditions, while 400 mg/L ZnO-Si NPs had beneficial effects on the effective quantum yield of photosystem II (PSII) and the photochemistry of photosystem I (PSI). On the contrary, small phytotoxic effects were registered after spraying with 400 mg/L ZnO NPs accompanied by stimulation of the cyclic electron flow around PSI and an increase of the non-photochemical quenching (NPQ). The results also showed that both types of NPs (with exception of 400 mg/L ZnO NPs) decrease the negative effects of 100 mM NaCl on the photochemistry of PSI (P700 photooxidation) and PSII (qp, Fv/Fm, Fv/Fo, ΦPSII, Φexc), as well as on the pigment content, stomata closure and membrane integrity. The protective effect was stronger after spraying with ZnO-Si NPs in comparison to ZnO NPs, which could be due to the presence of Si coating shell. The role of Si shell is discussed.
Collapse
Affiliation(s)
- Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohamed A Farghali
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt; Nanotechnology Research Center, British University in Egypt, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Kh El-Sayed
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt; Nanotechnology Research Center, British University in Egypt, Egypt
| | - Heba Elsayed Elzorkany
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - George Rashkov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maha Anwar Ali
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
5
|
Hsu Y, Thomas J, Tang Chang C, Ma CM. Enhanced Photocatalytic Degradation of Antibiotic and Hydrogen Production by Iron Doped Cerium(IV) Oxide. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3099-3106. [PMID: 33653485 DOI: 10.1166/jnn.2021.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Norfloxacin (NF) is an emerging antibiotic contaminant due to its significant accumulation in the environment. Photocatalytic degradation is an effective method for removing emerging contaminant compounds in aqueous solution; however, it is not commonly applied because of the poor solubility of contaminant compounds in water. In this study, a photocatalytic degradation experiment was carried out on NF using a self-made ceria catalyst. At an initial concentration of NF of 2.5 mg L-1, the dosage of CeO₂ was 0.1 g L-1 photocatalyst in water, and the initial pH of the NF solution was 8.0. With a reaction time of 180 min, the total removal rate of NF could reach 95%. Additionally, the studies on hydrogen production show that the maximum hydrogen production with 2% Fe-CeO₂ can reach 25,670 μmol h-1 g-1 under close to 8 W of 365 nm, a methanol concentration of 20%, and a catalyst dose of 0.1 g L-1 photocatalyst in water. Furthermore, the intensities of photoluminescence (PL) emission peaks decreased with increased Fe-doped amounts on CeO₂, suggesting that the irradiative recombination seemed to be weakened.
Collapse
Affiliation(s)
- Yang Hsu
- Department of Environmental Engineering, National Ilan University, 260, Taiwan
| | - Joy Thomas
- Department of Environmental Engineering, National Ilan University, 260, Taiwan
| | - Chang Tang Chang
- Department of Environmental Engineering, National Ilan University, 260, Taiwan
| | - Chih Ming Ma
- Department of Cosmetic Application and Management, St. Mary's Junior College of Medicine, Nursing and Management, 266, Taiwan
| |
Collapse
|
6
|
Xu Z, Xu Y, Basuthakur P, Patra CR, Ramakrishna S, Liu Y, Thomas V, Nanda HS. Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. J Mater Chem B 2020; 8:9110-9120. [PMID: 32929440 DOI: 10.1039/d0tb01715a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionalized cerium oxide nanoparticle (CeNP)-loaded fibro-porous poly-l-lactic acid (PLLA)/gelatin composite membranes were prepared via an electrospinning technology. Considering the importance of such membrane scaffolds for promoting angiogenesis in tissue engineering and drug screening, a series of PLLA/gelatin composite fiber membranes loaded with different doses of CeNPs was prepared. The prepared composite membranes demonstrated hydrophilicity, water absorption, and improved mechanical properties compared to a PLLA and PLLA/gelatin membrane. Also, cell viability assay using somatic hybrid endothelial cells (EA.hy926) proved the biocompatible nature of the scaffolds. The biocompatibility was further supported by in vivo chick embryo angiogenesis assay using fertilized eggs. Our initial results support that these membrane scaffolds could be useful for angiogenesis-related disease treatment after further investigations.
Collapse
Affiliation(s)
- Zhiyang Xu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yulong Xu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Papia Basuthakur
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chitta Ranjan Patra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yong Liu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Discipline of Mechanical Engineering, PDPM-Indian Institute of Information Technology Design and Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India.
| |
Collapse
|
7
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
8
|
Facile Synthesis of Tin Dioxide Nanoparticles for Photocatalytic Degradation of Congo Red Dye in Aqueous Solution. Catalysts 2020. [DOI: 10.3390/catal10070792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This research work reports an approach used to prepare a SnO2 photocatalyst by precipitation and calcination pathways and describes an investigation of the effects of preparation parameters on SnO2 yield. The SnO2 photocatalyst was further used for the photocatalytic degradation of Congo red (CR) dye, and the removal efficiency was optimized using response surface methodology. The results indicate that the SnO2 photocatalyst yield was the highest in 0.05 M of the precursor, stannous chloride and 28 wt % ammonia as the precipitant, pH 10, at 30 °C. The transmission electron microscopy results of the SnO2 photocatalyst illustrate that the average particle size was mainly around 30–50 nm and had a solid spherical shape. The X-ray diffraction results reveal that the prepared sample had a highly crystalline SnO2 rutile crystal structure. The prediction and experimental results of the Response surface methodology (RSM) indicate that, when the reaction time was 97 min, the operating temperature was 47 °C, the photocatalyst dosage was 751 mg/L, and the optimal degradation rate of the CR dye was 100%. After five consecutive photodegradation reactions, the degradation rate remained at 100%. The results demonstrated that the SnO2 photocatalyst prepared in this study possesses excellent reusability.
Collapse
|
9
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 2020; 8:341. [PMID: 32509720 PMCID: PMC7248377 DOI: 10.3389/fchem.2020.00341] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Hilal Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqbal M. I. Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda A. Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
10
|
Optimization of the Technological Parameters for Obtaining Zn-Ti Based Composites to Increase the Performance of H2S Removal from Syngas. Processes (Basel) 2020. [DOI: 10.3390/pr8050562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The realization of some composite materials that allow the best removal of H2S from syngas was the main objective of this work. Thus, the optimization of the technological parameters for obtaining composites based on Zn-Ti was achieved. The paper studies the influence of calcination temperature on the characteristics of the binary ZnO-TiO2 system used to synthesize a composite material with suitable properties to be used subsequently for syngas treatment. The mineralogical and structural analyzes showed that starting with the calcination temperature of 700 °C the material synthetized is composed mainly of zinc orthotitanate which possess the corresponding characteristics to be finally used in the treatment of the syngas for its desulfurization. At this calcination temperature the material has a compact structure most likely due to sintering of the formed titanates. These composites have a texture that places them rather in the category of non-porous materials, the pore volume and their surface area obviously decreasing as the calcination temperature increases. A maximum sulfur removal degree of about 97% was obtained by using a composite synthetized at a temperature of 700 °C (ZT-700).
Collapse
|
11
|
Yu Y, Liu K, Wen Z, Liu W, Zhang L, Su J. Double-edged effects and mechanisms of Zn 2+ microenvironments on osteogenic activity of BMSCs: osteogenic differentiation or apoptosis. RSC Adv 2020; 10:14915-14927. [PMID: 35497133 PMCID: PMC9052110 DOI: 10.1039/d0ra01465f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc-incorporated biomaterials show promoting effects on osteogenesis; however, excessive zinc ions lead to cytotoxic reactions and also have other adverse effects. Therefore, the double-edged effects of Zn2+ microenvironments on osteogenesis may become critical issues for new material development. This study systematically investigated the bidirectional influences of diverse Zn2+ microenvironments on the cell adhesion, proliferation, osteogenic differentiation and apoptosis of rBMSCs. Furthermore, the mechanisms of zinc-induced osteogenic differentiation of rBMSCs and of cell apoptosis induced by high concentration of Zn2+ were both discussed in detail. The results indicated that the Zn2+ microenvironments of 2 μg mL-1 and 5 μg mL-1 effectively improved the initial adhesion and proliferation of rBMSCs, while that of 15 μg mL-1 had exactly the opposite effect. More importantly, the suitable Zn2+ microenvironments (2 μg mL-1 and 5 μg mL-1) moderately increased the intracellular Zn2+ concentration by regulating zinc transportation, and then activated the MAPK/ERK signaling pathway to induce the osteogenic differentiation of rBMSCs. In contrast, the high Zn2+ concentration (15 μg mL-1) not only inhibited the osteogenic differentiation of rBMSCs by damaging intracellular zinc homeostasis, but also induced rBMSC apoptosis by enhancing intracellular ROS generation. The current study clarified the double-edged effects of Zn2+ microenvironments on the osteogenic properties of rBMSCs and the related mechanisms, and may provide valuable guidance for optimizing the design of zinc-doped biomaterials and zinc-based alloys.
Collapse
Affiliation(s)
- Yiqiang Yu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| | - Kai Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| | - Zhuo Wen
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| | - Weicai Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| | - Lei Zhang
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Shanghai 200072 China +86-21-66524025 +86-21-56722215
| |
Collapse
|
12
|
Amirsadeghi A, Jafari A, Eggermont LJ, Hashemi SS, Bencherif SA, Khorram M. Vascularization strategies for skin tissue engineering. Biomater Sci 2020; 8:4073-4094. [DOI: 10.1039/d0bm00266f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lack of proper vascularization after skin trauma causes delayed wound healing. This has sparked the development of various tissue engineering strategies to improve vascularization.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | - Arman Jafari
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| | | | - Seyedeh-Sara Hashemi
- Burn & Wound Healing Research Center
- Shiraz University of Medical Science
- Shiraz 71345-1978
- Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering
- Northeastern University
- Boston
- USA
- Department of Bioengineering
| | - Mohammad Khorram
- Department of Chemical Engineering
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz 71348-51154
- Iran
| |
Collapse
|
13
|
WITHDRAWN: Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. PROG SOLID STATE CH 2019. [DOI: 10.1016/j.progsolidstchem.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y, Xie R, Leung DYC, Huang H. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. ENVIRONMENT INTERNATIONAL 2019; 125:200-228. [PMID: 30721826 DOI: 10.1016/j.envint.2019.01.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Due to the anthropogenic pollution, especially the environmental crisis caused by air pollutants, the development of air pollutant degradation photocatalyst has become one of the major directions to the crisis relief. Among them, titania (titanium dioxide, TiO2) family materials were extensively studied in the past two decades due to their strong activity in the photocatalytic reactions. However, TiO2 had a drawback of large bandgap which limited its applications, several modification techniques were hence developed to enhance its catalytic activity and light sensitivity. In recent years, other metal oxide based materials have been developed as replacements for TiO2 photocatalysts. In this review, background information and developments from pure TiO2 to chemically modified TiO2-based materials as photocatalysts were discussed in detail, which covered their basic properties and their role in the air pollutant removal. It also proposes to solve the shortcomings of TiO2 by developing other metal oxide-based materials and predict the future development of TiO2 materials in future environmental applications.
Collapse
Affiliation(s)
- Chi Him A Tsang
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China; Guangdong-Hong Kong Joint Research Center for Air Pollution Control, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Kai Li
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yuxuan Zeng
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
| | - Tao Zhang
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China; Guangdong-Hong Kong Joint Research Center for Air Pollution Control, China.
| | - Yujie Zhan
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Ruijie Xie
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
| | - Haibao Huang
- School of Environmental Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China; Guangdong-Hong Kong Joint Research Center for Air Pollution Control, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| |
Collapse
|
15
|
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy. Antioxid Redox Signal 2019; 30:786-809. [PMID: 29943661 DOI: 10.1089/ars.2017.7383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling plays a vital role in regulating various cellular signaling pathways and disease biology. Recently, nanomedicine (application of nanotechnology in biology and medicine) has been demonstrated to regulate angiogenesis through redox signaling. A complete understanding of redox signaling pathways influenced angiogenesis/antiangiogenesis triggered by therapeutic nanoparticles is extensively reviewed in this article. Recent Advances: In recent times, nanomedicines are regarded as the Trojan horses that could be employed for successful drug delivery, gene delivery, peptide delivery, disease diagnosis, and others, conquering barriers associated with conventional theranostic approaches. CRITICAL ISSUES Physiological angiogenesis is a tightly regulated process maintaining a balance between proangiogenic and antiangiogenic factors. The redox signaling is one of the main factors that contribute to this physiological balance. An aberrant redox signaling cascade can be caused by several exogenous and endogenous factors and leads to reduced or augmented angiogenesis that ultimately results in several disease conditions. FUTURE DIRECTIONS Redox signaling-based nanomedicine approach has emerged as a new platform for angiogenesis-related disease therapy, where nanoparticles promote angiogenesis via controlled reactive oxygen species (ROS) production and antiangiogenesis by triggering excessive ROS formation. Recently, investigators have identified different efficient nano-candidates, which modulate angiogenesis by controlling intracellular redox molecules. Considering the importance of angiogenesis in health care a thorough understanding of nanomedicine-regulated redox signaling would inspire researchers to design and develop more novel nanomaterials that could be used as an alternative strategy for the treatment of various diseases, where angiogenesis plays a vital role.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Ayan Kumar Barui
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sudip Mukherjee
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chitta Ranjan Patra
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
16
|
Abdolmajid E, Kharazi H, Chalaki M, Khojasteh M, Haghighat S, Attar F, Nemati F, Falahati M. Titanium oxide nanoparticles fabrication, hemoglobin interaction, white blood cells cytotoxicity, and antibacterial studies. J Biomol Struct Dyn 2018; 37:3007-3017. [PMID: 30044173 DOI: 10.1080/07391102.2018.1499555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study is focused on the fabrication and characterization of titanium oxide (TiO2) NPs. Afterwards; the interaction of TiO2 NPs with human hemoglobin (Hb) was investigated by FTIR spectroscopy, fluorescence spectroscopy, and molecular docking studies. Also, the cytotoxic effect of fabricated TiO2 NPs against human white blood cells (WBCs) was considered by MTT assay. The antibacterial effect of synthesized NPs was examined on Pseudomonas aeruginosa (ATCC 27853); Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). TEM and DLS investigations showed that the synthesized TiO2 NPs have a narrow nano-sized distribution. XRD pattern of the fabricated NPs exhibited that the TiO2 NPs contain anatase phase. Similarity in amide I and II signal intensities showed that secondary structure of the adsorbed Hb is preserved. The intrinsic fluorescence study revealed that the fluorescence quenching of Hb was done by complex formation between Hb and TiO2 NPs trough the hydrogen bond and van der Waals interactions. Synchronous fluorescence spectroscopy determined that interaction of TiO2 NPs with Hb did not unfold the Hb structure in the vicinity of the Tyr and Trp residues. Molecular docking study depicted that Glu-95, Thr-134 and Tyr-140 are involved in the formation of hydrophilic bonds. MTT data and antibacterial assays indicated that TiO2 NPs endow distinguished antibacterial activities against Gram-negative and Gram positive strains at safe concentrations. This study may reveal that fabricated TiO2 NP can be used as a safe and potent antibacterial agent. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elham Abdolmajid
- a Department of Biotechnology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Hasti Kharazi
- b Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Mahfam Chalaki
- b Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Marzieh Khojasteh
- b Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Setareh Haghighat
- c Department of Microbiology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Farnoosh Attar
- d Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI) , Karaj , Iran
| | - Fahimeh Nemati
- e Department of Nanotechnology, Faculty of Advance Science and Technology , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Mojtaba Falahati
- d Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI) , Karaj , Iran
| |
Collapse
|
17
|
Rough Titanium Oxide Coating Prepared by Micro-Arc Oxidation Causes Down-Regulation of hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor Jurkat T Cells. MATERIALS 2018; 11:ma11030360. [PMID: 29495627 PMCID: PMC5872939 DOI: 10.3390/ma11030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/11/2022]
Abstract
The response of the human Jurkat T cell leukemia-derived cell line (Jurkat T cells) after 24 h of in vitro exposure to a titanium substrate (12 × 12 × 1 mm3) with a bilateral rough (Ra = 2.2–3.7 μm) titanium oxide coating (rTOC) applied using the micro-arc method in a 20% orthophosphoric acid solution was studied. A 1.5-fold down-regulation of hTERT mRNA expression and decreases in CD3, CD4, CD8, and CD95 presentation and IL-4 and TNFα secretion were observed. Jurkat T cell inactivation was not correlated with the generation of intracellular reactive oxygen species (ROS) and was not mediated by TiO2 nanoparticles with a diameter of 14 ± 8 nm at doses of 1 mg/L or 10 mg/L. The inhibitory effect of the rTOC (Ra = 2.2–3.7 μm) on the survival of Jurkat T cells (Spearman’s coefficient rs = −0.95; n = 9; p < 0.0001) was demonstrated by an increase in the necrotic cell count among the cell population. In turn, an elevation of the Ra index of the rTOC was accompanied by a linear increase (r = 0.6; p < 0.000001, n = 60) in the magnitude of the negative electrostatic potential of the titanium oxide surface. Thus, the roughness of the rTOC induces an electrostatic potential and decreases the viability of the immortalized Jurkat T cells through mechanisms unrelated to ROS generation. This may be useful for replacement surgery applications of rough TiO2 implants in cancer patients.
Collapse
|
18
|
Ponraj T, Vivek R, Paulpandi M, Rejeeth C, Nipun Babu V, Vimala K, Anand K, Sivaselvam S, Vasanthakumar A, Ponpandian N, Kannan S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO2NPs. J Mater Chem B 2018; 6:3555-3570. [DOI: 10.1039/c8tb00769a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this article, we report the validation of cancer nanotherapy for treatment of cancers using quercetin (Qtn).
Collapse
Affiliation(s)
- Thondhi Ponraj
- Proteomics and Molecular Cell Physiology Lab
- Department of Zoology
- School of Life Sciences
- Bharathiar University
- Coimbatore 641 046
| | - Raju Vivek
- Chemical Biology
- Nano Drug Delivery Systems
- Bio-Innovation Center
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram
| | - Manickam Paulpandi
- Proteomics and Molecular Cell Physiology Lab
- Department of Zoology
- School of Life Sciences
- Bharathiar University
- Coimbatore 641 046
| | - Chandrababu Rejeeth
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Med-X Research Institute
- Xuhui District
- China
| | - Varukattu Nipun Babu
- Proteomics and Molecular Cell Physiology Lab
- Department of Zoology
- School of Life Sciences
- Bharathiar University
- Coimbatore 641 046
| | | | - Krishnan Anand
- Discipline of Medical Biochemistry
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Subramani Sivaselvam
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore – 641 046
- India
| | - Alagarsamy Vasanthakumar
- Division of Bio-materials and Nanomedicine
- Department of Human Genetics and Molecular Biology
- School of Life Sciences
- Bharathiar University
- Coimbatore – 641 046
| | - Nagamony Ponpandian
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore – 641 046
- India
| | | |
Collapse
|
19
|
Nethi SK, Barui AK, Bollu VS, Rao BR, Patra CR. Pro-angiogenic Properties of Terbium Hydroxide Nanorods: Molecular Mechanisms and Therapeutic Applications in Wound Healing. ACS Biomater Sci Eng 2017; 3:3635-3645. [DOI: 10.1021/acsbiomaterials.7b00457] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Susheel Kumar Nethi
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Ayan Kumar Barui
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Vishnu Sravan Bollu
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Bonda Rama Rao
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| | - Chitta Ranjan Patra
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Training and Development
Complex, Academy of Scientific and Innovative Research (AcSIR), CSIR
Campus, CSIR Road, Taramani, Chennai 600113, India
| |
Collapse
|
20
|
Meshkini A, Oveisi H. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf B Biointerfaces 2017; 158:319-330. [DOI: 10.1016/j.colsurfb.2017.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/24/2023]
|
21
|
Yang H, Mei L, Wang P, Genereux J, Wang Y, Yi B, Au C, Dang L, Feng P. Photocatalytic degradation of norfloxacin on different TiO2−X polymorphs under visible light in water. RSC Adv 2017. [DOI: 10.1039/c7ra09022f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reduced TiO2 (TiO2−X) materials with different crystallographic structures were prepared and characterized.
Collapse
Affiliation(s)
- Hai Yang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
- Department of Chemistry
| | - Liangyong Mei
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Pengcheng Wang
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Yinsheng Wang
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Bing Yi
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Chaktong Au
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Limin Dang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Pingyun Feng
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
22
|
Nethi SK, Nanda HS, Steele TWJ, Patra CR. Functionalized nanoceria exhibit improved angiogenic properties. J Mater Chem B 2017; 5:9371-9383. [DOI: 10.1039/c7tb01957b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overall schematic representation of the synthesis, characterization and proangiogenic activity of functionalized nanoceria.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Himansu Sekhar Nanda
- School of Materials Science and Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Terry W. J. Steele
- School of Materials Science and Engineering
- Nanyang Technological University (NTU)
- Singapore 639798
- Singapore
| | - Chitta Ranjan Patra
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|