1
|
Zhu Z, Li J, Peng Y, Qin N, Li J, Wei Y, Wang B, Liao Y, Zeng H, Cheng L, Li H. Multi-metal mixture exposure and cognitive function in urban older adults: The mediation effects of thyroid hormones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117768. [PMID: 39862692 DOI: 10.1016/j.ecoenv.2025.117768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The existing studies on the association between multi-metal mixture exposure and cognitive function in the older adults are limited and controversial, with no studies considering the mediating effect of thyroid hormones on the connection between them. This study of 441 urban older adults assessed 21 urinary metal levels and cognitive function using the Mini-Mental State Examination (MMSE). Urinary metal levels were measured via inductively coupled plasma mass spectrometry (ICP-MS), and thyroid hormones levels were obtained from medical records. Mediation analysis evaluated the role of thyroid hormones in the link between metals exposure and cognitive function. The General Linear Model (GLM) showed negative correlations between MMSE scores and titanium (Ti), copper (Cu), rubidium (Rb), and molybdenum (Mo), and positive correlations with selenium (Se) and barium (Ba). Nonlinear inverse U-shaped associations between Mo, Rb, and MMSE scores were identified using Restricted Cubic Splines (RCS) and Bayesian Kernel Machine Regression (BKMR). Mediation analysis revealed that Free Thyroxine (FT4) mediated the relationship between Rb and MMSE scores by 29.10 % and between Zinc (Zn) and language performance by 35.00 %. Total thyroxine (TT4) mediated the link between Cu and orientation score by 24.69 %, and Thyroid Stimulating Hormone (TSH) mediated the association between Cu and attention score by 38.96 %. Ti, Se, Rb, Mo, Ba and Cu were significantly associated with cognitive impairment risk. Mixed exposure to Mo and Rb was linked to an increased risk of cognitive impairment. Additionally, levels of TSH, FT4 and TT4 were associated with cognitive function, mediating the effects of Rb, Zn and Cu on cognitive function.
Collapse
Affiliation(s)
- Zhuoqi Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Juanhua Li
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yang Peng
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ning Qin
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jiemei Li
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Wei
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Biwen Wang
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfei Liao
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huaicai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, China
| | - Lu Cheng
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518064, China.
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, China.
| |
Collapse
|
2
|
Ouyang Q, Liu L, Liu L, Li Y, Qi Y, Wu K, Zhu G, Ye H. Evaluation of nutrient composition and bone-promoting activity of miiuy croaker ( Miichthys miiuy) bone. Front Nutr 2024; 11:1510028. [PMID: 39811676 PMCID: PMC11729392 DOI: 10.3389/fnut.2024.1510028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker (Miichthys miiuy) by evaluating the nutrient composition and osteogenic activity of its bones. We prepared Miichthys miiuy bone peptides (MMBP) and analyzed their osteogenic potential. Methods We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model. Results Sciaena ossificans bone is rich in nutrients, including 11.40% water, 59.30% ash, 1.60% crude fat, 27.10% crude protein, and 0.58% total sugars. The total amino acids account for 22.13%, including 4.33% essential amino acids and 17.80% non-essential amino acids. The mineral content was rich, with calcium, phosphorus and selenium contents of 162511, 7151, and 0.264 mg/kg, respectively. MMBP significantly promoted the proliferation of MC3T3-E1 cells, facilitated the growth and bone development of zebrafish. In retinoic acid-induced osteoporosis rat model, increased the serum calcium and phosphorus levels, attenuated the calcium loss, and reduced the tartrate-resistant acid phosphatase and alkaline phosphatase (ALP) activities and significantly improved bone density. MMBP shows potential as a functional food ingredient due to its osteogenic properties, which may help promote bone growth and maintain bone health. These findings provide a scientific basis for the high-value utilization of Miichthys miiuy by-products and a new direction for the development of novel functional food ingredients.
Collapse
Affiliation(s)
- Qianqian Ouyang
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lifen Liu
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Liu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Li
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Qi
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Guoping Zhu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hua Ye
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
3
|
Li Y, Liu T, Zheng R, Lai J, Su J, Li J, Zhu B, Chen T. Translational selenium nanoparticles boost GPx1 activation to reverse HAdV-14 virus-induced oxidative damage. Bioact Mater 2024; 38:276-291. [PMID: 38745588 PMCID: PMC11091461 DOI: 10.1016/j.bioactmat.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Human adenovirus (HAdV) can cause severe respiratory infections in immunocompromised patients, but its clinical treatment is seriously limited by side effects of drugs such as poor efficacy, low bioavailability and severe nephrotoxicity. Trace element selenium (Se) has been found will affect the disease progression of pneumonia, but its antivirus efficacy could be improved by speciation optimization. Therefore, herein we performed anti-HAdV effects of different Se speciation and found that lentinan (LNT)-decorated selenium nanoparticles (SeNPs) exhibited low cytotoxicity and excellent anti-HAdV antiviral activity. Furthermore, SeNPs@LNT reduced the HAdV infection-induced mitochondrial damage and excessive production of reactive oxygen species (ROS). It was also involved in the repair of host cell DNA damage and inhibition of viral DNA replication. SeNPs@LNT inhibited HAdV-induced apoptosis mainly by modulating the p53/Bcl-2 apoptosis signaling pathway. In vivo, SeNPs@LNT replenished Se by targeting the infected site through the circulatory system and was involved in the synthesis of Glutathione peroxidase 1 (GPx1). More importantly, GPx1 played an antioxidant and immunomodulatory role in alleviating HAdV-induced inflammatory cytokine storm and alleviating adenovirus pneumonia in Se-deficient mice. Collectively, this study provides a Se speciation of SeNPs@LNT with anti-HAdV activity, and demonstrate that SeNPs@LNT is a promising pharmaceutical candidate for the treatment of HAdV.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Chemistry, Jinan University, China
| | - Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiali Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, China
| |
Collapse
|
4
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Yin J, Liu S, Li Y, Hu L, Liao C, Jiang G. Exposure to MEHP during Pregnancy and Lactation Impairs Offspring Growth and Development by Disrupting Thyroid Hormone Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3726-3736. [PMID: 38353258 DOI: 10.1021/acs.est.3c09756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.
Collapse
Affiliation(s)
- Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongting Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Abdelrahman SA, Khattab MA, Youssef MS, Mahmoud AA. Granulocyte-colony stimulating factor ameliorates di-ethylhexyl phthalate-induced cardiac muscle injury via stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms. J Mol Histol 2023; 54:349-363. [PMID: 37428366 PMCID: PMC10412672 DOI: 10.1007/s10735-023-10137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Phthalates are common plasticizers present in medical-grade plastics and other everyday products. Di-ethylhexyl phthalate (DEHP) has been noted as a causative risk factor for the initiation and augmentation of cardiovascular functional disorders. G-CSF is a glycoprotein found in numerous tissues throughout the body and is currently applied in clinical practice and has been tested in congestive heart failure. We aimed to examine in depth the effect of DEHP on the histological and biochemical structure of the cardiac muscle in adult male albino rats and the mechanisms underlying the possible ameliorative effect of G-CSF. Forty-eight adult male albino rats were divided into control group, DEHP group, DEHP+ G-CSF group and DEHP-recovery group. We measured serum levels of aspartate aminotransferase (AST), creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Left ventricular sections were processed for light and electron microscope examination, and immunohistochemical staining of Desmin, activated Caspase-3 and CD34. DEHP significantly increased enzyme levels, markedly distorted the normal architecture of cardiac muscle fibers, downregulated Desmin protein levels and enhanced fibrosis, and apoptosis. G-CSF treatment significantly decreased the enzyme levels compared to DEHP group. It enhanced CD34 positive stem cells recruitment to injured cardiac muscle, therefore improved the ultrastructural features of most cardiac muscle fibers via anti-fibrotic and anti-apoptotic effects in addition to increased Desmin protein expression levels. The recovery group showed partial improvement due to persistent DEHP effect. In conclusion, administration of G-CSF effectively corrected the histopathological, immunohistochemical and biochemical alterations in the cardiac muscle after DEHP administration by stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian S Youssef
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Xiao J, Sha Y, Huang Y, Long K, Wu H, Mo Y, Yang Q, Dong S, Zeng Q, Wei X. Drinking water disinfection byproduct iodoacetic acid affects thyroid hormone synthesis in Nthy-ori 3-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114926. [PMID: 37094483 DOI: 10.1016/j.ecoenv.2023.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Iodoacetic acid (IAA) is an emerging and the most genotoxic iodinated disinfection byproduct to date. IAA can disrupt the thyroid endocrine function in vivo and in vitro, but the underlying mechanisms remain unclear. In this work, transcriptome sequencing was used to investigate the effect of IAA on the cellular pathways of human thyroid follicular epithelial cell line Nthy-ori 3-1 and determine the mechanism of IAA on the synthesis and secretion of thyroid hormone (TH) in Nthy-ori 3-1 cells. Results of transcriptome sequencing indicated that IAA affected the TH synthesis pathway in Nthy-ori 3-1 cells. IAA reduced the mRNA expression of thyroid stimulating hormone receptor, sodium iodide symporter, thyroid peroxidase, thyroglobulin, paired box 8 and thyroid transcription factor-2, inhibited the cAMP/PKA pathway and Na+-K+-ATPase, and decreased the iodine intake. The results were confirmed by our previous findings in vivo. Additionally, IAA downregulated glutathione and the mRNA expression of glutathione peroxidase 1, leading to increased reactive oxygen species production. This study is the first to elucidate the mechanisms of IAA on TH synthesis in vitro. The mechanisms are associated with down-regulating the expression of genes related to TH synthesis, inhibiting iodine uptake, and inducing oxidative stress. These findings may improve future health risk assessment of IAA on thyroid in human.
Collapse
Affiliation(s)
- Jingyi Xiao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuwen Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519000, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Shi YS, Zhao Y, Li XN, Li MZ, Li JL. Xenobiotic-sensing nuclear receptors as targets for phthalates-induced lung injury and antagonism of lycopene. CHEMOSPHERE 2023; 312:137265. [PMID: 36403809 DOI: 10.1016/j.chemosphere.2022.137265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are extensively used in the production of plastics products and have been verified to induce lung injury. Lycopene (LYC) has proved an effective preventive and can be utilized to prevent phthalates-induced toxicity. However, the role of phthalate in pathogenesis of lung injury remain poorly researched, and little work has been devoted whether LYC could alleviate phthalate-induced lung toxicity via modulating nuclear xenobiotic receptors (NXRs) response. Here, di (2-ethylhexyl) phthalate (DEHP) is used as the representative of phthalates for further studies on toxicity of phthalates and the antagonistic role of LYC in phthalates-induced lung injury. We found that DEHP exposure caused alveoli destruction and alveolar epithelial cells type II damage. Mechanistically, DEHP exposure increased nuclear accumulation of aryl hydrocarbon receptor (AHR) and its downstream genes level, including cytochrome P450-dependent monooxygenase (CYP) 1A1 and CYP1B1. Constitutive androstane receptor (CAR) and their downstream gene level, including CYP2E1 are also increased after phthalates exposure. Significantly, LYC supplementation relieves lung injury from DEHP exposure by inhibiting the activation of NXRs. We confirm that NXRs plays a key role in phthalates-induced lung injury. Our study showed that LYC may have a positive role in alleviating the toxicity effects of phthalates, which provides an effective strategy for revising phthalates-induced injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
9
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Amara I, Timoumi R, Annabi E, Ben Othmène Y, Abid-Essefi S. The protective effects of thymol and carvacrol against di (2-ethylhexyl) phthalate-induced cytotoxicity in HEK-293 cells. J Biochem Mol Toxicol 2022; 36:e23092. [PMID: 35521929 DOI: 10.1002/jbt.23092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022]
Abstract
The protective effects of thymol and carvacrol, two phenolic monoterpenes with a wide spectrum of pharmacological effects, against the oxidative stress produced by the di (2-ethylhexyl) phthalate (DEHP) in human embryonic kidney cells 293 cells (HEK-293 cells) were investigated in this study. The cytotoxicity was monitored by cell viability, while oxidative stress generation was assessed by reactive oxygen species (ROS) quantification, antioxidant enzyme activities measurement, glutathione concentration, and malondialdehyde (MDA) quantification. The genotoxicity was evaluated by the measurement of DNA fragmentation through the Comet assay. Our results demonstrated that the pretreatment of HEK-293 cells with thymol or carvacrol, 2 h before DEHP exposure, significantly increased the cell viability, decreased the ROS overproduction, modulated catalase (CAT), and superoxide dismutase (SOD) activities, restored the reduced glutathione content, and reduced the MDA level. The DNA fragmentation was also decreased by thymol and carvacrol pretreatment. These findings suggest that thymol and carvacrol could protect HEK-293 cells from DEHP-induced oxidative stress.
Collapse
Affiliation(s)
- Ines Amara
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Emna Annabi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
11
|
Ezz El Arab A, Abbas OA, Abdelrahman MT. Effect of Different Garlic Preparations on Testosterone, Thyroid Hormones, and Some Serum Trace Elements in Rats. Biol Trace Elem Res 2022; 200:1274-1286. [PMID: 34050456 DOI: 10.1007/s12011-021-02756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Garlic is a house-available vegetable which is widely used for its spicy and medicinal benefits. Impact of different preparations on testosterone, thyroid hormones, and blood micro and trace elements were studied. Eight groups of male albino rats were selected including control group and other seven groups administered different doses of different garlic preparations by oral gavages for 1 month. At the end of the experiment, blood samples were collected for determination of serum hormones by radioimmunoassay, serum micro and trace elements by inductively coupled plasma-optical emission spectrometry (ICP-OES), and testes tissues for histological examination. All treated groups with different garlic preparations revealed a highly significant decrease of testosterone level in rats as compared to control which confirmed with histological changes. Increase of thyroid hormones in some groups was seen. Hypokalemia and hypernatremia effect was recorded due to garlic treatments. Calcium, magnesium, selenium, zinc, manganese, iron, cadmium, lead, silicon, molybdenum, germanium, barium, boron, niobium, and aluminum levels showed alterations in different preparations groups. On the other hand, insignificant changes of strontium, chromium, cesium, and the nickel serum levels were noted. Interestingly, although all garlic preparations have negative effects on serum testosterone level and testicular tissues, some garlic preparations have different effects on blood elements. Consequently, it infers that the usage of different garlic preparations must abide benefit/risk assessment to avoid unexpected health issues.
Collapse
Affiliation(s)
- Aliaa Ezz El Arab
- Radioisotopes Department, Egyptian Atomic Energy Authority, Giza, Egypt
| | - Osama Ahmed Abbas
- Radioisotopes Department, Egyptian Atomic Energy Authority, Giza, Egypt
| | | |
Collapse
|
12
|
Zhang X, Qi W, Xu Q, Li X, Zhou L, Ye L. Di(2-ethylhexyl) phthalate (DEHP) and thyroid: biological mechanisms of interference and possible clinical implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1634-1644. [PMID: 34677768 DOI: 10.1007/s11356-021-17027-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/10/2021] [Indexed: 05/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental endocrine disruptor. DEHP can be absorbed into the human body through the air, food, water, and skin. After entering the human body, DEHP is rapidly converted to mono(2-ethylhexyl) phthalate (MEHP) with greater toxicity than DEHP. An increasing number of studies indicates that DEHP or MEHP can damage the thyroid tissue and disrupt the function, but the mechanisms remain unclear. This article reviews the toxicity of DEHP on thyroid structures and functions and summarizes the potential mechanisms to provide evidence for preventing the thyroid-related diseases.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
13
|
Sousa-Vidal ÉK, Henrique G, da Silva REC, Serrano-Nascimento C. Intrauterine exposure to di(2-ethylhexyl) phthalate (DEHP) disrupts the function of the hypothalamus-pituitary-thyroid axis of the F1 rats during adult life. Front Endocrinol (Lausanne) 2022; 13:995491. [PMID: 36714560 PMCID: PMC9880230 DOI: 10.3389/fendo.2022.995491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION DEHP is an endocrine disruptor widely used in the production of malleable plastics. DEHP exposure was associated with altered hypothalamic-pituitary-thyroid (HPT) axis function. Although previous studies reported deleterious effects of DEHP exposure during the intrauterine period, few studies have evaluated the direct effects triggered by this endocrine disruptor on the offspring animals' thyroid function. This study aimed to investigate the impact of intrauterine exposure to DEHP on the HPT axis function programming of the offspring animals during adulthood. METHODS Pregnant Wistar rats were orally treated with corn oil or corn oil supplemented with DEHP (0.48 or 4.8 mg/kg/day) throughout the gestational period. The offspring rats were euthanized on the 90th postnatal day. Hypothalamus, pituitary, thyroid, and liver were collected to analyze gene expression and protein content through qPCR and Western Blot. Blood was collected to determine TSH and thyroid hormone levels through fluorometric or chemiluminescence immunoassays. RESULTS In the adult F1 female rats, the highest dose of DEHP decreased TSH serum levels. In the thyroid, DEHP reduced the gene expression and/or protein content of NIS, TSHR, TG, TPO, MCT8, NKX2.1, PAX8, and FOXE1. These data are consistent with the reduction in T4 serum levels of the F1 DEHP-exposed female rats. In the liver, DEHP exposure increased the mRNA expression of Dio1 and Ttr, while the highest dose of DEHP reduced the mRNA expression of Ugt1a1 and Ugt1a6. Conversely, in the F1 male adult rats, TSHB expression and TSH serum levels were increased in DEHP-exposed animals. In the thyroid, except for the reduced protein content of TSHR, none of the evaluated genes/proteins were altered by DEHP. TH serum levels were not changed in the DEHP-exposed F1 male rats compared to the control group. Additionally, there were no significant alterations in the expression of hepatic enzymes in these animals. DISCUSSION/CONCLUSIONS Our results demonstrated, for the first time, that intrauterine exposure to DEHP disrupts the HPT axis function in male and female offspring rats and strongly suggest that DEHP exposure increases the susceptibility of the offspring animals to develop thyroid dysfunctions during adulthood.
Collapse
Affiliation(s)
- Érica Kássia Sousa-Vidal
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Guilherme Henrique
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renata Elen Costa da Silva
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Caroline Serrano-Nascimento
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Laboratório de Endocrinologia Molecular e Translacional (LEMT), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
- *Correspondence: Caroline Serrano-Nascimento,
| |
Collapse
|
14
|
Sherif NAEH, El-Banna A, Abdel-Moneim RA, Sobh ZK, Balah MIF. The possible thyroid disruptive effect of di-(2-ethyl hexyl) phthalate and the potential protective role of selenium and curcumin nanoparticles: a toxicological and histological study. Toxicol Res (Camb) 2021; 11:108-121. [PMID: 35237416 PMCID: PMC8882772 DOI: 10.1093/toxres/tfab122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the ubiquitous pollutants worldwide. This study aimed to clarify the potential thyroid disrupting effect of DEHP and explore the probable ameliorative effects of selenium nanoparticles (Se-NPs) and curcumin nanoparticles (CUR-NPs). Forty-two male albino rats were divided into seven groups (n = 6): Group I (negative control); group (II) orally received DEHP (500 mg/kg BW, dissolved in corn oil); Group (III) orally received Se-NPs (.2 mg/kg BW) in combination with DEHP; Group (IV) orally received CUR-NPs (15 mg/kg BW) alongside with DEHP; Group V (corn oil); Group VI (Se-NPs) and Group VII (CUR-NPs). The duration of the experiment was 30 days. DEHP administration significantly decreased serum free T4 and significantly increased serum free T3 as compared to control group, whereas thyroid-stimulating hormone showed no significant change. DEHP disrupted redox status leading to accumulation of malondialdehyde and depletion of reduced glutathione. Histologically, the effect of DEHP on thyroid follicles was confirmed by light and electron microscopic examination and morphometric analysis. Se-NPs slightly improved thyroid parameters as well as redox status. CUR-NPS reinstated the values of all studied thyroid parameters to nearly control levels. This research provides Se-NPs and CUR-NPs as novel protective agents against DEHP-thyroid disrupting effects.
Collapse
Affiliation(s)
- Naima Abd El-Halim Sherif
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Asmaa El-Banna
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Zahraa Khalifa Sobh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Manal Ibrahim Fathy Balah
- Correspondence address. Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Egypt. Tel: +2 01007327966; E-mail: ; ORCID ID: 0000-0002-6018-5364. Permanent address: Champolion street, Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
15
|
Li J, Qu M, Wang M, Yue Y, Chen Z, Liu R, Bu Y, Li Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J Environ Sci (China) 2021; 105:1-10. [PMID: 34130826 DOI: 10.1016/j.jes.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
DEHP (di(2-ethylhexyl) phthalate) is an endocrine disruptor commonly found in plastic products that has been associated with reproduction alterations, but the effect of DEHP on toxicity is still widely unknown. Using DEHP concentrations of 10, 1, and 0.1 mg/L, we showed that DEHP reduced the reproductive capacity of Caenorhabditis elegans after 72 hr. of exposure. DEHP exposure reduced the reproductive capacity in terms of decreased brood sizes, egg hatchability (0.1, 1 and 10 mg/L), and egg-laying rate (1 and 10 mg/L), and increased numbers of fertilized eggs in the uterus (1 and 10 mg/L). DEHP also caused damage to gonad development. DEHP decreased the total number of germline cells, and decreased the relative area of the gonad arm of all exposure groups, with worms in the 1 mg/L DEHP exposure group having the minimum gonad arm area. Additionally, DEHP caused a significant concentration-dependent increase in the expression of unc-86. Autophagy and ROS contributed to the enhancement of DEHP toxicity in reducing reproductive capacity, and glutathione peroxidase and superoxide dismutase were activated as the antioxidant defense in this study. Hence, we found that DEHP has a dual effect on nematodes. Higher concentration (10 mg/L) DEHP can inhibit the expression of autophagy genes (atg-18, atg-7, bec-1, lgg-1 and unc-51), and lower concentrations (0.1 and 1 mg/L) can promote the expression of autophagy genes. Our data highlight the potential environmental risk of DEHP in inducing reproductive toxicity toward the gonad development and reproductive capacity of environmental organisms.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Liu Y, Tang J, He Y, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J Anim Sci Biotechnol 2021; 12:68. [PMID: 34116728 PMCID: PMC8196429 DOI: 10.1186/s40104-021-00590-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heat stress (CHS) disrupts hepatic metabolic homeostasis and jeopardizes product quality of pigs. Selenium (Se) may regulate the metabolic state through affect selenoprotein. Thus, we investigate the protective effect of dietary hydroxy-4-methylselenobutanoic acid (HMSeBA) on CHS induced hepatic metabolic disorder in growing pigs, and the corresponding response of selenoprotein. METHODS Forty crossbreed growing pigs were randomly assigned to five groups: control group raised in the thermoneutral environment (22 ± 2 °C) with basal diet; four CHS groups raised in hyperthermal condition (33 ± 2 °C) with basal diet and supplied with 0.0, 0.2, 0.4, and 0.6 mg Se/kg HMSeBA, respectively. The trial lasted 28 d. The serum biochemical, hepatic metabolism related enzyme, protein and gene expression and 25 selenoproteins in liver tissue were determined by real-time PCR, ELISA and western blot. RESULTS CHS significantly increased the rectal temperature, respiration rate, serum aspartate aminotransferase (AST) and low-density lipoprotein cholesterol (LDL-C) of pigs, up-regulated hepatic heat shock protein 70 (HSP70) and induced lower liver weight, glycogen content, hepatic glucokinase and glutathione peroxidase (GSH-Px). The CHS-induced liver metabolic disorder was associated with the aberrant expression of 6 metabolism-related gene and 11 selenoprotein encoding genes, and decreased the protein abundance of GCK, GPX4 and SELENOS. HMSeBA improved anti-oxidative capacity of liver. 0.4 or 0.6 mg Se/kg HMSeBA supplementation recovered the liver weight, glycogen content and rescue of mRNA abundance of genes related to metabolism and protein levels of GCK. HMSeBA supplementation changed expressions of 15 selenoprotein encoding genes, and enhanced protein expression of GPX1, GPX4 and SELENOS in the liver affected by CHS. CHS alone showed no impact while HMSeBA supplementation increased protein levels of p-AMPKα in the liver. CONCLUSIONS In summary, HMSeBA supplementation beyond nutrient requirement mitigates CHS-induced hepatic metabolic disorder, recovered the liver glycogen content and the processes that are associated with the activation of AMPK signal and regulation of selenoproteins in the liver of growing pigs.
Collapse
Affiliation(s)
- Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
Kim MJ, Kim HH, Song YS, Kim OH, Choi K, Kim S, Oh BC, Park YJ. DEHP Down-Regulates Tshr Gene Expression in Rat Thyroid Tissues and FRTL-5 Rat Thyrocytes: A Potential Mechanism of Thyroid Disruption. Endocrinol Metab (Seoul) 2021; 36:447-454. [PMID: 33789034 PMCID: PMC8090463 DOI: 10.3803/enm.2020.920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Di-2-ethylhexyl phthalate (DEHP) is known to disrupt thyroid hormonal status. However, the underlying molecular mechanism of this disruption is unclear. Therefore, we investigated the direct effects of DEHP on the thyroid gland. METHODS DEHP (vehicle, 50 mg/kg, and 500 mg/kg) was administered to Sprague-Dawley rats for 2 weeks. The expression of the thyroid hormone synthesis pathway in rat thyroid tissues was analyzed through RNA sequencing analysis, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemical (IHC) staining. DEHP was treated to FRTL-5 rat thyroid cells, and an RT-PCR analysis was performed. A reporter gene assay containing the promoter of thyroid stimulating hormone receptor (TSHR) in Nthy-ori 3-1 human thyroid cells was constructed, and luciferase activity was determined. RESULTS After DEHP treatment, the free thyroxine (T4) and total T4 levels in rats significantly decreased. RNA sequencing analysis of rat thyroid tissues showed little difference between vehicle and DEHP groups. In the RT-PCR analysis, Tshr expression was significantly lower in both DEHP groups (50 and 500 mg/kg) compared to that in the vehicle group, and IHC staining showed that TSHR expression in the 50 mg/kg DEHP group significantly decreased. DEHP treatment to FRTL-5 cells significantly down-regulated Tshr expression. DEHP treatment also reduced luciferase activity in a reporter gene assay for TSHR. CONCLUSION Although overall genetic changes in the thyroid hormone synthesis pathway are not clear, DEHP exposure could significantly down-regulate Tshr expression in thyroid glands. Down-regulation of Tshr gene appears to be one of potential mechanisms of thyroid disruption by DEHP exposure.
Collapse
Affiliation(s)
- Min Joo Kim
- Seoul National University Hospital Healthcare System Gangnam Center, Seoul,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Hwan Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Young Shin Song
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam,
Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon,
Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul,
Korea
| | - Sujin Kim
- Graduate School of Public Health, Seoul National University, Seoul,
Korea
- Department of Environmental Science and Institute of Biomedical Studies, Baylor University, Waco, TX,
USA
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon,
Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul,
Korea
| |
Collapse
|
18
|
Zhang M, Deng YL, Liu C, Chen PP, Luo Q, Miao Y, Cui FP, Wang LQ, Jiang M, Zeng Q. Urinary phthalate metabolite concentrations, oxidative stress and thyroid function biomarkers among patients with thyroid nodules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116416. [PMID: 33433341 DOI: 10.1016/j.envpol.2020.116416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Prior human studies have explored effects of phthalate exposures on thyroid function, but the underlying biological mechanisms remain poorly unclear. We aimed to explore the associations between phthalate exposures and thyroid function among a potentially susceptible population such as patients with thyroid nodules, and further to assess the mediating role of oxidative stress. We measured eight phthalate metabolites, three oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)] in urine and three thyroid function biomarkers [thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4)] in serum among 214 patients with thyroid nodules. Multivariate regression models were applied to assess the associations among urinary phthalate metabolites, oxidative stress and thyroid function biomarkers. The potential mediating role of oxidative stress was explored by mediation analysis. We observed that multiple urinary phthalate metabolites were associated with altered FT4 and increased oxidative stress biomarkers (all FDR-adjusted P ≤ 0.05). Meanwhile, we found that 8-isoPGF2α was negatively associated with FT3/FT4 among patients with benign thyroid nodules (FDR-adjusted P = 0.08). The mediation analysis indicated that 8-isoPGF2α mediated the associations of urinary MEHHP and %MEHP with FT3/FT4, with 55.6% and 32.6% proportion of the mediating effects, respectively. Our data suggest that lipid peroxidation may be an intermediate mechanism involved in the effects of certain phthalate exposures on altered thyroid function among patients with benign thyroid nodules.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
Ha M, Huang X, Li L, Lu D, Liu C. PKCα mediated by the PI3K/Akt-FOXA1 cascade facilitates cypermethrin-induced hyperthyroidism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143727. [PMID: 33250241 DOI: 10.1016/j.scitotenv.2020.143727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP), a broad-spectrum pyrethroid insecticide is extensively used. CYP is also considered as a potential endocrine disruptor with the thyroid-disturbing property. Protein kinase C alpha (PKCα) is a pleiotropic signal transduction molecule that functions crucially in thyroid hormone (TH) homeostasis and thyroid functions. To explore underlying roles of PKCα in CYP-mediated disturbance of TH homeostasis, Sprague-Dawley rats and rat thyroid cells were used in this study. Results showed that β-CYP stimulated TH biosynthesis, as shown by the increase in plasma levels of TT4, FT4, TT3, FT3, and TSH. After β-CYP treatment, expressions of PKCα, three miRNAs (miR-17-5p, miR-330-3p, and miR-331-3p), thyroid transcription factor TTF-1, and thyroid-specific proteins (TSHr, TPO, and Tg) were significantly increased, while expressions of PI3K p110α, p-Akt, FOXA1, and thyroid transcription factors (TTF-2 and Pax8) were decreased. Further studies found that β-CYP induced PKCα translation by the miR-330-3p-targeted PI3K/Akt-FOXA1 cascade and then PKCα positively regulated TTF-1 to promote TPO and Tg expressions, which in turn facilitated TH biosynthesis. Likewise, PKCα positively modulated TSHr expressions to strengthen the TSH/TSHr signal in the HPT axis, thereby synergistically contributing to TH biosynthesis. Moreover, β-CYP also disturbed TH biotransformation and biotransport by inducing DIO1 and inhibiting DIO3 in thyroids and TTR expressions in livers. Taken together, β-CYP has the thyroid-disturbing effect and could promote TH biosynthesis, and PKCα plays vital roles in β-CYP-caused hyperthyroidism.
Collapse
Affiliation(s)
- Mei Ha
- School of Nursing, Chongqing Medical and Pharmaceutical College, Chongqing 400020, China
| | - Xu Huang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Lianbing Li
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China.
| |
Collapse
|
20
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates’ action on neurological processes and neural health: a literature review. Pharmacol Rep 2021; 73:386-404. [DOI: 10.1007/s43440-021-00215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
|
21
|
Yuan Y, Fan S, Shu L, Huang W, Xie L, Bi C, Yu H, Wang Y, Li Y. Exploration the Mechanism of Doxorubicin-Induced Heart Failure in Rats by Integration of Proteomics and Metabolomics Data. Front Pharmacol 2020; 11:600561. [PMID: 33362553 PMCID: PMC7758990 DOI: 10.3389/fphar.2020.600561] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a common systemic disease with high morbidity and mortality worldwide. Doxorubicin (DOX) is a commonly used anthracycline broad-spectrum antitumor antibiotic with strong antitumor effect and definite curative effect. However, cardiotoxicity is the adverse reaction of drug dose cumulative toxicity, but the mechanism is still unclear. In this study, proteomics and metabonomics techniques were used to analyze the tissue and plasma of DOX-induced heart failure (HF) in rats and to clarify the molecular mechanism of the harmful effects of DOX on cardiac metabolism and function in rats from a new point of view. The results showed that a total of 278 proteins with significant changes were identified by quantitative proteomic analysis, of which 118 proteins were significantly upregulated and 160 proteins were significantly downregulated in myocardial tissue. In the metabonomic analysis, 21 biomarkers such as L-octanoylcarnitine, alpha-ketoglutarate, glutamine, creatine, and sphingosine were detected. Correlation analysis showed that DOX-induced HF mainly affected phenylalanine, tyrosine, and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, and other metabolic pathways, suggesting abnormal amino acid metabolism, fatty acid metabolism, and glycerol phospholipid metabolism. It is worth noting that we have found the key upstream target of DOX-induced HF, PTP1B, which inhibits the expression of HIF-1α by inhibiting the phosphorylation of IRS, leading to disorders of fatty acid metabolism and glycolysis, which together with the decrease of Nrf2, SOD, Cytc, and AK4 proteins lead to oxidative stress. Therefore, we think that PTP1B may play an important role in the development of heart failure induced by doxorubicin and can be used as a potential target for the treatment of heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuming Wang
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Choi S, Kim MJ, Park YJ, Kim S, Choi K, Cheon GJ, Cho YH, Jeon HL, Yoo J, Park J. Thyroxine-binding globulin, peripheral deiodinase activity, and thyroid autoantibody status in association of phthalates and phenolic compounds with thyroid hormones in adult population. ENVIRONMENT INTERNATIONAL 2020; 140:105783. [PMID: 32464474 DOI: 10.1016/j.envint.2020.105783] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Exposure to consumer chemicals such as phthalates and phenolic compounds has been associated with thyroid hormone disruption in humans. However, information related to factors that may influence such associations, e.g., transport and activation of the hormones, and autoimmunity status, is limited. In the present study, we employed a subpopulation of adults (n = 1,254) who participated in the Korean National Environmental Health Survey (KoNEHS) 2015-2017, and associated urinary concentrations of major phthalate metabolites, bisphenol A (BPA), and parabens, with thyroid hormone-related measures, including free and total T3 and T4, TSH, thyroxine-binding globulin (TBG), calculated peripheral deiodinase (DIO) activity, and thyroid autoantibodies of thyroperoxidase (TPO) and thyroglobulin (Tg). Phthalate metabolites were negatively associated with total T4 and free T3, and positively associated with total T3. These observations could be explained by TBG levels and calculated peripheral DIO activity that were positively associated with phthalates exposure. In contrast, BPA was positively associated with total T4 and negatively associated with total T3, without any changes in TBG concentration. Serum TPO and Tg antibodies were not associated with urinary phthalate metabolites and BPA. However, thyroid autoantibody status appeared to modulate the association of some phthalates with thyroid hormones. For parabens, little to negligible association was observed. The results of our observation show potential underlying mechanisms of phthalates-induced thyroid hormone disruption, and suggests the importance of consideration of thyroid autoimmunity status in association studies for thyroid disrupting chemicals.
Collapse
Affiliation(s)
- Sohyeon Choi
- College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Hye Li Jeon
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea.
| |
Collapse
|
23
|
Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, Li J, Yang Q, Wu P, Zhang Z. Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113812. [PMID: 31884211 DOI: 10.1016/j.envpol.2019.113812] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is an internationally recognized carcinogenic hazard that causes serious pulmonary toxicity. However, Cr-induced pulmonary toxicity lacks effective treatment to date. Sulforaphane (SFN), a well-known organosulfur compound, has gained increasing attention because of its unique biological function. This study investigates if SFN could decrease K2Cr2O7-induced pulmonary toxicity and a potential mechanism involved using a rat 35-day Cr-induced pulmonary toxicity model and the mouse alveolar type II epithelial cell line (MLE-12). The results showed that SFN prevented Cr-induced oxidative stress, histopathological lesions, inflammation, apoptosis, and changes in protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) levels in vivo and in vitro. However, SFN can not play the protective effect against K2Cr2O7-induced cell injury after treating by an Akt-specific inhibitor (MK-2206 2HCl) in MLE-12 cells. Furthermore, SFN increased the expression of nuclear factor-E2-related factor-2 (Nrf2) phase II detoxification enzymes. Collectively, this study demonstrates that SFN prevents K2Cr2O7-induced lung toxicity in rats through enhancing Nrf2-mediated exogenous antioxidant defenses via activation of the Akt/GSK-3β/Fyn signaling pathway. SFN may be a novel natural substance to cure Cr-induced lung toxicity.
Collapse
Affiliation(s)
- Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
24
|
Sadalage PS, Nimbalkar MS, Sharma KKK, Patil PS, Pawar KD. Sustainable approach to almond skin mediated synthesis of tunable selenium microstructures for coating cotton fabric to impart specific antibacterial activity. J Colloid Interface Sci 2020; 569:346-357. [PMID: 32126347 DOI: 10.1016/j.jcis.2020.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Currently, the synthesis of nanostructured inorganic materials with tunable morphology is still a great challenge. In this study, almond skin extract was employed for the biogenic synthesis of selenium nanoparticles with tunable morphologies such as rods and brooms. The effects of various synthesis parameters on morphologies were investigated using UV-Visible spectroscopy and scanning electron microscopy (SEM) which indicated that selenium brooms (SeBrs) were best synthesized using almond skin extract and optimized conditions of SeO2, ascorbic acid, pH, incubation temperature and time. Based on these results, the mechanism of SeBrs synthesis is proposed as having involved four stages such as nucleation, self-assembly, Ostwald ripening, and decomposition. Further, the test of antibacterial activity together with minimum inhibitory concentrations and minimum bactericidal concentrations indicated the selective, specific and good activity against B. subtilis. In addition, in situ coating of SeBrs on cotton fabric and its investigation by SEM demonstrated successful coating. Evident from plate-based assay and study of growth kinetics, coated fabric exhibited excellent anti-B. subtilis activity which demonstrated that biogenic SeBrs can be employed to coat cotton fabrics that can be used in operation theatres to reduce the episodes of Bacillus related Bacteraemia.
Collapse
Affiliation(s)
| | | | - Kiran Kumar K Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Pramod S Patil
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
25
|
Miao H, Liu X, Li J, Zhang L, Zhao Y, Liu S, Ni S, Wu Y. Associations of urinary phthalate metabolites with risk of papillary thyroid cancer. CHEMOSPHERE 2020; 241:125093. [PMID: 31629241 DOI: 10.1016/j.chemosphere.2019.125093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Some studies have revealed thyrotoxicity of phthalates; however, associations of phthalate exposure with papillary thyroid cancer (PTC) remain unclear. We conducted a pair-matching case-control study of 111 PTC cases and 111 age- and sex-matched non-PTC controls to examine associations between urinary concentrations of phthalate metabolites and PTC. Phthalate metabolites were determined in fasting urine specimens by ultra-performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS). After adjusting for potential confounders and other phthalate metabolites, the concentrations of the sum of di (2-ethylhexly) phthalate (DEHP) metabolites in urine were positively associated with PTC [odds ratio (OR) = 5.35; 95% confidence interval (CI): 1.61-17.83], suggesting the effect of phthalates exposure on PTC development. The findings require confirmation.
Collapse
Affiliation(s)
- Hongjian Miao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Xin Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Song Ni
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
26
|
Zhao ZB, Ji K, Shen XY, Zhang WW, Wang R, Xu WP, Wei W. Di(2-ethylhexyl) phthalate promotes hepatic fibrosis by regulation of oxidative stress and inflammation responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:109-119. [PMID: 30884453 DOI: 10.1016/j.etap.2019.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/01/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an environmental pollutant that is widely used in medical and consumer products. An epidemiological study has suggested that a large daily intake of DEHP from phthalate-contaminated food may be a risk factor for liver dysfunction. Long-term exposure to DEHP is associated with liver disease and exacerbates the progression of chronic liver injury. However, the effect of DEHP on hepatic fibrosis is rarely studied. In the present study, we sought to determine the effect of DEHP on carbon tetrachloride (CCl4)-induced liver fibrosis, and to further examine the molecular mechanisms. We found that DEHP exposure remarkably promoted liver inflammation, necrosis and fibrosis, and increased expression of the protein associated with liver inflammation and fibrogenesis, including α-SMA, COL-Ⅰ, COL-Ⅲ, TGF-β1, P-Smad2, P-Smad3, P-p38 and P-p65. The similar trend was observed in the LX-2 cells. Furthermore, DEHP exposure induced oxidative stress and inflammatory cytokine production. Taken together, DEHP might play a fibrotic role in hepatic fibrosis rats and TGF-β1-stimulated LX-2 cells in vitro which was related to TGF-β1/Smad and p38MAPK/NF-κB signal pathway.
Collapse
Affiliation(s)
- Zong-Biao Zhao
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ke Ji
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Xin-Yue Shen
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wen-Wen Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Rui Wang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei-Ping Xu
- Anhui Provincial Hospital, Hefei 230001, Anhui, China.
| | - Wei Wei
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China.
| |
Collapse
|
27
|
Yu X, Wang M, Nan X, Guo Y, Deng T. Species and correlations between selenium and mercury in fishpond ecosystems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:292-299. [PMID: 30735276 DOI: 10.1002/wer.1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
The chemical species and contents of selenium and mercury in water, sediments, and crucian carps collected from three wild and three aquaculture fishponds in Tianjin, China, were determined, and the interaction between selenium and mercury in water was also investigated by the calorimetry method. The results revealed that the average contents of total selenium (TSe) and total mercury (THg) in each item of the wild areas were higher than in those of the aquaculture areas, and significant differences (95% confidence) were presented for THg both in the sediments and crucian carps. The molar ratios between TSe and THg in all investigated fishponds were far higher than 1, indicating good protective effects of selenium on mercury toxicity. Obviously, negative correlations (r > 0.9993) were found between TSe and THg in water. The antagonism of selenium on mercury in water was confirmed to mainly result from the reaction between selenate and Hg2+ to form an insoluble selenium-mercury oxygenated compound, by which the addition of selenate into the water of fishponds would reduce the environmental risk of mercury. PRACTITIONER POINTS: Se and Hg in different fishpond ecosystems were investigated and compared. Direct evidence was provided for the interaction between Se and Hg in water. The addition of Se(VI) into fishpond ecosystems would reduce the environmental risk of Hg.
Collapse
Affiliation(s)
- Xiaoping Yu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
- College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Mengxue Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Xuejiao Nan
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
- College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
28
|
Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P, Luo Y. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:212-219. [PMID: 30053665 DOI: 10.1016/j.scitotenv.2018.07.247] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Root exudates are the main media of information communication and energy transfer between plant roots and the soil. Understanding the response of root exudates to contamination stress is crucial in revealing the rhizoremediation mechanisms. Here, we investigate the response of alfalfa root exudates to bis(2-ethylhexyl) phthalate (DEHP) stress based on nontargeted metabolomic analysis. Alfalfa root exudates were collected using greenhouse hydroponic culture and analysed by gas chromatography-time of flight mass spectrometry (GC-TOFMS). A total of 314 compounds were identified in alfalfa root exudates of which carbohydrates, acids and lipids accounted for 28.6, 15.58 and 13.87%, respectively. Orthogonal partial least squares discriminant analysis (OPLS-DA) shows that DEHP exerted an important influence on the composition and quantity of root exudates. Fifty metabolites were clearly changed even at lower concentrations of DEHP, including common carbohydrates, fatty acids and some special rhizosphere signal materials, such as 4',5-dihyrroxy-7-methoxyisoflavone. DEHP stress significantly suppressed carbohydrate metabolism but promoted fatty acid metabolism. However, amino acid metabolism, lipid metabolism and the tricarboxylic acid (TCA) cycle showed little change in response to DEHP stress.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
29
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|