1
|
Risse SBL, Puschenreiter M, Tognacchini A. Rhizosphere processes by the nickel hyperaccumulator Odontarrhena chalcidica suggest Ni mobilization. PLANT AND SOIL 2023; 495:43-56. [PMID: 38313193 PMCID: PMC10834574 DOI: 10.1007/s11104-023-06161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 02/06/2024]
Abstract
Background and aims Plant Ni uptake in aboveground biomass exceeding concentrations of 1000 μg g-1 in dry weight is defined as Ni hyperaccumulation. Whether hyperaccumulators are capable of mobilizing larger Ni pools than non-accumulators is still debated and rhizosphere processes are still largely unknown. The aim of this study was to investigate rhizosphere processes and possible Ni mobilization by the Ni hyperaccumulator Odontarrhena chalcidica and to test Ni uptake in relation to a soil Ni gradient. Methods The Ni hyperaccumulator O. chalcidica was grown in a pot experiment on six soils showing a pseudo-total Ni and labile (DTPA-extractable) Ni gradient and on an additional soil showing high pseudo-total but low labile Ni. Soil pore water was sampled to monitor changes in soil solution ionome, pH, and dissolved organic carbon (DOC) along the experiment. Results Results showed that Ni and Fe concentrations, pH as well as DOC concentrations in pore water were significantly increased by O. chalcidica compared to unplanted soils. A positive correlation between Ni in shoots and pseudo-total concentrations and pH in soil was observed, although plant Ni concentrations did not clearly show the same linear pattern with soil available Ni. Conclusions This study shows a clear root-induced Ni and Fe mobilization in the rhizosphere of O. chalcidica and suggests a rhizosphere mechanism based on soil alkalinization and exudation of organic ligands. Furthermore, it was demonstrated that soil pH and pseudo-total Ni are better predictors of Ni plant uptake in O. chalcidica than labile soil Ni. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06161-w.
Collapse
Affiliation(s)
- Sören B L Risse
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
- Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Alice Tognacchini
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
2
|
Romero-Estonllo M, Ramos-Castro J, San Miguel del Río Y, Rodríguez-Garrido B, Prieto-Fernández Á, Kidd PS, Monterroso C. Soil amendment and rhizobacterial inoculation improved Cu phytostabilization, plant growth and microbial activity in a bench-scale experiment. Front Microbiol 2023; 14:1184070. [PMID: 37455720 PMCID: PMC10346841 DOI: 10.3389/fmicb.2023.1184070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.
Collapse
Affiliation(s)
- Marc Romero-Estonllo
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Judith Ramos-Castro
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yaiza San Miguel del Río
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Rodríguez-Garrido
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Ángeles Prieto-Fernández
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Petra S. Kidd
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Carmen Monterroso
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Smoak RA, Schnoor JL. Nickel Hyperaccumulator Biochar Sorbs Ni(II) from Water and Wastewater to Create an Enhanced Bio-ore. ACS ENVIRONMENTAL AU 2023; 3:24-33. [PMID: 36691654 PMCID: PMC9853938 DOI: 10.1021/acsenvironau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
Nickel (Ni) hyperaccumulators make up the largest proportion of hyperaccumulator plant species; however, very few biochar studies with hyperaccumulator feedstock have examined them. This research addresses two major hypotheses: (1) Biochar synthesized from the Ni hyperaccumulator Odontarrhena chalcidica grown on natural, metal-rich soil is an effective Ni sorbent due to the plant's ability to bioaccumulate soluble and exchangeable cations; and (2) such biochar can sorb high concentrations of Ni from complex solutions. We found that O. chalcidica grew on sandy, nutrient-poor soil from a Minnesota mining district but did not hyperaccumulate Ni. Biochar prepared from O. chalcidica biomass at a pyrolysis temperature of 900 °C sorbed up to 154 mg g-1 of Ni from solution, which is competitive with the highest-performing Ni sorbents in recent literature and the highest of any unmodified, plant-based biochar material reported in the literature. Precipitation, cation exchange, and adsorption mechanisms contributed to removal. Ni was effectively removed from acidic solutions with initial pH > 2 within 30 min. O. chalcidica biochar also removed Ni(II) from a simulated Ni electroplating rinsewater solution. Together, these results provide evidence for O. chalcidica biochar as an attractive material for simultaneously treating high-Ni wastewater and forming an enhanced Ni bio-ore.
Collapse
Affiliation(s)
- Rachel A. Smoak
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR
− Hydroscience and Engineering, University
of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa, 52242, United States
| | - Jerald L. Schnoor
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR
− Hydroscience and Engineering, University
of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa, 52242, United States
| |
Collapse
|
4
|
Lopez S, Morel JL, Benizri E. The parameters determining hyperaccumulator rhizobacteria diversity depend on the study scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155274. [PMID: 35452722 DOI: 10.1016/j.scitotenv.2022.155274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Soils harbor some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. Numerous parameters, intrinsic to plant physiology, life history and the soil itself, can influence the structure of rhizomicrobial communities. While our knowledge of rhizosphere microbial diversity is increasing, opinion is divided as to whether the factors that most impact this diversity are abiotic, climatic or plant selection. Here we focused on the rhizosphere bacterial diversity of nickel hyperaccumulator plants (28 species from Mediterranean or tropical climates). We showed, by leveraging 16S Illumina sequencing of 153 ultramafic rhizosphere soils, that bacterial genetic diversity was highest in Mediterranean habitats where plant diversity was the lowest. Concerning those parameters driving this diversity, we demonstrated that climate drives bacterial diversity, in particular with the annual temperature variation. Focusing on each region, we underlined the substantial role of soil physicochemical parameters. Our results highlight the importance of considering spatial scale when explaining bacterial community diversity.
Collapse
Affiliation(s)
- Séverine Lopez
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140 Villenave d'Ornon, France; Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Jean Louis Morel
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000 Nancy, France.
| |
Collapse
|
5
|
Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. SUSTAINABILITY 2022. [DOI: 10.3390/su14126975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil contamination with Ni poses serious ecological risks to the environment. Several members of the Salix genus have the ability to accumulate high concentrations of Ni in their aerial parts, and thus can be used for the remediation of Ni-contaminated soils. Interestingly, the efficacy of Ni phytoextraction by Salix may be improved by the acidification of rhizosphere with rhizosphere acidifying bacterial strains. Therefore, the aim of this study was to assess the efficacy of bacterial strain Bacillus sp. ZV6 in the presence of animal manure (AM) and leaf manure (LM) for enhancing the bioavailability of Ni in the rhizosphere of Salix alba via reducing the pH of rhizosphere and resultantly, enhanced phytoextraction of Ni. Inoculation of Ni-contaminated soil with strain ZV6 significantly increased plant growth as well as Ni uptake by alba. It was found that the addition of AM and LM resulted into a significant increase in plant growth and Ni uptake by alba in Ni-contaminated soil inoculated with ZV6 stain. However, the highest improvements in diethylene triamine penta-acetic acid (DTPA) extractable Ni (10%), Ni removal from soil (54%), Ni bioconcentration factor (26%) and Ni translocation factor (13%) were detected in the soil inoculated with ZV6 along with the addition of LM, compared to control. Similarly, the enhancements in microbial biomass (92%), bacterial count (348%), organic carbon (organic C) (57%) and various enzymatic activities such as urease (56%), dehydrogenase (32%), β-glucosidase (53%), peroxidase (26%) and acid phosphatase (38%) were also significantly higher in the soil inoculated with ZV6 along with the addition of LM. The findings of this study suggest that the inoculation of Ni-contaminated soils with rhizosphere acidifying bacteria can effectively improve Ni phytoextraction and, in parallel, enhance soil health.
Collapse
|
6
|
Smoak RA, Schnoor JL. Nickel Hyperaccumulator Biochar as a Ni-Adsorbent and Enhanced Bio-ore. ACS ENVIRONMENTAL AU 2022; 2:65-73. [PMID: 35083467 PMCID: PMC8778606 DOI: 10.1021/acsenvironau.1c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
![]()
Increasing nickel
(Ni) demand may spur the need for creative Ni
production methods. Agromining (farming for metals) uses plants that
can accumulate high concentrations of metal in their biomass, called
bio-ore, as a metal extraction strategy. Furthermore, biochar, produced
by biomass pyrolysis under low-oxygen conditions, can be used to remove
Ni from contaminated wastewaters. In this work we investigate whether
biochar synthesized from the Ni-hyperaccumulating plant Odontarrhena
chalcidica (synonymous Alyssum murale) can
be used as a Ni-adsorbing biochar. We grew O. chalcidica on soils with varying Ni concentration, characterized the plants
and resultant biochars synthesized at different pyrolysis temperatures,
and analyzed Ni batch adsorption results to determine the adsorption
capacity of O. chalcidica biochar. We found that
Ni concentration in O. chalcidica increases with
increasing soil Ni but reaches an accumulation limit around 23 g Ni
kg–1 dry weight in dried leaf samples. Pyrolysis
concentrated Ni in the biochar; higher pyrolysis temperatures led
to higher biochar Ni concentrations (max. 87 g Ni kg–1) and surface areas (max. 103 m2/g). Finally, the O. chalcidica biochar adsorption results were comparable
to high-performing Ni adsorbents in the literature. The adsorption
process greatly increased the Ni concentration in some biochars, indicating
that synthesizing biochar from O. chalcidica biomass
and using it as a Ni adsorbent can produce a Ni-enhanced bio-ore with
nickel content higher than all nickel-rich veins currently mined.
Collapse
Affiliation(s)
- Rachel A. Smoak
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR − Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States
- IIHR − Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Haseeb M, Iqbal S, Hafeez MB, Saddiq MS, Zahra N, Raza A, lbrahim MU, Iqbal J, Kamran M, Ali Q, Javed T, Ali HM, Siddiqui MH. Phytoremediation of nickel by quinoa: Morphological and physiological response. PLoS One 2022; 17:e0262309. [PMID: 35025916 PMCID: PMC8757961 DOI: 10.1371/journal.pone.0262309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
The amount of soil contaminated with heavy metal increases due to urbanization, industrialization, and anthropogenic activities. Quinoa is considered a useful candidate in the remediation of such soil. In this pot experiment, the phytoextraction capacity of quinoa lines (A1, A2, A7, and A9) against different nickel (Ni) concentrations (0, 50, and 100 mg kg-1) were investigated. Required Ni concentrations were developed in polythene bags filled with sandy loam soil using nickel nitrate salt prior to two months of sowing and kept sealed up to sowing. Results showed that translocation of Ni increased from roots to shoots with an increase in soil Ni concentration in all lines. A2 line accumulated high Ni in leaf compared to the root as depicted by translocation factor 3.09 and 3.21 when grown at soil having 50 and 100 Ni mg kg-1, respectively. While, in the case of root, A7 accumulated high Ni followed by A9, A1, and A2, respectively. There was a 5–7% increased seed yield by 50 mg kg-1 Ni in all except A1 compared to control. However, growth and yield declined with a further increase in Ni level. The maximum reduction in yield was noticed in A9, which was strongly linked with poor physiological performance, e.g., chlorophyll a, b, and phenolic contents. Ni concentrations in the seed of all lines were within the permissible value set (67 ppm) by FAO/WHO. The result of the present study suggests that quinoa is a better accumulator of Ni. This species can provide the scope of decontamination of heavy metal polluted soil. The screened line can be used for future quinoa breeding programs for bioremediation and phytoextraction purpose.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Iqbal
- Department of Agronomy, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan
| | | | - Muhammad Sohail Saddiq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
- * E-mail: (MSS); (AR)
| | - Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Centre of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (MSS); (AR)
| | | | - Javaid Iqbal
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Kamran
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Qasim Ali
- Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States of America
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. ENVIRONMENTAL RESEARCH 2021; 195:110780. [PMID: 33539835 DOI: 10.1016/j.envres.2021.110780] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/22/2023]
Abstract
Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Earth & Environmental Sciences, Bahria University (Karachi Campus), Karachi, 75260, Pakistan; Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Amna Kiyani
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan; Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Cyrus Raza Mirza
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Basit Ali
- Department of Economics, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
9
|
Hipfinger C, Rosenkranz T, Thüringer J, Puschenreiter M. Fertilization regimes affecting nickel phytomining efficiency on a serpentine soil in the temperate climate zone. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:407-414. [PMID: 32976726 DOI: 10.1080/15226514.2020.1820446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytomining of nickel (Ni) refers to cropping of selected Ni hyperaccumulator plants on Ni-rich serpentine soils. In this study, the effect of different fertilization regimes on the Ni yield of Odontarrhena chalcidica (syn. Alyssum murale) was evaluated within a field experiment on an Austrian serpentine site. Odontarrhena chalcidica was planted in six treatments: control, fertilized by mineral fertilizer, cow manure, pig manure, compost, and planted at higher plant density. A positive fertilization effect was observed: plants treated with NPK and pig manure produced significantly higher biomass (1.9 t ha-1 for both treatments). Nickel yields showed a clear trend for enhancement upon fertilization (cow manure: 22.7 kg Ni ha-1, pig manure: 21.3 kg Ni ha-1, NPK: 20.6 kg Ni ha-1), but were not significantly different from the control. As a result of Ni accumulation in plants, DTPA-extractable Ni pools were significantly lower after harvesting (average 37.3 mg kg Ni-DTPA-1) compared to the time of planting (average 45.6 mg kg Ni-DTPA-1) in organic fertilization treatments and plots of higher plant density. The application of organic fertilizers contributed also to improved soil quality. We conclude that fertilization can increase the phytomining potential of field-grown Ni hyperaccumulator plants in a soil-friendly manner.
Collapse
Affiliation(s)
- Christina Hipfinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Theresa Rosenkranz
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Julia Thüringer
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
10
|
Cassayre L, Hazotte C, Laubie B, Carvalho W, Simonnot MO. Combustion of nickel hyperaccumulator plants investigated by experimental and thermodynamic approaches. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Tognacchini A, Rosenkranz T, van der Ent A, Machinet GE, Echevarria G, Puschenreiter M. Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109798. [PMID: 31739090 DOI: 10.1016/j.jenvman.2019.109798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Nickel (Ni) is used in numerous industrial processes, with large amounts of Ni-rich industrial wastes produced, which are largely sent to landfill. Nickel recovery from waste materials that would otherwise be disposed is of particular interest. Nickel phytomining represents a new technology in which hyperaccumulator plants are cultivated on Ni-rich substrates for commercial metal recovery. The aim of this study was to investigate the possibility of Ni transfer from industrial waste into plant biomass, to support recovery processes from bio-ores. Different industrial galvanic sludges (containing 85-150 g kg-1 Ni) were converted into artificial substrates (i.e. technosols) and the Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale) was cultivated on these Ni-rich matrices. A greenhouse pot experiment was conducted for three months including an ultramafic soil control and testing fertilized (NPK) and unfertilized replicates. The results showed that fertilization was effective in improving plant biomass for all the substrates and that O. chalcidica was capable of viably growing on technosols, producing a comparable biomass to O. chalcidica on the control (ultramafic soil). On all technosols, O. chalcidica achieved Ni shoot concentrations of more than >1000 mg Ni kg -1 and maximum Ni uptake was obtained from one of the technosols (26.8 g kg -1 Ni, unfertilized; 20.2 g kg -1 Ni, fertilized). Nickel accumulation from three of the technosols resulted to be comparable with the control ultramafic soil. This study demonstrated the feasibility of transferring Ni from toxic waste into the biomass of Odontarrhena chalcidica and that phytomining from galvanic sludge-derived technosols can provide similar Ni yields as from natural ultramafic soils.
Collapse
Affiliation(s)
- Alice Tognacchini
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz Straße 24, 3430 Tulln, Austria.
| | - Theresa Rosenkranz
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, 4072, QLD, Australia; Université de Lorraine, Laboratoire Sols et Environnement, 54000, Nancy, France
| | - Gaylord Erwan Machinet
- Microhumus, Université de Lorraine, ENSAIA - Laboratoire Sols et Environnement, 2 avenue de la Forêt de Haye, BP 20163, 54505, Vandoeuvre-lès-Nancy, France
| | | | - Markus Puschenreiter
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
12
|
Li C, Ji X, Luo X. Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234755. [PMID: 31783655 PMCID: PMC6926625 DOI: 10.3390/ijerph16234755] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
This paper aims to evaluate the knowledge landscape of the phytoremediation of heavy metals (HMs) by constructing a series of scientific maps and exploring the research hotspots and trends of this field. This study presents a review of 6873 documents published about phytoremediation of HMs in the international context from the Web of Science Core Collection (WoSCC) (1989–2018). Two different processing software applications were used, CiteSpace and Bibliometrix. This research field is characterized by high interdisciplinarity and a rapid increase in the subject categories of engineering applications. The basic supporting categories mainly included “Environmental Sciences & Ecology”, “Plant Sciences”, and “Agriculture”. In addition, there has been a trend in recent years to focus on categories such as “Engineering, Multidisciplinary”, “Engineering, Chemical”, and “Green & Sustainable Science & Technology”. “Soil”, “hyperaccumulator”, “enrichment mechanism/process”, and “enhance technology” were found to be the main research hotspots. “Wastewater”, “field crops”, “genetically engineered microbes/plants”, and “agromining” may be the main research trends. Bibliometric and scientometric analysis are useful methods to qualitatively and quantitatively measure research hotspots and trends in phytoremediation of HM, and can be widely used to help new researchers to review the available research in a certain research field.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (C.L.); (X.J.)
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaohui Ji
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China; (C.L.); (X.J.)
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Correspondence:
| |
Collapse
|
13
|
Rosenkranz T, Hipfinger C, Ridard C, Puschenreiter M. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:522-528. [PMID: 31078125 DOI: 10.1016/j.jenvman.2019.04.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Phytomining of nickel (Ni) is based on the cropping of Ni hyperaccumulators on Ni-rich serpentine soils. The efficiency of this approach is dependent on shoot nickel concentration and harvestable biomass. In a field experiment conducted on an Austrian serpentine site, the phytomining efficiency of the two plant species Odontarrhena chalcidica (syn. Alyssum murale) and Noccaea goesingensis was evaluated. O. chalcidica was planted in three treatments: control, sulphur application (0.46 g S kg-1 soil) and intercropping with the legume Lotus corniculatus. For N. goesingensis the treatments control, high-density planting (110 plants m-2) and intercropping were implemented. Given the experimental set-up, shoot biomass, shoot Ni concentration and thus the total amount of harvested Ni were on average higher for O. chalcidica. The highest Ni yield was achieved with O. chalcidica, reaching 55 kg Ni ha-1 in the sulphur treatment. N. goesingensis showed the maximum yield in the high-density treatment with 36 kg Ni ha-1. However, high-density planting of N. goesingensis and sulphur application to O. chalcidica plots did not significantly increase the Ni yield compared to the control. Intercropping with L. corniculatus tended to decrease the shoot biomass of both species. Planting of the hyperaccumulators led to a decrease of DTPA-extractable Ni and to an increase of soil pH, with the exception of sulphur-amended plots. Likewise, rhizosphere soil pH was higher than bulk soil values. Our data suggest that in particular O. chalcidica is suitable for Ni phytomining on the tested site. Measures to further increase the Ni yield and to optimise crop management will be evaluated in follow-up experiments.
Collapse
Affiliation(s)
- Theresa Rosenkranz
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Christina Hipfinger
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Charline Ridard
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
14
|
Lopez S, Goux X, Echevarria G, Calusinska M, Morel JL, Benizri E. Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:237-249. [PMID: 30445325 DOI: 10.1016/j.scitotenv.2018.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Ultramafic (i.e. serpentine) soils are widespread in the Balkans and particularly in Albania. They account for a large part of plant endemism in that region and host several hyperaccumulator species, which are characterized by leaf nickel concentrations frequently above 1%. This rich nickel hyperaccumulating flora could serve as candidate to be used in phytoextraction and agromining. Despite recent interest in metal hyperaccumulating plants and agromining, very few studies have investigated the bacterial diversity and the influence of environmental factors on microbial gene profiles in the rhizosphere of hyperaccumulator plants growing on ultramafic soils. Because rhizospheric bacteria could be crucial to the success of phytoremediation, we studied a total of 48 nickel-hyperaccumulating plants which were sampled from four species that are widespread in Albania: Noccaea ochroleuca, Odontarrhena smolikana, O. rigida and O. chalcidica. All samples were taken from the ultramafic regions of Librazhd and Pogradec in eastern Albania in October 2015. Our study shows that Proteobacteria, Actinobacteria and Acidobacteria dominated the soil bacterial communities. Of these three phyla, only Proteobacteria was relatively abundant. This study underlines the influence of soil Cation Exchange Capacity on the bacterial community's diversity and structure. Based on the predicted metagenomes, the genes belonging to amino acid, lipid and carbohydrate metabolisms were identified as major gene families. Our study sheds some light on our understanding of how bacterial communities are structured within and affect the rhizosphere of hyperaccumulator plants from ultramafic soils in Albania.
Collapse
Affiliation(s)
- Séverine Lopez
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Xavier Goux
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Guillaume Echevarria
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Magdalena Calusinska
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France.
| |
Collapse
|
15
|
Carvalho CFMD, Viana DG, Pires FR, Egreja Filho FB, Bonomo R, Martins LF, Cruz LBS, Nascimento MCP, Cargnelutti Filho A, Rocha Júnior PRD. Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes. CHEMOSPHERE 2019; 214:10-16. [PMID: 30248554 DOI: 10.1016/j.chemosphere.2018.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Aquatic macrophytes are potentially useful for phytoremediation on flooded areas. A field study in Brazil was conducted to evaluate Eleocharis acutangula (E), Cyperus papyrus (C) and Typha domingensis (T) in monocropping and intercropping, aiming to phytoremediate barium-polluted flooded soils. The treatments were: monocroppings (E, C and T); double intercroppings (EC, ET and CT); and triple intercropping (ECT). The 180-d field trial was performed in a flooded area with high barium content, with a randomized complete block design and three replicates. Plant stand size, biomass yield, and Ba concentration aboveground/Ba concentration in roots (translocation factor - TF) as well as Ba mass aboveground/Ba mass in roots (mass translocation factor - mTF) were determined. Most of the treatments did not differ on dry biomass, except for EC, which showed the lowest yield. Consistently with its biology, E. acutangula in monocropping showed the largest plant stand. Otherwise, intercroppings with T. domingensis achieved the highest amounts of barium absorbed from the soil and transferred most of the barium content from belowground to aboveground (mTF > 1.0), especially ET, which showed the highest mTF among the intercroppings (2.03). Remarkably, TF values did not reflect such phytoextraction ability for CT and ECT. Thus, mTF was more appropriate than TF to assess phytoextraction capacity. Furthermore, it was demonstrated that intercropping can increase barium uptake from flooded soils. Particularly, the intercropping ET constituted the most cost-effective treatment, with the cyperaceous species providing high plant coverage while T. domingensis facilitated barium removal by translocating it to the aboveground biomass.
Collapse
Affiliation(s)
| | - Douglas Gomes Viana
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fábio Ribeiro Pires
- Department of Agricultural and Biological Sciences, Federal University of Espírito Santo, São Mateus, ES, Brazil.
| | | | - Robson Bonomo
- Department of Agricultural and Biological Sciences, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | | | | | | | - Alberto Cargnelutti Filho
- Division of Plant Experimentation, Department of Crop Sciences, Federal University of Santa Maria, RS, Brazil
| | | |
Collapse
|