1
|
Huo S, Li B, Du J, Zhang X, Song M, Li Y. Neurotoxic effects of perinatal exposure to Bisphenol F on offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124932. [PMID: 39260543 DOI: 10.1016/j.envpol.2024.124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bisphenols constitute a diverse group of endocrine-disrupting chemicals (EDCs) that impact hormone activity. Bisphenol F (BPF) is commonly used as a substitute for Bisphenol A (BPA). The disruption of the immune system by EDCs during embryonic brain development has been suggested as a plausible factor to neurodevelopmental disorders. We investigated the neurotoxic effects of perinatal exposure to BPF on offspring mice. Female mice were exposed to BPF through their drinking water on day 0.5 of pregnancy, and this exposure continued until the offspring mice were weaned, throughout the perinatal period. Our findings revealed that exposure to BPF hindered both growth and neurodevelopment in offspring mice, with a more pronounced effect observed in males. Additionally, transcriptomic analysis was conducted on the brains of male offspring mice exposed to high doses of BPF. In summary, our study indicates that perinatal exposure to BPF results in neurodevelopmental impairments in male offspring mice, linked to oxidative stress, inflammatory responses, and immune dysregulation. These findings underscore that BPF may not be a safe substitute for BPA. Thus, there is a pressing need to reevaluate the current regulation of BPF.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
3
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
4
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
5
|
Kim E, Song M, Ramu AG, Choi D. Analysis of impacts of exogenous pollutant bisphenol-A penetration on soybeans roots and their biological growth. RSC Adv 2023; 13:9781-9787. [PMID: 36998516 PMCID: PMC10043879 DOI: 10.1039/d2ra08090g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Bisphenol A (BPA) is a common chemical used in plastic production. BPA, which has the potential to be poisonous to plants, has lately emerged as a serious environmental concern owing to its extensive usage and release patterns. Prior study has only looked at how BPA affects plants up to a certain stage in their growth. The precise mechanism of toxicity, penetration of BPA, and damage to internal root tissues remains unknown. Therefore, the goal of this study was to examine the hypothesized mechanism for BPA-induced root cells by studying the effects of bisphenol A (BPA) on the ultrastructure and function of root tip cells of soybean plants. We looked at plant changes in root cell tissues after BPA exposure. Further, the biological characteristics that responded to BPA stress were investigated, and the accumulation of BPA in the root, stem, and leaf of the soybean plant was systematically investigated by using FTIR and SEM analysis. The uptake of BPA is a key internal factor that contributes to changes in biological characteristics. Our findings provide insight into how BPA could alter plant root growth, which might contribute new knowledge toward a better scientific appraisal of the possible dangers of BPA exposure for plants.
Collapse
Affiliation(s)
- Eujung Kim
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Minjung Song
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Adam Gopal Ramu
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University 2639-Sejong-ro, Jochiwon-eup Sejong-city 30016 Republic of Korea
| |
Collapse
|
6
|
Cediel-Ulloa A, Lupu DL, Johansson Y, Hinojosa M, Özel F, Rüegg J. Impact of endocrine disrupting chemicals on neurodevelopment: the need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev Endocrinol Metab 2022; 17:131-141. [PMID: 35255767 DOI: 10.1080/17446651.2022.2044788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain development is highly dependent on hormonal regulation. Exposure to chemicals disrupting endocrine signaling has been associated with neurodevelopmental impairment. This raises concern about exposure to the suspected thousands of endocrine disruptors, and has resulted in efforts to improve regulation of these chemicals. Yet, the causal links between endocrine disruption and developmental neurotoxicity, which would be required for regulatory action, are still largely missing. AREAS COVERED In this review, we illustrate the importance of two endocrine systems, thyroid hormone and retinoic acid pathways, for neurodevelopment. We place special emphasis on TH and RA synthesis, metabolism, and how endocrine disrupting chemicals known or suspected to affect these systems are associated with developmental neurotoxicity. EXPERT OPINION While it is clear that neurodevelopment is dependent on proper hormonal functioning, and evidence is increasing for developmental neurotoxicity induced by endocrine disrupting chemicals, this is not grasped by current chemical testing. Thus, there is an urgent need to develop test methods detecting endocrine disruption in the context of neurodevelopment. Key to this development is further mechanistic insights on the involvement of endocrine signaling in neurodevelopment as well as increased support to develop and validate new test methods for the regulatory context.
Collapse
Affiliation(s)
| | | | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
7
|
Irizar A, Txintxurreta A, Molinuevo A, Jimeno-Romero A, Anabitarte A, Álvarez JI, Martínez MD, Santa-Marina L, Ibarluzea J, Lertxundi A. Association between prenatal exposure to air pollutants and newborn thyroxine (T4) levels. ENVIRONMENTAL RESEARCH 2021; 197:111132. [PMID: 33839121 DOI: 10.1016/j.envres.2021.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thyroid hormones play a key role in fetal and child development. Recent studies have linked prenatal exposure to atmospheric contaminants with changes in thyroid hormone levels in newborns, but the data from the few studies that have explored this issue are inconclusive. The present study aims to assess the association of total thyroxine (TT4) levels in newborns with weekly prenatal exposure to PM2.5 and NO2 and to identify sensitivity windows to exposure to air pollution in different developmental stages. METHODS This prospective cohort study included mother-child pairs from the INMA-Gipuzkoa project. Specifically, 463 mother-child pairs with data on PM2.5 and NO2 exposure during pregnancy and TT4 levels at birth were included. PM2.5 and NO2 levels were measured by high-volume aerosol samplers and passive samplers respectively during the women's pregnancies. TT4 levels were measured in heel-prick blood samples from infants. Data on maternal and infant covariates were gathered through questionnaires administered in the first and third trimesters of pregnancy and review of clinical records. Potential associations of PM2.5 and NO2 with TT4 levels over the entire pregnancy was assessed by linear regression models and DLMs were used to identify susceptibility windows. RESULTS The exposure of pregnant women to PM2.5 during pregnancy was positively associated with infant TT4 level at birth (β [95% CI] = 0.198 [0.091, 0.305]. DLMs identified three different sensitivity windows, one in the periconceptional period with a negative association between PM2.5 exposure and TT4 levels at birth, and a second (weeks 12-17) and a third one (weeks 31-37) with a positive association. In addition, the later the exposure, the stronger the association. In contrast, no association was observed between NO2 exposure and TT4 levels. CONCLUSIONS The results indicate that prenatal exposure to PM2.5 could lead to a thyroid function impairment in newborns.
Collapse
Affiliation(s)
- Amaia Irizar
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Arantxa Txintxurreta
- Ministry of Health of the Basque Government, SubDirectorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain
| | - Amaia Molinuevo
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Asier Anabitarte
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jon Iñaki Álvarez
- Laboratory of Public Health of Department of Health of the Basque Government, Government of the Basque Country, Donostia, Spain
| | - María Dolores Martínez
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Department of Economic Development, Sustainability and Environment, Territorial Delegation of Industria, Administration of Gipuzkoa, Government of the Basque Country, San Sebastian, Spain
| | - Loreto Santa-Marina
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Ministry of Health of the Basque Government, SubDirectorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain
| | - Jesús Ibarluzea
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Ministry of Health of the Basque Government, SubDirectorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain
| | - Aitana Lertxundi
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, 20014, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| |
Collapse
|
8
|
Bornehag CG, Engdahl E, Unenge Hallerbäck M, Wikström S, Lindh C, Rüegg J, Tanner E, Gennings C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. ENVIRONMENT INTERNATIONAL 2021; 150:106433. [PMID: 33637302 DOI: 10.1016/j.envint.2021.106433] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experimental evidence demonstrates that exposure to bisphenol A (BPA), and the recently introduced alternatives bisphenol S (BPS) and bisphenol F (BPF) alter normal neurodevelopment. More research is needed to evaluate the associations between exposure to individual BPA alternatives and neurodevelopmental outcomes in humans. OBJECTIVE The present study aimed at examining the individual associations between prenatal BPA, BPS and BPF exposure and cognitive outcomes in children at age 7 years. METHOD Women were enrolled in the Swedish Environmental Longitudinal Mother and Child, Asthma and Allergy (SELMA) study, at gestational median week 10.0, and their children were examined for cognitive function at 7 years of age (N = 803). Maternal urinary BPA, BPS, and BPF concentrations were measured at enrollment and childreńs cognitive function at the age of 7 years was measured using the Wechsler Intelligence Scale for Children IV (WISC-IV). RESULTS All three bisphenols were detected in over 90% of the women, where BPA had the highest geometric mean concentrations (1.55 ng/mL), followed by BPF (0.16 ng/mL) and BPS (0.07 ng/mL). Prenatal BPF exposure was associated with decreased full scale IQ (β = -1.96, 95%CI; -3.12; -0.80), as well as with a decrease in all four sub scales covering verbal comprehension, perceptual reasoning, working memory and processing speed. This association corresponded to a 1.6-point lower IQ score for an inter-quartile-range (IQR) change in prenatal BPF exposure (IQR = 0.054-0.350 ng/mL). In sex-stratified analyses, significant associations with full scale IQ were found for boys (β = -2.86, 95%CI; -4.54; -1.18), while the associations for girls did not reach significance (β = -1.38, 95%CI; -2.97; 0.22). No significant associations between BPA nor BPS and cognition were found. DISCUSSION Prenatal exposure to BPF was significantly associated with childreńs cognitive function at 7 years. Since BPF is replacing BPA in numerous consumer products globally, this finding urgently call for further studies.
Collapse
Affiliation(s)
- Carl-Gustaf Bornehag
- Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York City, USA.
| | | | | | | | | | - Joëlle Rüegg
- Karlstad University, Karlstad, Sweden; Uppsala University, Uppsala, Sweden
| | - Eva Tanner
- Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York City, USA
| |
Collapse
|
9
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
10
|
Hansen JB, Bilenberg N, Timmermann CAG, Jensen RC, Frederiksen H, Andersson AM, Kyhl HB, Jensen TK. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and5 years from the Odense Child Cohort. Environ Health 2021; 20:24. [PMID: 33712018 PMCID: PMC7955642 DOI: 10.1186/s12940-021-00709-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to the developing brain. Several epidemiological studies have investigated the association between prenatal BPA exposure and neurodevelopment, but the results have been inconclusive. OBJECTIVE To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder (ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children. METHOD In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5 years. Negative binomial and multiple logistic regression analyses were performed to investigate the association between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658 mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-score. RESULTS BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median 1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR = 3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03). CONCLUSION Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older ages, measure their own BPA exposure, and determine if the observed associations persist.
Collapse
Affiliation(s)
- Julie Bang Hansen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Richard Christian Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
11
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|
12
|
Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 2020; 8:703-718. [PMID: 32707118 PMCID: PMC7437820 DOI: 10.1016/s2213-8587(20)30129-7] [Citation(s) in RCA: 353] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
Since reports published in 2015 and 2016 identified 15 probable exposure-outcome associations, there has been an increase in studies in humans of exposure to endocrine-disrupting chemicals (EDCs) and a deepened understanding of their effects on human health. In this Series paper, we have reviewed subsequent additions to the literature and identified new exposure-outcome associations with substantial human evidence. Evidence is particularly strong for relations between perfluoroalkyl substances and child and adult obesity, impaired glucose tolerance, gestational diabetes, reduced birthweight, reduced semen quality, polycystic ovarian syndrome, endometriosis, and breast cancer. Evidence also exists for relations between bisphenols and adult diabetes, reduced semen quality, and polycystic ovarian syndrome; phthalates and prematurity, reduced anogenital distance in boys, childhood obesity, and impaired glucose tolerance; organophosphate pesticides and reduced semen quality; and occupational exposure to pesticides and prostate cancer. Greater evidence has accumulated than was previously identified for cognitive deficits and attention-deficit disorder in children following prenatal exposure to bisphenol A, organophosphate pesticides, and polybrominated flame retardants. Although systematic evaluation is needed of the probability and strength of these exposure-outcome relations, the growing evidence supports urgent action to reduce exposure to EDCs.
Collapse
Affiliation(s)
- Linda G Kahn
- Department of Pediatrics, New York University, New York, NY, USA
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, New York University, New York, NY, USA; Department of Environmental Medicine, and Department of Population Health, New York University Grossman School of Medicine and New York University School of Global Public Health, New York University, New York, NY, USA.
| |
Collapse
|
13
|
Tavakkoli A, Abnous K, Vahdati Hassani F, Hosseinzadeh H, Birner-Gruenberger R, Mehri S. Alteration of protein profile in cerebral cortex of rats exposed to bisphenol a: a proteomics study. Neurotoxicology 2020; 78:1-10. [DOI: 10.1016/j.neuro.2020.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
|
14
|
Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. ENVIRONMENT INTERNATIONAL 2020; 134:105185. [PMID: 31668669 DOI: 10.1016/j.envint.2019.105185] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics with the ability to interfere with hormone action, even at low levels. Prior environmental epidemiology studies link numerous suspected EDCs, including phthalates and bisphenol A (BPA), to adverse neurodevelopmental outcomes. However, results for some chemicals were inconsistent and most assessed one chemical at a time. OBJECTIVES To evaluate the overall impact of prenatal exposure to an EDC mixture on neurodevelopment in school-aged children, and identify chemicals of concern while accounting for co-exposures. METHODS Among 718 mother-child pairs from the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (SELMA) study, we used Weighted Quantile Sum (WQS) regression to assess the association between 26 EDCs measured in 1st trimester urine or blood, with Wechsler Intelligence Scale for Children (IV) Intelligence Quotient (IQ) scores at age 7 years. Models were adjusted for child sex, gestational age, mother's education, mother's IQ (RAVEN), weight, and smoking status. To evaluate generalizability, we conducted repeated holdout validation, a machine learning technique. RESULTS Using repeated holdout validation, IQ scores were 1.9-points (CI = -3.6, -0.2) lower among boys for an inter-quartile-range (IQR) change in the WQS index. BPF made the largest contribution to the index with a weight of 14%. Other chemicals of concern and their weights included PBA (9%), TCP (9%), MEP (6%), MBzP (4%), PFOA (6%), PFOS (5%), PFHxS (4%), Triclosan (5%), and BPA (4%). While we did observe an inverse association between EDCs and IQ among all children when training and testing the WQS index estimate on the full dataset, these results were not robust to repeated holdout validation. CONCLUSION Among boys, early prenatal exposure to EDCs was associated with lower intellectual functioning at age 7. We identified bisphenol F as the primary chemical of concern, suggesting that the BPA replacement compound may not be any safer for children. Future studies are needed to confirm the potential neurotoxicity of replacement analogues.
Collapse
Affiliation(s)
- Eva M Tanner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Sverre Wikström
- Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Karlstad University, Karlstad, Sweden.
| |
Collapse
|
15
|
Miura R, Araki A, Minatoya M, Miyake K, Chen ML, Kobayashi S, Miyashita C, Yamamoto J, Matsumura T, Ishizuka M, Kubota T, Kishi R. An epigenome-wide analysis of cord blood DNA methylation reveals sex-specific effect of exposure to bisphenol A. Sci Rep 2019; 9:12369. [PMID: 31451752 PMCID: PMC6710292 DOI: 10.1038/s41598-019-48916-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to bisphenol A (BPA) in utero is associated with adverse health outcome of the offspring. Differential DNA methylation at specific CpG sites may link BPA exposure to health impacts. We examined the association of prenatal BPA exposure with genome-wide DNA methylation changes in cord blood in 277 mother-child pairs in the Hokkaido Study on Environment and Children’s Health, using the Illumina HumanMethylation 450 BeadChip. We observed that a large portion of BPA-associated differentially methylated CpGs with p-value < 0.0001 was hypomethylated among all newborns (91%) and female infants (98%), as opposed to being hypermethylated (88%) among males. We found 27 and 16 CpGs with a false discovery rate (FDR) < 0.05 in the analyses for males and females, respectively. Genes annotated to FDR-corrected CpGs clustered into an interconnected genetic network among males, while they rarely exhibited any interactions in females. In contrast, none of the enrichment for gene ontology (GO) terms with FDR < 0.05 was observed for genes annotated to the male-specific CpGs with p < 0.0001, whereas the female-specific genes were significantly enriched for GO terms related to cell adhesion. Our epigenome-wide analysis of cord blood DNA methylation implies potential sex-specific epigenome responses to BPA exposure.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Machiko Minatoya
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Toru Matsumura
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
16
|
Minatoya M, Itoh S, Yamazaki K, Araki A, Miyashita C, Tamura N, Yamamoto J, Onoda Y, Ogasawara K, Matsumura T, Kishi R. Prenatal exposure to bisphenol A and phthalates and behavioral problems in children at preschool age: the Hokkaido Study on Environment and Children's Health. Environ Health Prev Med 2018; 23:43. [PMID: 30193567 PMCID: PMC6129008 DOI: 10.1186/s12199-018-0732-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background Studies reported adverse behavioral development including internalizing and externalizing problems in association with prenatal exposure to bisphenol A (BPA) and phthalates; however, findings were not sufficient due to using different assessment tools and child ages among studies. This study aimed to examine associations between maternal serum levels of BPA and phthalate metabolites and behavioral problems at preschool age. Methods The Strengths and Difficulties Questionnaire (SDQ) was used to assess behavioral problems at 5 years of age. BPA and phthalate metabolite levels in the first trimester maternal serum was determined by LC-MS/MS for 458 children. Variables used for adjustment were parental ages, maternal cotinine levels, family income during pregnancy, child sex, birth order, and age at SDQ completed. Results The median concentrations of BPA, MnBP, MiBP, MEHP, and MECPP, primary and secondary metabolites of phthalates, were 0.062, 26.0, 7.0, 1.40, and 0.20 ng/ml, respectively. MECPP level was associated with increase conduct problem risk (OR = 2.78, 95% CI 1.36–5.68) overall and the association remained after child sex stratification, and odds ratios were increased with wider confidence interval (OR = 2.85, 95% CI 1.07–7.57 for boys, OR = 4.04, 95% CI 1.31–12.5 for girls, respectively). BPA, ∑DBPm (MnBP + MiBP), and ∑DEHPm (MEHP+MECPP) levels were not associated with any of the child behavioral problems. Conclusions Our analyses found no significant association between BPA or summation of phthalate metabolite levels and any of the behavioral problems at 5 years of age but suggested possible association between MECPP levels and increased risk of conduct problems. Electronic supplementary material The online version of this article (10.1186/s12199-018-0732-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Yu Onoda
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Kazuki Ogasawara
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Toru Matsumura
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
17
|
Li X, Wang L, Shen F, Zhou Q, Huang X. Impacts of exogenous pollutant bisphenol A on characteristics of soybeans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:463-471. [PMID: 29655848 DOI: 10.1016/j.ecoenv.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that is ubiquitous in the environment. Previous studies have focused on the effects of BPA on plants to assess the ecological risk of BPA in the environment. To evaluate the effects of BPA on plant biological characters more systematically, we investigated the biological characters of above-ground and under-ground organs of soybean plants exposed to BPA. Meanwhile, the mechanisms for the observed changes were also analyzed from the view of hormone levels and photosynthesis. The results showed that after exposure to 0.8 mg L-1 BPA for three days, indole-3-acetic acid (IAA) and gibberellic acid levels in roots increased significantly, and the IAA level increased in leaves, so the character indices of roots and leaves both increased. The IAA and ethylene levels in stems increased, but the character indices of stems did not increased. With higher BPA concentrations, especially exposure to 17.2 mg L-1 BPA, the levels of IAA, gibberellic acid, and zeatin decreased (except for the increased zeatin in leaves), and abscisic acid and ethylene levels increased; thus, all of the character indices significantly decreased. By comparing the changes in various biological characters, we found that leaf area, root surface area, and root length changed most significantly. In addition, changes in photosynthetic parameters provided initial causes for plant growth changes, and impacted biological characters. The changes of character indices were stronger when the BPA exposure time was prolonged, and after the removal of BPA, the character indices showed some recovery. Therefore, BPA exposure can regulate the changes in plant characters by influencing hormone levels and photosynthesis, and root surface area, root length, and leaf area were the most sensitive to BPA.
Collapse
Affiliation(s)
- Xingyi Li
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Shen
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
18
|
Kishi R, Araki A, Miyashita C, Itoh S, Minatoya M, Kobayashi S, Yamazaki K, Ait Bamai Y, Miura R, Tamura N. [Importance of Two Birth Cohorts (n=20,926 and n=514): 15 Years' Experience of the Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy]. Nihon Eiseigaku Zasshi 2018; 73:164-177. [PMID: 29848869 DOI: 10.1265/jjh.73.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since "Our Stolen Future" by Theo Colborn was published in 1996, global interest on the impact of chemical substances, such as the endocrine-disrupting action of chemicals, has increased. In Japan, "The Hokkaido Study on Environment and Children's Health: Malformation, Development and Allergy" was launched in 2001. It was a model of Japan Environment and Children's Study of the Ministry of the Environment. In a large-scale, Hokkaido cohort, we obtained the consent of 20,926 mothers at the organogenesis stage with the cooperation of 37 obstetrics clinics in Hokkaido. We tracked the effects of endocrine disruptors on developmental disorders. In a small-scale Sapporo cohort, we observed in detail the neuropsychiatric development of children with the consent of 514 mothers in their late pregnancy. We examined how prenatal exposure to low concentrations of environmental chemicals affect the development of organs and the postnatal development of children. Maternal exposure to POPs, such as PCB/dioxins and perfluorinated alkyl substances, has affected not only children's birth size, thyroid functions, and sex hormone levels, but also postnatal neurodevelopment, infection, and allergy among others. The associations of short-half-life substances, such as DEHP and BPA, with obesity, ASD, and ADHD have been investigated. Gene-environment interactions have been found for smoking, caffeine, folic acid, and PCB/dioxin. In 2015, our center was officially designated as the WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, and we continue to the contribute to the global perspectives of child health.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Atsuko Araki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sachiko Itoh
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Machiko Minatoya
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Ryu Miura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| | - Naomi Tamura
- Center for Environmental and Health Sciences,Hokkaido University.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards
| |
Collapse
|
19
|
Kolatorova L, Vitku J, Hampl R, Adamcova K, Skodova T, Simkova M, Parizek A, Starka L, Duskova M. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. ENVIRONMENTAL RESEARCH 2018; 163:115-122. [PMID: 29433019 DOI: 10.1016/j.envres.2018.01.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND The harmful effects of endocrine disrupting compounds (EDCs) on human health are generally well-known, and exposure during fetal development may have lasting effects. Fetal exposure to bisphenol A (BPA) has been recently relatively well-studied; however, less is known about alternatives such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF), which have started to appear in consumer products. Parabens are another widespread group of EDCs, with confirmed transplacental passage. The usage of many cosmetic, pharmaceutical and consumer products during the pregnancy that may contain parabens and bisphenols has led to the need for investigation. OBJECTIVES To shed more light into the transplacental transport of BPA, its alternatives, and parabens, and to study their relation to fetal steroidogenesis. METHODS BPA, BPS, BPF, BPAF, methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben and 15 steroids including estrogens, corticoids, androgens and immunomodulatory ones were determined in 27 maternal (37th week of pregnancy) and cord plasma samples using liquid chromatography - tandem mass spectrometry methods. RESULTS In cord blood, significantly higher BPA levels (p=0.0455) were observed compared to maternal plasma. The results from multiple regression models showed that in cord blood, methylparaben (β=-0.027, p=0.027), propylparaben (β=-0.025, p=0.03) and the sum of all measured parabens (β=-0.037, p=0.015) were inversely associated with testosterone levels. CONCLUSION To the best of our knowledge, this is the first study reporting the simultaneous detection of BPA, alternative bisphenols, parabens and steroids in maternal and cord plasma. Our study confirmed the transplacental transport of BPA, with likely accumulation in the fetal compartment. The negative association of cord blood parabens and testosterone levels points to possible risks with respect to importance of testosterone for prenatal male development.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Richard Hampl
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Karolina Adamcova
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic.
| | - Tereza Skodova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Marketa Simkova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic.
| | - Luboslav Starka
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| | - Michaela Duskova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic.
| |
Collapse
|