1
|
Tran HT, Hoang HG, Chacha WE, Mukherjee S, Duong TVH, Nguyen NSH, Nguyen KN, Naidu R. A review of advanced bioremediation technologies for dioxin-contaminated soil treatment: Current and future outlook. CHEMOSPHERE 2024; 366:143400. [PMID: 39321885 DOI: 10.1016/j.chemosphere.2024.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), namely known as dioxins, are persistent organic compounds with high toxicity. The presence of dioxins in soil is a major environmental issue worldwide, as it negatively impacts both ecosystems and human health. Thus, several advanced techniques have been applied to overcome this issue, offering promising treatment efficiency and cost-effectiveness. This review employs a meta-analysis strategy to provide an up-to-date assessment of the global situation of dioxin-contaminated soil. Dioxin concentrations are commonly higher in industrial and urban areas than in rural areas, primarily due to anthropogenic activities such as chemical manufacturing and waste incineration. Furthermore, several advanced bioremediation technologies for dioxin treatment, including biosurfactants, composting, and phytoremediation were highlighted and thoroughly discussed. Aerobic composting has proven to be robust in removing dioxins, achieving treatment efficiencies ranging from 65% to 85%. Whereas, phytoremediation, particularly when involving agricultural crops like zucchini, cucumber, and wheat, shows great promise in dioxin removal through various mechanisms, including root uptake and transpiration. Notably, biosurfactants such as rhamnolipids and sophorolipids have been effectively used to remediate dioxin-contaminated soil due to their significantly enhanced bioavailability of dioxins and their interaction with microbes. This review provides a comprehensive understanding of advanced biotechnologies for remediating dioxin-contaminated soil. It also addresses the technical and economic aspects of dioxin treatment and identifies future directions and research perspectives to fill knowledge gaps in this field.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Viet Nam
| | - Hong Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam.
| | - Wambura E Chacha
- Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St., Lawrence, KS, 66045, USA
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Tran Vo Hai Duong
- Department of Agriculture and Rural Development, Bac Lieu Technical and Economic College, Bac Lieu province, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 24000, Viet Nam
| | - Khoi Nghia Nguyen
- Faculty of Soil Science, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Brod E, Henriksen TM, Ørnsrud R, Eggen T. Quality of fish sludge as fertiliser to spring cereals: Nitrogen effects and environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162541. [PMID: 36871723 DOI: 10.1016/j.scitotenv.2023.162541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to contribute to development of organic fertiliser products based on fish sludge (i.e. feed residues and faeces) from farmed smolt. Four dried fish sludge products, one liquid digestate after anaerobic digestion and one dried digestate were collected at Norwegian smolt hatcheries in 2019 and 2020. Their quality as fertilisers was studied by chemical analyses, two 2-year field experiments with spring cereals and soil incubation combined with a first-order kinetics N release model. Cadmium (Cd) and zinc (Zn) concentrations were below European Union maximum limits for organic fertilisers in all products except one (liquid digestate). Relevant organic pollutants (PCB7, PBDE7, PCDD/F + DL-PCB) were analysed for the first time and detected in all fish sludge products. Nutrient composition was unbalanced, with low nitrogen/phosphorus (N/P) ratio and low potassium (K) content relative to crop requirements. Nitrogen concentration in the dried fish sludge products varied (27-70 g N kg-1 dry matter), even when treated by the same technology but sampled at different locations and/or times. In the dried fish sludge products, N was mainly present as recalcitrant organic N, resulting in lower grain yield than with mineral N fertiliser. Digestate showed equally good N fertilisation effect as mineral N fertiliser, but drying reduced N quality. Soil incubation in combination with modelling is a relatively cheap tool that can give a good indication of N quality in fish sludge products with unknown fertilisation effects. Carbon/N ratio in dried fish sludge can also be used as an indicator of N quality.
Collapse
Affiliation(s)
- Eva Brod
- Norwegian Institute of Bioeconomy Research, Postbox 115, NO-1431 Ås, Norway.
| | | | - Robin Ørnsrud
- Institute of Marine Research, Postbox 1870 Nordnes, NO-5817 Bergen, Norway.
| | - Trine Eggen
- Norwegian Institute of Bioeconomy Research, Postbox 115, NO-1431 Ås, Norway.
| |
Collapse
|
3
|
Xie L, Gou L, Xu D, Kapusta K, Dai L, Wang Y. Coupling influences of organic components and temperature on nitrogen transformation and hydrochar characterization during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161354. [PMID: 36603624 DOI: 10.1016/j.scitotenv.2022.161354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) in sewage sludge (SS) should be reduced if it is to be used to produce clean solid fuels. However, the N transformation during hydrothermal carbonization (HTC) of SS is not yet fully understood. Since the composition of SS is complex, it is wise to study a model compound, which should have typical functional groups of organic components. Hence, in this study, six model components (protein, lipid, cellulose, hemicellulose, humic acid, and lignin) representing the main organic components in SS were mixed with SS and treated at 150-270 °C for 1 h. The influence of the organic component and reaction temperature on hydrochar yield, hydrochar characterization, and N distribution in the products was investigated. Except for proteins and lipids, all the other components were found to contribute to the N content and aromatization of the hydrochar. Humus shows the best comprehensive performance in terms of both reducing the N content and increasing the aromaticity. The strongest effects of hemicellulose and cellulose on N retention in hydrochar are found to occur at 210 °C and 240 °C, respectively. The N retention caused by lignin is correlated with the Mannich reaction at 240 °C, while humus significantly promotes N transformation at 240 °C. For carbohydrates, lignin, and humus, the temperatures required for increasing the N content and aromaticity maintain a high degree of consistency. Although protein pulls down the energy recovery (ER) and yield of the hydrochar, observations indicate that it favors the carbonization process. This finding can be used for estimating the N content and quality of hydrochar and provides references for future research targeting the upgrading of hydrochar.
Collapse
Affiliation(s)
- Longfei Xie
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Le Gou
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Krzysztof Kapusta
- Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland
| | - Liyi Dai
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Yuanyuan Wang
- Shanghai Key Laboratory of Green Chemistry and Green Processes, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
4
|
Lü H, Chen XH, Mo CH, Huang YH, He MY, Li YW, Feng NX, Katsoyiannis A, Cai QY. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. BIORESOURCE TECHNOLOGY 2021; 328:124847. [PMID: 33609883 DOI: 10.1016/j.biortech.2021.124847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge contains various classes of organic pollutants, limiting its land application. Sludge composting can effectively remove some organic pollutants. This review summarizesrecent researches on concentration changes and dissipation of different organic pollutants including persistent organic pollutants during sludge composting, and discusses their dissipation pathways and the current understanding on dissipation mechanism. Some organic pollutants like PAHs and phthalates were removed mainly through biodegradation or mineralization, and their dissipation percentages were higher than those of PCDD/Fs and PCBs. Nevertheless, some recalcitrant organic pollutants could be sequestrated in organic fractions of sludge mixtures, and their levels and ARG abundance even increased after sludge composting in some studies, posing potential risks for land application. This review demonstrated that microbial community and their corresponding degradation for organic pollutants were influenced by different pollutants, bulking agents, composting methods and processes. Further research perspectives on removing organic pollutants during sludge composting were highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min-Ying He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296, Tromsø, Norway
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
A Win-Win Combination to Inhibit Persistent Organic Pollutant Formation via the Co-Incineration of Polyvinyl Chloride E-Waste and Sewage Sludge. Polymers (Basel) 2021; 13:polym13050835. [PMID: 33803283 PMCID: PMC7967143 DOI: 10.3390/polym13050835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Persistent organic pollutant inhibition in the combustion process of polyvinyl chloride (PVC) by prior addition of an inhibitor is currently being studied, reducing the emission of pollutants, and thus reducing the large amount of waste PVC destined for landfill. In this work, the use of sewage sludge (SS) as an alternative to chemical inhibitors to improve the quality emissions of the incineration of polyvinyl chloride waste (PVC e-waste) was studied and optimized. Different combustion runs were carried out at 850 °C in a laboratory tubular reactor, varying both the molar ratio Ri (0.25, 0.50, 0.75) between inhibitors (N + S) and chlorine (Cl) and the oxygen ratio λ (0.15, 0.50) between actual oxygen and stoichiometric oxygen. The emissions of several semivolatile compounds families such as polycyclic aromatic hydrocarbons (PAHs), polychlorobenzenes (ClBzs), and polychlorophenols (ClPhs), with special interest in the emissions of the most toxic compounds, i.e., polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), were analyzed. A notable decrease in PCDD/F and dl-PCB formation was achieved in most of the experiments, especially for those runs performed under an oxygen-rich atmosphere (λ = 0.50), where the addition of sludge was beneficial with inhibition ratios Ri ≥ 0.25. An inhibition ratio of 0.75 showed the best results with almost a 100% reduction in PCDD/F formation and a 95% reduction in dl-PCB formation.
Collapse
|
6
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
7
|
Wang X, Chen T, Zheng G. Preservation of nitrogen and sulfur and passivation of heavy metals during sewage sludge composting with KH 2PO 4 and FeSO 4. BIORESOURCE TECHNOLOGY 2020; 297:122383. [PMID: 31735697 DOI: 10.1016/j.biortech.2019.122383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Composting is an effective method for treating sewage sludge. The aim of this work was to study preservation of nitrogen and sulfur and passivation of heavy metals during sewage sludge composting with KH2PO4 and FeSO4. The results show the loss rate of N decreased by 27.5% while that of S was increased by 32.1% compared with the control treatment during composting when KH2PO4 and FeSO4 were added. X-ray absorption near-edge structure spectra show that S was converted to a highly oxidizable state during sewage sludge composting with added KH2PO4. The mobility factors of Cu, Zn, and Pb after composting were found to decrease by 13.6%, 21.6%, and 3.8%, respectively, compared with those before composting when KH2PO4 was added. Adding these two materials to Cu and Zn inhibits Zn3(PO4)2(H2O)4 and Cu5(PO4)2(OH)4 from transforming into more mobile forms, while adding these materials to Pb promotes Pb3(PO4)2 formation.
Collapse
Affiliation(s)
- Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Brisolara KF, Bourgeois J. Biosolids and sludge management. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1168-1176. [PMID: 31433899 DOI: 10.1002/wer.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The advancements in the field of sludge and biosolids have been made over the past year. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings throughout 2018. The review is organized in sections including regulatory developments and market analysis; analysis and quantification of characteristics including microconstituents and metals; treatment advances for the conversion of sludge to biosolids including pretreatment and sludge minimization, conditioning and dewatering, digestion, composting, and innovative technologies; product development and reuse including adsorbents and thermal products, agricultural and other uses, and innovative uses; odor and air emissions; and energy factors. PRACTITIONER POINTS: Summary of advances in the field of residuals and biosolids research in 2018. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings. Topics covered range from regulation to innovation.
Collapse
Affiliation(s)
| | - John Bourgeois
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
9
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|