1
|
Abhishek S, Ghosh A, Pandey B. A comprehensive review on phytoremediation of fly ash and red mud: exploring environmental impacts and biotechnological innovations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35217-2. [PMID: 39382806 DOI: 10.1007/s11356-024-35217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Fly ash (FA) and red mud (RM) are industrial byproducts generated by thermal power plants and the aluminum industry, respectively. The huge generation of FA and RM is a significant global issue, and finding a safe and sustainable disposal method remains a challenge. These dumps contain harmful trace elements that have a significant impact on the environment and human health. It contributes to air, water, and soil pollution, disrupting the delicate balance of the ecosystems. It also introduces toxins into the food chain through biomagnification. Utilizing a vegetation cover can assist in addressing environmental health concerns associated with FA and RM dumps. Nevertheless, the presence of alkaline pH, toxic metals, the absence of soil microbes, and the pozzolanic properties of both FA and RM pose challenges to plant growth. Taking a comprehensive approach to the ecological restoration of these dumps through phytoremediation is crucial. This review examines the role of various factors in the ecological restoration of FA and RM dumps, specifically the use of naturally occurring plants. However, the issue of slow plant growth due to a lack of nutrients and microbial activities is being resolved through various advances, such as amendments in conjunction with organic matter, microbial inoculants, and the use of genetically modified plants. Research has demonstrated the benefits of using amendments to stimulate vegetation growth on FA and RM dumps. In this review, we explore various approaches to restoring FA and RM dumps and transforming them into productive sites that enhance the ecosystem services.
Collapse
Affiliation(s)
- Shubham Abhishek
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Annesha Ghosh
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Bhanu Pandey
- CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Alves de Oliveira E, Cavalheiro da Silva L, Antônio de Andrade E, Dênis Battirola L, Lopes Tortorela de Andrade R. Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1076-1086. [PMID: 38059299 DOI: 10.1080/15226514.2023.2288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Soil contamination by toxic metals threatens global public health, highlighting the need for cost-effective and ecologically sound site remediation. In this study, we assessed phytoremediation of Hg-contaminated soils by Emilia fosbergii Nicolson (Asteraceae). Pot experiment was conducted using a substrate of sand and vermiculite (1:1 volume ratio), treatments consisted of five Hg concentrations (0, 1, 3, 5, and 7 mg kg-1). Metal transfer rates were calculated, including accumulation (BAF), translocation (TF) and bioconcentration (BCF) factors. E. fosbergii roots exhibited greater Hg accumulation than other tissues, but biomass production and plant health were not significantly affected at the concentrations tested, as indicated by elongation factors and tolerance index. The results revealed BAF values between 2.18 and 7.14, TF values ranged between 0.15 and 0.52, and the BCF index varied between 8.97 and 26.58. Treatments with Hg content of 5 mg kg-1 and 7 mg kg-1 recorded the highest total Hg concentrations of 66 mg kg-1 and 65.53 mg kg-1 (roots), and 9.18 mg kg-1 and 33.88 mg kg-1 (aerial), respectively. E. fosbergii demonstrated promise for Hg phytoremediation due to its high accumulation capacity, indicated by regular TF and high BCF and BAF indexes, thus classifying it as a high Hg accumulator.
Collapse
Affiliation(s)
- Evandro Alves de Oliveira
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Larissa Cavalheiro da Silva
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| |
Collapse
|
3
|
Gan CD, Chen T, Yang JY. Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:559-564. [PMID: 34216229 DOI: 10.1007/s00128-021-03309-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Pot experiments with alfalfa, milkvetch root and swamp morning glory were conducted to elucidate the effect of soil vanadium (V) on plant growth and to evaluate their phytoremediation potential under V(V) exposure. Based on biomass analysis, swamp morning glory showed higher tolerance than alfalfa and milkvetch root in response to different soil V(V) levels. The accumulation of V in plants increased with the increasing soil V and the V concentration in roots was 1.95-4.31 times that in shoots. After planting, soil total V, V(V), bioavailable V and water-soluble V all reduced, and the decreases in bioavailable V and V(V) showed significant. The decreased percentage of V(V) in total V in soils demonstrated that the planting process may stimulate the mechanism of V(V) reduction to V(IV). Therefore, the three tested plants, particularly swamp morning glory can be promising phytostabilizers applied to V phytoremediation practices.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Ting Chen
- Pangang Group Research Institute Co. Ltd, Panzhihua, 617000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China.
| |
Collapse
|
4
|
Ultra VU, Manyiwa T. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu-Ni mine soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1337-1353. [PMID: 32591945 DOI: 10.1007/s10653-020-00627-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Acacia albida, Acacia luederitzii, and Acacia tortilis are dominant acacia species in Botswana and have the potential to rehabilitate the heavy metal degraded environment. To establish this claim, experiments to assess the influence of mycorrhizal inoculation and fly ash amendments on the survival, growth and heavy metal accumulation of these species in mine tailings were conducted. A two-factor (AM inoculation × fly ash) in CRD was done on each of the three Acacia species consisting of four treatments: control (no mycorrhizal, no fly ash coded as - AM/- FA), with mycorrhizal but no fly ash (+ AM/- FA), no mycorrhizal but with fly ash (- AM/+ FA), and with mycorrhizal and with fly ash (+ AM/+ FA). After 24 weeks, results showed that the survival and dry matter yield of all Acacia species were enhanced by 10% with fly ash amendments. However, mycorrhiza inoculation alone improved the survival of A. albida and A. luederitzii but reduced that of the A. tortilis in mine tailings. Fly ash amendments increased the pH of the mine tailings, reduced the availability of Cu, Ni, Pb, Mn and Zn and consequently reduced the concentration of these metals in shoots. On the other hand, it increased the availability of As in the mine tailings. In addition, mycorrhizal inoculation reduced the concentration of these metals in shoots regardless of fly ash amendments. Overall, combined mycorrhizal inoculation and fly ash amendment enhanced the establishment of A. luederitzii in heavy metal-contaminated soils by reducing the heavy metal availability and metal uptake, thus increasing the survival and dry matter yield of plants.
Collapse
Affiliation(s)
- Venecio U Ultra
- Department of Earth and Environmental Sciences, Faculty of Science, Botswana International University of Science and Technology, Palapye, Botswana.
| | - Trust Manyiwa
- Department of Earth and Environmental Sciences, Faculty of Science, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
5
|
Zhou W, Lu X, Qi C, Yang M. Utilisation of ultrasonic treatment to improve the soil amelioration property of coal fly ash. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111311. [PMID: 32871465 DOI: 10.1016/j.jenvman.2020.111311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Environment-friendly disposal of coal fly ash (CFA) is essential for sustainable development and cleaner production of electricity in thermal power plants. Although CFA has been employed for soil amelioration, direct application of CFA to soil may pose risks such as heavy metal contamination. This study investigated recycling of CFA through a novel method, which employs the ultrasonic treatment of CFA before its application. Physico-chemical properties of refuse dump soil and CFA were analysed. Subsequently, the effect of ultrasonic treatment on the physico-chemical properties of CFA was investigated. Different ultrasonic parameters (ultrasonic frequency, time interval, and temperature) were studied using response surface methodology. Finally, plant growth experiments were conducted to verify the feasibility of using ultrasonically treated CFA (UTCFA) for soil amelioration. The results show that untreated CFA cannot be used for soil amelioration due to its unsuitable high pH (10.20) and threatening concentrations of trace elements (6.80 mg/kg for Cadmium and 109.75 mg/kg for Arsenic). Ultrasonic treatment increases the soil amelioration properties of CFA by decreasing pH (to 8.50-9.20), decreasing concentrations of Cadmium and Arsenic (satisfying GB 15618-2018), and improving the water-holding capacity of CFA (reducing water loss). Plant indicators confirm the feasibility of using UTCFA for soil amelioration and suggest that the optimum UTCFA proportion is 20%. This study is a benchmark for the utilisation of ultrasonic treatment to improve the soil amelioration properties of CFA.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China; School of Mines, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xiang Lu
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China; School of Mines, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chongchong Qi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; School of Civil, Environmental and Mining Engineering, University of Western Australia, Perth, 6009, Australia.
| | - Meng Yang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China; School of Mines, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
6
|
Usmani Z, Kumar V, Gupta P, Gupta G, Rani R, Chandra A. Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Sci Rep 2019; 9:10455. [PMID: 31320739 PMCID: PMC6639538 DOI: 10.1038/s41598-019-46821-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/05/2019] [Indexed: 11/09/2022] Open
Abstract
It is reported that coal consumption in the Asia-Pacific region is going to increase to about 87.2 percent by 2035. Management of coal combustion residues (CCRs) generated by industries is a major bottleneck towards handling the repercussions of coal usage. The present study investigates a management technique for these potentially hazardous wastes by means of vermicomposting. In the present investigation, studies were made on the effects of various concentrations of vermicomposted fly ash (VCF) added to agricultural soil, on the growth and yield of tomato (Lycopersicon esculentum Mill.) and brinjal (Solanum melongena L.) plants. The toxicity of trace elements in VCF were estimated using coefficient of pollution and potential ecological risk index, which revealed no apparent risks to the environment. A gradual increase in VCF concentrations in the agricultural soil improved the physico-chemical properties, enzymatic activities, microbial biomass, carbon and microbial population upto 90 days after sowing of seeds. The VCF amendments significantly (p < 0.05) improved the soil quality (2.86% nitrogen and 1.05% Phosphorous) and germination percentage (82.22%) of seeds in L. esculentum and also in S. melongena. The results of this study reveal that, CCRs can be effectively managed in agriculture specially in developing economies.
Collapse
Affiliation(s)
- Zeba Usmani
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India.
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
| | - Gauri Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
| | - Rupa Rani
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
| | - Avantika Chandra
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Center of Mining Environment, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, Jharkhand, India
| |
Collapse
|
7
|
Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Sci Rep 2018; 8:17324. [PMID: 30470791 PMCID: PMC6251934 DOI: 10.1038/s41598-018-35762-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
The conversion of monoculture rubber (Hevea brasiliensis) plantations into rubber-based agroforestry systems has become a common trend in forestry management in the past few decades. Rubber–Flemingia macrophylla (a leguminous shrub) systems are popular in southwestern China’s Xishuangbanna region. The biogeochemical cycles of soil carbon and nitrogen in forests are mainly affected by their fractions. This study investigated the effect of introducing Flemingia macrophylla to rubber plantations of different ages on soil carbon and nitrogen fractions. The experimental treatments included R1 (young rubber plantation), RF1 (young rubber–Flemingia macrophylla system), R2 (mature rubber plantation) and RF2 (mature rubber–Flemingia macrophylla system). The results showed that the introduction of Flemingia macrophylla to rubber plantations of different ages significantly changed soil carbon and nitrogen fractions, improved soil labile organic carbon and nitrogen contents, and ameliorated soil environments. The average soil microbial biomass organic carbon, nitrogen and nitrate-nitrogen in the 0–10 cm soil layer during the experimental period was 38.9%, 55.5%, and 214.7% higher in RF1 than R1, respectively, and 22.1%, 22.2%, and 652.2% higher in RF2 than R2, respectively. Therefore, Flemingia macrophylla can be used as an alternative interplanted tree species within rubber plantations in similar environments of southeastern Asia.
Collapse
|
8
|
Development and application of EST-SSRs markers for analysis of genetic diversity in erect milkvetch (Astragalus adsurgens Pall.). Mol Biol Rep 2018; 46:1323-1326. [PMID: 30443824 DOI: 10.1007/s11033-018-4484-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Erect milkvetch (Astragalus adsurgens Pall.) is a major legume forage plant widely grown in Northern China. However, the lack of molecular markers has limited its research into its genetic diversity and work on germplasm improvement. In this study, a total of 39,163 EST-SSR loci were identified from 30,262 unigene sequences in the erect milkvetch transcriptome using Illumina sequencing. Moreover, 22,367 EST-SSR primer pairs (PPs) were successfully designed. In addition, 100 PPs were synthesized and preliminarily screened in two accessions; of these, 90 were determined to be clear and stable EST-SSR markers. Fifty-one PPs were randomly selected in order to assess the genetic diversity of 27 erect milkvetch accessions. The average polymorphism information content of the 51 PPs was 0.682. Greater genetic diversity was detected in accessions from Inner Mongolia and in the group of landrace and wild erect milkvetch accessions. This study provides an important resource for germplasm improvement and genetic diversity analysis in erect milkvetch.
Collapse
|