1
|
He X, Wang Q, Jin Y, Chen Y, Huang L. Properties of biochar colloids and behaviors in the soil environment: Influencing the migration of heavy metals. ENVIRONMENTAL RESEARCH 2024; 247:118340. [PMID: 38309559 DOI: 10.1016/j.envres.2024.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Biochar pyrolyzed by biomass shows excellent application prospects for heavy metal (HM) remediation, but a part of biochar can be inevitably broken into micro- and nano-sized biochar colloids (BCs) under biological and physicochemical actions in soil. BCs derived in the process of remediation have rough surface, rich elemental species and contents, and multiple functional groups, which are similar to biochar. However, BCs have some unique colloidal properties because of their micro and nano scale size. Due to these properties, BCs exhibit strong mobilities in the soil environment, and the mobilities may be influenced by a combination of colloidal properties of BCs and environmental factors including soil colloids and other soil environmental conditions. In addition, BCs may have affinity effects on HMs through electrostatic adsorption, ion exchange, surface complexation, precipitation/co-precipitation, and redox because of the properties such as large specific surface area, and rich oxygen-containing functional groups and minerals on the surface. This review summarizes the physicochemical and migratory properties of BCs, and the internal and external factors affecting the migration of BCs in the soil environment, and the possible effects of BCs on HMs are high-lighted. This review provides a theoretical basis for the optimization of soil contaminated with HMs after remediation using biochar. Notably, the innovative idea that BCs may influence the presence of HMs in soil needs to be further confirmed by more targeted detection and analysis methods in future studies to prevent the possible environmental toxicities of the lateral and vertical diffusion of HM caused by BCs in soil.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yinie Jin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China.
| |
Collapse
|
2
|
Fregolente LG, Rodrigues MT, Oliveira NC, Araújo BS, Nascimento ÍV, Souza Filho AG, Paula AJ, Costa MCG, Mota JCA, Ferreira OP. Effects of chemical aging on carbonaceous materials: Stability of water-dispersible colloids and their influence on the aggregation of natural-soil colloid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166835. [PMID: 37678531 DOI: 10.1016/j.scitotenv.2023.166835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems). A chemical composition (C, H, N, and O content) change in CMs due to the chemically induced aging was observed along with minor structural modifications. Chemical aging could increase the amount of oxygen functional groups for both biochar and hydrochar, though in a different level depending on the methodology applied. In this sense, hydrochar was more susceptive to chemical oxidation than biochar. The effectiveness of chemical aging treatments for biochar increased in the order of water < acid < hydrogen peroxide, whereas for hydrochar the order was water < hydrogen peroxide < acid. While the increase in surface oxidation improved the biochar colloidal stability in water medium at different ionic strengths (single systems), the stability and critical coagulation concentration (CCC) slightly changed for hydrochar. Natural-soil clay (NSC) interactions with oxidized carbonaceous material colloids (binary systems) enhanced NSC stability, which is less likely to aggregate. Therefore, the aging of carbonaceous materials modifies the interaction and dynamics of soil small particles, requiring far more attention to the environmental risks due to their application over time.
Collapse
Affiliation(s)
- Laís G Fregolente
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil.
| | - Maria T Rodrigues
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Naiara C Oliveira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Bruno Sousa Araújo
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Ícaro V Nascimento
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Antonio G Souza Filho
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Amauri J Paula
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Ilum School of Science, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo State, Brazil
| | - Mirian C G Costa
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Jaedson C A Mota
- Soil Science Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil
| | - Odair P Ferreira
- Physics Department, Universidade Federal do Ceará, Fortaleza, Ceará State postcode 60455-900, Brazil; Laboratório de Materiais Funcionais Avançados (LaMFA), Chemistry Department, Universidade Estadual de Londrina, Londrina, Paraná State postcode 86057-970, Brazil
| |
Collapse
|
3
|
Chen Y, Tan Y, Su L, Zou W, Wu B, Gao W, Hu Z, Li A, Zhou Z, Zhou N. Oxygen-limited pyrolysis and incineration impact on biochar transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105247-105258. [PMID: 37710062 DOI: 10.1007/s11356-023-29813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
At present, studies on biochar transport have focused on biochar obtained by oxygen-limited pyrolysis, which may differ from conventional biochar produced by incineration in nature. This work investigated the transport and retention mechanisms of three types of oxygen-limited pyrolytic biochar and three types of traditional biochar in saturated porous media. The results showed that the specific surface area of the three oxygen-limited pyrolysis biochar (180-200 m2·g-1) was higher than that of the traditional biochar (50-60 m2·g-1). Therefore, the retention capacity of pyrolytic biochar is strong and the permeability is less than 0.1. The absolute value of the zeta potential of traditional biochar is greater than 30 mV, and the electrostatic repulsion generated is stronger, with a peak penetration rate of 0.16. Moreover, the zeta potential of biochar and traditional biochar is regulated by pH value and ionic strength. In acidic conditions or solutions with high ionic strength, the zeta potentials of the six types of biochar changed to about - 15 mV, and the second minimum value was less than 0, indicating that there was a tendency for sedimentation. This study provides a new perspective for assessing the transport and environmental risks of biochar in the environment.
Collapse
Affiliation(s)
- Yuzhen Chen
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Tan
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wangqi Zou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Binhai Wu
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbin Gao
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhan Hu
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Aoxuan Li
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China.
- College of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Nascimento ÍVD, Fregolente LG, Pereira APDA, Nascimento CDVD, Mota JCA, Ferreira OP, Sousa HHDF, Silva DGGD, Simões LR, Souza Filho AG, Costa MCG. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: A review. ENVIRONMENTAL RESEARCH 2023; 233:116489. [PMID: 37385417 DOI: 10.1016/j.envres.2023.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.
Collapse
Affiliation(s)
- Ícaro Vasconcelos do Nascimento
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Laís Gomes Fregolente
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil
| | - Arthur Prudêncio de Araújo Pereira
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil.
| | | | - Jaedson Cláudio Anunciato Mota
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Odair Pastor Ferreira
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil; State University of Londrina, Department of Chemistry, Highway Celso Garcia Cid (445) - km 380, Londrina, Paraná, ZIP code 86050-482, Mailbox 6001, Brazil
| | - Helon Hébano de Freitas Sousa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Débora Gonçala Gomes da Silva
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - Lucas Rodrigues Simões
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| | - A G Souza Filho
- Federal University of Ceará, Department of Physics, Campus do Pici, Fortaleza, Ceará, ZIP code 60455-900, Brazil.
| | - Mirian Cristina Gomes Costa
- Federal University of Ceará, Soil Science Department, 2977 Av. Mister Hull, Campus do Pici, Fortaleza, Ceará, ZIP code 60356-001, Brazil
| |
Collapse
|
5
|
Wan Q, Liu B, Zhang M, Zhao M, Dai Y, Liu W, Ding K, Lin Q, Ni Z, Li J, Wang S, Jin C, Tang Y, Qiu R. Co-transport of biochar nanoparticles (BC NPs) and rare earth elements (REEs) in water-saturated porous media: New insights into REE fractionation. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131390. [PMID: 37060752 DOI: 10.1016/j.jhazmat.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The present study investigated the co-transport behavior of three REEs3+ (La3+, Gd3+, and Yb3+) with and without biochar nanoparticles (BC NPs) in water-saturated porous media. The presence of REEs3+ enhanced the retention of BC NPs in quartz sand (QS) due to decreased electrostatic repulsion between BC NPs and QS, enhanced aggregation of BC NPs, and the contribution of straining. The distribution coefficients (KD) in packed columns in the co-transport of BC NPs and three REEs3+ were much smaller than in batch experiments due to the different hydrodynamic conditions. In addition, we, for the first time, found that REE fractionation in the solid-liquid phase occurred during the co-transport of REEs3+ in the presence and absence of BC NPs. Note that the REE fractionation during the co-transport, which is helpful for the tracing application during earth surface processes, was driven by the interaction of REEs3+ with QS and BC NPs. This study elucidates novel insights into the fate of BC NPs and REEs3+ in porous media and indicates that (i) mutual effects between BC NPs and REE3+ should be considered when BC was applied to REE contaminated aquatic and soil systems; and (ii) REE fractionation provides a useful tool for identifying the sources of coexisting substances.
Collapse
Affiliation(s)
- Quan Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Beibei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Man Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenshen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yun J, Liang Y, Muhammad Y, Liu F, Dong Y, Wang S. Influence of biochar incorporation on the collector surface properties and the transport of silver nanoparticles in porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116943. [PMID: 36516715 DOI: 10.1016/j.jenvman.2022.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Biochar is widely used as a soil amendment due to its environmental friendliness and convenient availability. It is believed that the presence of biochar in porous media can influence the transport of colloidal and solute contaminants. In this study, different mass ratios of biochar were added to packed sand with a rough or smooth surface to determine the significance of biochar on the retention and release of silver nanoparticles (AgNPs). The results showed that biochar reduced the transport of AgNPs in rough and smooth sands under different solution conditions. A small amount of biochar (0.1-1% in mass percentage) can significantly enhance the retention of AgNPs due to the alteration in collector surface roughness and chemical heterogeneity that potentially reduce the energy barrier for retention. Furthermore, the retention of AgNPs in rough sand was always higher than that in smooth sand under the same experimental conditions. The presence of biochar also produced nonmonotonic retention of AgNPs mainly due to the changes in collector surface roughness. Additionally, the AgNPs retention associated with biochar tended to be irreversible due to the charge heterogeneity, while the reversible retention could mainly occur on a rough sand surface via shallow primary minima. This work highlights the significance of collector surface roughness that needs to be considered in the process of biochar amendment for practical applications to effectively immobilize colloidal contaminants in soil or groundwater.
Collapse
Affiliation(s)
- Jinhu Yun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, 530007, China.
| | - Yaseen Muhammad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fei Liu
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Yawen Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, 530007, China; College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Guo Y, Tang N, Guo J, Lu L, Li N, Hu T, Zhu Z, Gao X, Li X, Jiang L, Liang J. The aggregation of natural inorganic colloids in aqueous environment: A review. CHEMOSPHERE 2023; 310:136805. [PMID: 36223821 DOI: 10.1016/j.chemosphere.2022.136805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Chemical Fractionations of Lead and Zinc in the Contaminated Soil Amended with the Blended Biochar/Apatite. Molecules 2022; 27:molecules27228044. [PMID: 36432143 PMCID: PMC9698809 DOI: 10.3390/molecules27228044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Heavy metal contamination in agricultural land is an alarming issue in Vietnam. It is necessary to develop suitable remediation methods for environmental and farming purposes. The present study investigated the effectiveness of using peanut shell-derived biochar to remediate the two heavy metals Zn and Pb in laboratory soil assays following Tessier’s sequential extraction procedure. The concentration of heavy metals was analyzed using Inductively coupled plasma mass spectrometry (ICP-MS). This study also compared the effectiveness of the blend of biochar and apatite applied and the mere biochar amendment on the chemical fractions of Pb and Zn in the contaminated agricultural soil. Results have shown that the investigated soil was extremely polluted by Pb (3047.8 mg kg−1) and Zn (2034.3 mg kg−1). In addition, the pH, organic carbon, and electrical conductivity values of amended soil samples increased with the increase in the amendment’s ratios. The distribution of heavy metals in soil samples was in the descending order of carbonate fraction (F2) > residue fraction (F5) > exchangeable fraction (F1) > Fe/Mn oxide fraction (F3) > organic fraction (F4) for Pb and F5 ≈ F2 > F1 > F3 > F4 for Zn. The peanut shell-derived biochar produced at 400 °C and 600 °C amended at a 10% ratio (PB4:10 and PB6:10) could significantly reduce the exchangeable fraction Zn from 424.82 mg kg−1 to 277.69 mg kg−1 and 302.89 mg kg−1, respectively, and Pb from 495.77 mg kg−1 to 234.55 mg kg−1 and 275.15 mg kg−1, respectively, and immobilize them in soil. Amending the biochar and apatite combination increased the soil pH, then produced a highly negative charge on the soil surface and facilitated Pb and Zn adsorption. This study shows that the amendment of biochar and biochar blended with apatite could stabilize Pb and Zn fractions, indicating the potential of these amendments to remediate Pb and Zn in contaminated soil.
Collapse
|
9
|
Lian F, Gu S, Han Y, Wang Z, Xing B. Novel Insights into the Impact of Nano-Biochar on Composition and Structural Transformation of Mineral/Nano-Biochar Heteroaggregates in the Presence of Root Exudates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9816-9825. [PMID: 35723509 DOI: 10.1021/acs.est.2c02127] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple lines of existing evidence indicate that natural organic matter (NOM) could protect poorly crystalline Fe(III) (oxyhydr)oxides from Fe(II)-catalyzed mineral transformation. Conversely, we find that nano-sized biochar (nano-BC), a pyrogenic form of NOM, promotes the phase transformation of ferrihydrite (Fh) in nano-BC/Fh heteroaggregates in the presence of aqueous Fe(II) and rice root exudates. The nano-BC/Fh heteroaggregates are composed of a core-shell like structure where the inner-layered nano-BC is more compacted and plays the dominant role in accelerating the phase transformation of Fh relative to that in the outer sphere. The extent of phase transformation is more regulated by the reversible redox reactions between quinone and hydroquinone in nano-BC than the electron transfer via its condensed aromatic structures. Furthermore, the reductive organic acids in root exudates contribute to the mineral transformation of nano-BC/Fh associations by donating electrons to Fe(III) through nano-BC. Our results suggest that heteroaggregates between nano-BC and Fe minerals are subjected to partial dissociation during their co-transport, and the stably attached nano-BC is favorable to the phase transformation of poorly crystalline Fe minerals (e.g., Fh), which might have profound implications on biogeochemical cycles of carbon and Fe in the prevailing redox environments.
Collapse
Affiliation(s)
- Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yaru Han
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Liu X, Song P, Lan R, Zhao R, Xue R, Zhao J, Xing B. Heteroaggregation between graphene oxide and titanium dioxide particles of different shapes in aqueous phase. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128146. [PMID: 35016120 DOI: 10.1016/j.jhazmat.2021.128146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) inevitably interacts with engineered and/or natural nanoparticles (NPs) after releasing into aquatic environments. It is observed that GO could form heteroaggregates with differently shaped TiO2 NPS at pHs 4.0 and 7.0 rather than pH 10.0. Optimal pHs for the maximal heteroaggregation were around 6.63 and 4.92 for TiO2 spheres and fibers, respectively, which was dominated by electrostatic attraction. The optimal concentration ratio for TiO2 spheres was 10 times higher than TiO2 fibers, due to cross-linking configuration and stronger van der Waals force of TiO2 fibers with GO. Pre-homoaggregation of TiO2 NPs could promote subsequent heteroaggregation while the promotion was negligible at high ionic strength (e.g., > critical coagulant concentrations), and a longer pre-homoaggregation time showed a stronger promotion (750 s > 150 s > 0 s). Natural organic matter (NOM) obviously inhibited GO-TiO2 heteroaggregation at pH 4.0 compared with pH 7.0 due to stronger steric hindrance. Moreover, strong disturbance (e.g., sonication) could break down the heteroaggregates, and the disaggregation and re-aggregation processes were shape-independent. This work provides new insights into the role of NPs shapes and homoaggregation on the interaction of GO with both engineered and natural particles/minerals, and the fate of GO in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Pingping Song
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Department of Environmental Protection, Shandong Steel Rizhao Co., 276800 Rizhao, PR China
| | - Ruyi Lan
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Rubi Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Runze Xue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
11
|
Liu G, Pan M, Song J, Guo M, Xu L, Xin Y. Investigating the effects of biochar colloids and nanoparticles on cucumber early seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150233. [PMID: 34520920 DOI: 10.1016/j.scitotenv.2021.150233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Understanding about the influence of biochar colloidal and nanoscale particles on plant is limited. We therefore extracted the colloids and nanoparticles from hot pepper stalk biochar (CB600 and NB600), and examined physiological responses of cucumber early seedlings through hydroponic culture and pot experiment. CB600 had no significant effect on shoot at 500 mg/L, while it decreased root biomass and inhibited lateral root development. The biomass and root length, area, and tip number dramatically reduced after 500 mg/L NB600 treatment. Water content of NB600-exposed shoot was lower, suggesting water uptake and transfer might be hindered. For resisting exposure stress, root hair number and length increased. Even, the study observed swelling and hyperplasia of root hairs after direct exposure of CB600 and NB600. These adverse effects might be associated with the contact and adhesion of CB600 and NB600 with sharp edges to root surface. For a low concentration of 50 mg/L, NB600 did not influence cucumber early seedlings. In soil, CB600 and NB600 did not cause inhibitory effect at relatively high contents of 500 mg/kg and 2000 mg/kg. This study provides useful information for understanding phytotoxicity and environmental risk of biochar colloids and nanoparticles, which has significant implications with regard to biochar application safety.
Collapse
Affiliation(s)
- Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Meiqi Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengyao Guo
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Chen X, Wu W, Han L, Gu M, Li J, Chen M. Carbon stability and mobility of ball milled lignin- and cellulose-rich biochar colloids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149759. [PMID: 34464793 DOI: 10.1016/j.scitotenv.2021.149759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have explored the transport mechanism of biochar colloids in porous medium. However, the effect of feedstock biopolymer compositions and pyrolytic temperature on carbon stability and mobility of biochar colloids is limited. This study prepared four ball milled biochar colloids pyrolyzed from lignin-rich pinewoods and cellulose-rich corn stalks under 300 °C and 500 °C (termed as PW300, PW500, CS300, CS500) and analyzed their differences in the chemical stability and transport behaviors. The results indicated that high contents of lignin in biomass and pyrolytic temperature could enhance the compact aromatic structures of biochar colloids characterized by the elemental composition, FTIR, 13C NMR and XRD analyses. Therefore, PW500 with the strongest chemical stabilities (least C loss of 13%), electronegativity (-44.9 mV vs. -41.6-28.3 mV) and smallest hydrodynamic diameter (608.7 nm vs. 622-997.2 nm) was obtained under ball milling. Moreover, both the critical coagulation concentrations (CCC) and the maximum relative effluent concentration (C/C0) with the NaCl ionic strength of 1 mM were demonstrated to be in the increase order of CS300 (76.1 mM, 70%) < PW300 (183.1 mM, 78%) < CS500 (363.9 mM, 89%) < PW500 (563.1 mM, 95%), which suggested stronger colloidal stability and mobility of PW biochar colloids than those of CS biochar colloids. In addition, the C/C0 for CS300, PW300 and CS500 were about 7.3%-36% lower than that for PW500 with the NaCl ionic strength increasing to 50 mM indicated the notable superiority in the mobility of PW500. These findings can provide new insights toward understanding the transformation and migration, and evaluating the environmental risk of biochar colloids.
Collapse
Affiliation(s)
- Xueyan Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenpei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingyue Gu
- Nanjing Kaiye Environmental Technology Co Ltd, 8 Yuanhua Road, Innovation Building 106, Nanjing University Science Park, Nanjing 210034, China
| | - Jing Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
13
|
Xiang L, Liu S, Ye S, Yang H, Song B, Qin F, Shen M, Tan C, Zeng G, Tan X. Potential hazards of biochar: The negative environmental impacts of biochar applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126611. [PMID: 34271443 DOI: 10.1016/j.jhazmat.2021.126611] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been widely used as an environmentally friendly material for soil improvement and remediation, water pollution control, greenhouse gas emission reduction, and other purposes because of its characteristics such as a large surface area, porous structure, and abundant surface O-containing functional groups. However, some surface properties (i.e., (i) some surface properties (i.e., organic functional groups and inorganic components), (ii) changes in pH), and (iii) chemical reactions (e.g., aromatic C ring oxidation) that occur between biochar and the application environment may result in the release of harmful components. In this study, biochars with a potential risk to the environment were classified according to their harmful components, surface properties, structure, and particle size, and the potential negative environmental effects of these biochars and the mechanisms inducing these negative effects were reviewed. This article presents a comprehensive overview of the negative environmental impacts of biochar on soil, water, and atmospheric environments. It also summarizes various technical methods of environment-related risk detection and evaluation of biochar application, thereby providing a baseline reference and guiding significance for future biochar selection and toxicity detection, evaluation, and avoidance.
Collapse
Affiliation(s)
- Ling Xiang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
14
|
Wang J, Zhao X, Wu F, Tang Z, Zhao T, Niu L, Fang M, Wang H, Wang F. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO 2) in synthetic and natural waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147019. [PMID: 34088034 DOI: 10.1016/j.scitotenv.2021.147019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The homoaggregation of titanium dioxide nanoparticles (nTiO2) and their heteroaggregation with ubiquitous natural clay colloids are crucial processes affecting the environmental transport and fate of nTiO2, whereas the latter has received less attention. In this study, the effects of pH, electrolytes, natural organic matter (NOM), and montmorillonite on the homo- and heteroaggregation of nTiO2 were systematically investigated. The isoelectric point of bare nTiO2 was 6.98, whereas TiO2-montmorillonite mixtures remained negative charged due to the reduced particle surface potential by heteroaggregation. Homoaggregation of nTiO2 was mainly affected by anions, whereas heteroaggregation in TiO2-montmorillonite mixtures was mainly affected by cations. Heteroaggregation between nTiO2 and montmorillonite involved the adsorption of CC/CH. Intensive aggregation of nTiO2 was observed with 4 mg/L montmorillonite, whereas with 20 mg/L montmorillonite, the aggregation was significantly inhibited by the over-coverage of montmorillonite. NOM was attached to the surface of nTiO2 with the adsorption of functional groups involving CC/CH and OCO. The addition of NOM effectively reduced the homo- and heteroaggregation of nTiO2, and the stabilizing effect was enhanced with the increased molecular weight and aromatic/aliphatic fraction in NOM. Besides electrostatic repulsion, steric repulsion could also be one of the main stabilization mechanisms of NOM. With Ca2+ in the solutions, the stabilizing effect of NOM was significantly weakened through cation bridging. The addition of montmorillonite could facilitate the aggregation of nTiO2 in the presence of NOM. The homo- and heteroaggregation of nTiO2 were also observed in 7 different types of natural waters. Homoaggregation predominated in waters with high ionic strength and low NOM contents (seawater and groundwater), whereas heteroaggregation predominated in surface freshwater and wastewater systems. The results reflect the instability of nTiO2 in natural aquatic environments and the potential risk they pose to benthic organisms.
Collapse
Affiliation(s)
- Junyu Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongzhan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
15
|
Silva LFO, Lozano LP, Oliveira MLS, da Boit K, Gonçalves JO, Neckel A. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. MARINE POLLUTION BULLETIN 2021; 168:112425. [PMID: 33940370 DOI: 10.1016/j.marpolbul.2021.112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlight the immediacy and importance of this research for the areas of marine biology, urbanism, engineering and geosciences, applied in the Caribbean Sea. The general objective of this study is to evaluate the use of advanced methods for the determination of toxic nanoparticles, which can directly affect the development of marine organisms in the aquatic ecosystem in waters of the Caribbean Sea, favoring the construction of future international public policies with the elaboration of projects capable of mitigating these levels of contamination. The morphology and structure of nanoparticles were analyzed by emission scanning electron microscope with a high-resolution electron microscope. The nanoparticles smaller than 97 nm were identified in different proportions. The morphological analyses indicated nanoparticles' presence in the form of nanotubes, nanospheres, and nanofibers, which were shown in an agglomerated form. The presence of potentially hazardous elements, such as As, Cd, Pb, Mg, Ni and V were verified. In addition, the presence of asbestos in the form of minerals was confirmed, and that of titanium dioxide was found in large quantities. The results provide new data and emphasize the possible consequences to the in the Caribbean Sea, with the identification of dangerous elements (As, Cb, Pb, Hg, Ni and V), harmful to the marine ecosystem. Therefore, there is a need for strict control to reduce contamination of the Caribbean Sea and avoid risks to the ecosystem and public health, through suggestions of international public policies, through constant monitoring and the application of environmental recovery projects in this marine estuary.
Collapse
Affiliation(s)
- Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Liliana P Lozano
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru
| | - Kátia da Boit
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Janaína O Gonçalves
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900 Santa Maria, RS, Brazil.
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304-, Passo Fundo, RS 99070-220, Brazil
| |
Collapse
|
16
|
Gui X, Song B, Chen M, Xu X, Ren Z, Li X, Cao X. Soil colloids affect the aggregation and stability of biochar colloids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145414. [PMID: 33736183 DOI: 10.1016/j.scitotenv.2021.145414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The stability of biochar colloids plays an important role in the transport and fate of contaminants and nutrients in soil. This study aimed to investigate the effects of main soil components, kaolin (Kao), goethite (Goe), and humic acid (HA) colloids on the aggregation kinetics of biochar colloids derived from dairy manure (DM), sewage sludge (SS), and wheat straw (WS). The WS biochar colloid had the highest critical coagulation concentration (CCC) (624 mM) than that of SS (200 mM) and DM (75 mM) due to its richest hydroxyl and carboxyl groups, showing the highest stability. Kao markedly improved the stability of DM and SS biochar colloids with 171% and 52.5% increase of CCC, respectively, by increasing the electrostatic repulsion of the system. However, the WS biochar colloid became more aggregated in the presence of Kao since the hydroxyl and carboxyl functional groups in WS biochar colloid could complex with Kao, generating electrostatic shielding. Goe could rapidly combine with biochar colloids via electrostatic attraction, resulting in the aggregation of SS and WS, while the aggregation rate of DM/Goe mixed colloids was inhibited. The HA increased the electrostatic repulsion of all biochar colloids through adsorbed on the surface of biochar colloids, resulting in the increased steric hindrance and stability of biochar colloids, with the CCC increased from 75 to 624 mM to 827-1012 mM. Our findings reveal that soil kaolin, goethite, and humic acid colloids have remarkable effects on the stability and aggregation of biochar colloid, which will advance understanding of the potential environmental fate and behaviors of biochar colloids.
Collapse
Affiliation(s)
- Xiangyang Gui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Bingqing Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
17
|
Meng Q, Jin L, Cheng L, Fang J, Lin D. Release and sedimentation behaviors of biochar colloids in soil solutions. J Environ Sci (China) 2021; 100:269-278. [PMID: 33279039 DOI: 10.1016/j.jes.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
The release of biochar colloids considerably affects the stability of biochar in environment. Currently, information on the release behavior and suspension stability of biochar colloids in real soil solutions is scarce. In this study, 20 soils were collected from different districts in China and the release behavior of biochar colloids and their suspension stability in soil solutions were systematically examined. The results showed that both pyrolysis temperature and biomass source had important effects on the formation of biochar colloids in soil solutions. The formation amount of biochar colloids from low pyrolysis temperatures (400 °C) (average amount of 9.33-16.41 mg/g) were significantly higher than those from high pyrolysis temperatures (700 °C) (average amount of less than 2 mg/g). The formation amount of wheat straw-derived biochar colloids were higher than those of rice straw-derived biochar colloids probably due to the higher O/C ratio in wheat-straw biochar. Further, biochar colloidal formation amount was negatively correlated with comprehensive effect of dissolved organic carbon, Fe and Al in soil solutions. The sedimentation curve of biochar colloids in soil solutions is well described by an exponential model and demonstrated high suspension stability. Around 40% of the biochar colloids were maintained in the suspension at the final sedimentation equilibrium. The settling efficiency of biochar colloids was positively correlated with comprehensive effect of the ionic strength and K, Ca, Na, and Mg contents in soil solutions. Our findings help promote a deeper understanding of biochar loss and stability in the soil-water environment.
Collapse
Affiliation(s)
- Qingkang Meng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Liang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Leilei Cheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Li X, He E, Xia B, Van Gestel CAM, Peijnenburg WJGM, Cao X, Qiu H. Impact of CeO 2 nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: Importance of surface functionalization and solution chemistry. WATER RESEARCH 2020; 186:116324. [PMID: 32871291 DOI: 10.1016/j.watres.2020.116324] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 05/20/2023]
Abstract
The increasing application of plastics is accompanied by increasing concern over the stability and potential risk of nanoplastics. Heteroaggregation with metal-based nanoparticles (e.g., CeO2-NPs) is critical to the environmental mobility of nanoplastics, as they are likely to be jointly emitted to the aquatic environment. Here, time-resolved dynamic light scattering was employed to evaluate the influence of CeO2-NPs on the aggregation kinetics of differentially surface functionalized polystyrene nanoplastics (PS-NPs) in various water types. Natural organic matters and ionic strength were dominating factors influencing the heteroaggregation of PS-NPs and CeO2-NPs in surface waters. The critical coagulation concentrations of PS-NPs were dependent on their surface coatings, which decreased in the presence of CeO2-NPs due to electrostatic attraction and/or specific adsorption. Incubation of PS-NPs and CeO2-NPs under different pH confirmed the importance of electrostatic force in the aggregation of PS NPs. A relatively low humic acid (HA) concentration promoted the heteroaggregation of NH2-coated PS-NPs and CeO2-NPs because the introduction of a HA surface coating decreased the electrostatic hindrance. At high HA concentrations, the aggregation was inhibited by steric repulsion. The combined effects of high efficiency of double layer compression, bridging and complexation contributed to the high capacity of Ca2+ in destabilizing the particles. These findings demonstrate that the environmental behavior of nanoplastics is influenced by the presence of other non-plastic particles and improve our understanding of the interactions between PS-NPs and CeO2-NPs in complex and realistic aqueous environments.
Collapse
Affiliation(s)
- Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Xia
- Anhui Academy of Environmental Science Research, Hefei 230022, China
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, 1081HV, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, The Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720BA, The Netherlands
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Qian X, Ma J, Weng L, Chen Y, Ren Z, Li Y. Influence of agricultural organic inputs and their aging on the transport of ferrihydrite nanoparticles: From enhancement to inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137440. [PMID: 32135331 DOI: 10.1016/j.scitotenv.2020.137440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Organic matter effectively regulates nanoparticles transport. However, little is known about the effect of agricultural organic inputs on the transport of ferrihydrite nanoparticles (FHNPs) during aging. In this study, columns were filled with sand mixed with varying proportions of pristine, water-processing, or alkali-processing biochar or swine manure and used to simulate the release of organic matter and changes in surface roughness of sand grains during field aging. The influence of these factors on FHNPs transport was investigated using column experiments. The dissolved organic matter (DOM) (0.008-24.8 mg L-1) released from agricultural organic inputs decreased the zeta potential of the FHNPs from 30.8 mV to 14.6--48.9 mV and further caused electrostatic repulsion, osmotic repulsion, and elastic-steric repulsion between FHNPs and mixed sand, thus enhancing FHNPs transport. Ferrihydrite nanoparticles transport increased with increasing content of biochar and swine manure due to the increased amount of DOM. However, with the presence of organic inputs, surface roughness up to a certain degree (the increase in specific surface area up to 4.6 m2) became the dominant inhibition factor affecting FHNPs transport. After DOM release, agricultural organic inputs decreased the enhancement of FHNPs transport; with the increase input, their rougher surface gradually increased inhibition of FHNPs transport. The strongest FHNPs retention in the alkali-processing biochar (0.2-10%) or swine manure (1-2%) mixed sand columns indicated that fully aged agricultural organic inputs strongly inhibited FHNPs transport. Our findings provided novel insights into the critical influence of agricultural organic inputs and their aging on FHNPs transport, which changed gradually from enhancement to inhibition gradually.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zongling Ren
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Fang J, Cheng L, Hameed R, Jin L, Wang D, Owens G, Lin D. Release and stability of water dispersible biochar colloids in aquatic environments: Effects of pyrolysis temperature, particle size, and solution chemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114037. [PMID: 32006888 DOI: 10.1016/j.envpol.2020.114037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Pathways for the physical disintegration of biochar (BC) and the release of water dispersible BC colloids (WDBC) have received much attention due to their unique impacts on carbon loss and contaminant. However, the current understanding of the mechanisms involved in WDBC formation and associated influencing factors is rather limited. This study systematically explored the effects of pyrolysis temperature, initial particle size, and solution chemistry on WDBC formation in aqueous solutions and examined the formation and colloidal stability of WDBC in natural solutions. Results showed that pyrolysis temperature determined the abrasion resistance of pyrolyzed BC, and the submicron fragment rate decreased in the order 400 °C (BC400) > 700 °C (BC700) > 200 °C (BC200). The WDBC yield decreased in the order BC400 (77.5-331 mg g-1) > BC700 (33.5-173 mg g-1) > BC200 (16.8-125 mg g-1) depending on BC size at a solution ionic strength (IS) ≤ 1 mM, which was positively correlated with the submicron fragment rate of bulk BC. With the exception of BC200, increasing IS (0.1-20 mM) and decreasing pH (3.0-10.0) significantly inhibited WDBC yield. Release and sedimentation dominated the WDBC formation processes with the former being more susceptible to solution chemistry. Derjaguin-Landau-Verwey-Overbeek interactions properly explained the effect of IS on WDBC from BC400 and BC700, while the steric resistance of abundant dissolved organic carbon on BC200 was mainly responsible for the high formation of WDBC at high IS (20-50 mM). WDBC had high colloidal stability and could form and stabilize well in natural surface waters and soil solutions, suggesting the relevant risk of long-distance migration of WDBC in environments. These findings represent new knowledge regarding the physical decomposition and the fate of BC in the environment.
Collapse
Affiliation(s)
- Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Leilei Cheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China
| | - Rashida Hameed
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, PR China
| | - Liang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dengjun Wang
- National Research Council Resident Research Associate, United States Environmental Protection Agency, Ada, OK 74820, United States
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
21
|
Li X, He E, Zhang M, Peijnenburg WJGM, Liu Y, Song L, Cao X, Zhao L, Qiu H. Interactions of CeO 2 nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121973. [PMID: 31884366 DOI: 10.1016/j.jhazmat.2019.121973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The aggregation kinetics and colloidal stability of CeO2-NPs in the presence of monovalent or divalent electrolytes, as well as inorganic (kaolin and goethite) and organic (humic acid, HA) colloids were evaluated using time-resolved dynamic light scattering, advanced spectroscopic tools, and theoretical calculations. Critical coagulation concentrations for CeO2-NPs were generally lower in CaCl2 than that in NaCl electrolyte. The negatively charged kaolin accelerated CeO2-NPs aggregation due to electrostatic attraction, whilst opposite phenomenon was observed for the positively charged goethite in NaCl solution. In CaCl2 solution, goethite destabilized CeO2-NPs because of its well-crystal structure and specific adsorption of Ca2+. The presence of 0.1 mg C/L HA decreased the surface charge of CeO2-NPs, resulting in lower critical coagulation concentrations. Increasing the HA concentration from 0.1 to 1 mg C/L improved CeO2-NPs stability, mainly via electrostatic and steric repulsion. The Ca2+-bridging and complexation contributed significantly to CeO2-NPs aggregation. Additional aggregation experiments in seven natural waters revealed that CeO2-NPs remained stable in water types with high contents of organic colloids and low levels of salts, thus having higher transport potential. These findings provided new insights into the interactive influence of naturally occurring colloids and ions on the heteroaggregation behavior and fate of CeO2-NPs.
Collapse
Affiliation(s)
- Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720 BA, the Netherlands
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Mandal S, Pu S, Shangguan L, Liu S, Ma H, Adhikari S, Hou D. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. ENVIRONMENT INTERNATIONAL 2020; 135:105374. [PMID: 31864028 DOI: 10.1016/j.envint.2019.105374] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 05/15/2023]
Abstract
Biochar-based nanocomposites with functional materials provide an excellent prospect in reactivity and stability. Most biochar reported have no reusability upon aging and offer the risk of release of immobilized components after short-term immobilization. To overcome this, we developed nano zero-valent iron (nZVI) impregnated magnetic green tea biochar (nZVI@GTBC) and studied its performance in immobilizing Pb and long-term effectiveness in the soil. The reactive nZVI units were obtained from iron oxide solution by reducing with polyphenol solution (green tea extract) and were successively stabilized by impregnation onto the remaining green tea waste matrix through co-precipitation technique. Finally, the magnetic biochar was developed from the above nZVI impregnated green tea waste through oven drying and slow pyrolysis technique in different temperature range (150-650 °C). The synthesized nZVI@GTBC biochar was characterized and studied by XRD, FTIR, Raman, UV-Vis, TG/DSC, XPS, SEM, and TEM. The nZVI@GTBC obtained with a particle size of 130 nm and surface charge of +2.8 C/m2 at 450 °C. Moreover, colloidal stability and mobility experiments were considered to explain the transport behavior and stability of bare nZVI and magnetic nZVI@GTBC in the soil. The immobilization of Pb by pristine nZVI, GTBC, and nZVI@GTBC was compared and explained under different soil pH conditions. The bioavailability of Pb content before and after immobilization was investigated through leaching experiments. Further, thirty days of soil incubation were carried out to examine different species of Pb according to the Tessier sequential extraction scheme. The study suggested that nZVI@GTBC enhanced the immobilization efficiency by 19.38% in comparison with pristine nZVI and 57.14% in comparison with bare GTBC biochar.
Collapse
Affiliation(s)
- Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Lixiang Shangguan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 401871 Frederiksberg, Denmark
| | - Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
23
|
Liu G, Zheng H, Jiang Z, Zhao J, Wang Z, Pan B, Xing B. Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10369-10379. [PMID: 30141917 DOI: 10.1021/acs.est.8b01481] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nano biochar (N-BC) attracts increasing interest due to its unique environmental behavior. However, understanding of its formation, physicochemical characteristics, and stability of N-BC is limited. We therefore examined N-BC formation from bulk biochars (B-BCs) produced from peanut shell, cotton straw, Chinese medicine residues, and furfural residues at 300-600 °C. Carbon stability and colloidal processes of nano peanut shell biochars (N-PBCs) were further investigated. N-BCs formed from pore collapse and skeleton fracture during biomass charring, breakup due to grinding, and sonication. Amorphous fraction in B-BCs was more readily degraded into N-BCs than graphitic component. The sonication-formed N-PBCs contained 19.2-31.8% higher oxygen and fewer aromatic structures than the bulk ones, leading to lower carbon stability, but better dispersibility in water. Heteroaggregation of N-PBCs with goethite/hematite destabilized initially and then restabilized with increasing concentrations of N-PBCs. Compared with stacked complexes of N-PBCs-hematite, the association of goethite with N-PBCs could form interlaced heterostructures, thus shielding positive charges on goethite and causing greater heteroaggregation. These findings are useful for better understanding the formation of N-BCs and their environmental fate and behavior in soil and water.
Collapse
Affiliation(s)
- Guocheng Liu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , China
| | - Hao Zheng
- College of Environmental Science and Engineering, and Key Laboratory of Marine Environment and Ecology, Ministry of Education , Ocean University of China , Qingdao 266100 , China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering , Qingdao University , Qingdao 266071 , China
| | - Jian Zhao
- College of Environmental Science and Engineering, and Key Laboratory of Marine Environment and Ecology, Ministry of Education , Ocean University of China , Qingdao 266100 , China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering , Jiangnan University , Wuxi 214122 , China
| | - Bo Pan
- Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming 650500 , China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|